

ST. JOSEPH'S COLLEGE (AUTONOMOUS) JAKHAMA-NAGALAND

SYLLABUS (Outcome Based Education)

CURRICULUM AND CREDIT FRAMEWORK FOR UNDERGRADUATE PROGRAMMES (NEP-2020)

DEPARTMENT OF PHYSICS

With effect from the Academic Year 2023-2024 (1st to 4th FYUGP)

PREAMBLE

Physics is the most basic of the natural sciences. It is concerned with understanding the world on all scales of length, time, and energy. The methods of physics are diverse, but they share a common objective to develop and refine fundamental models that quantitatively explain observations and the results of experiments. The discoveries of physics, exemplified by the laws of physics, rank among the most important achievements of human inquiry, and have an enormous impact on human culture and civilization. The story of physics has been of people who thought outside the box. From Galileo and Newton in the 1600s to Einstein and Feynman in the 20th century, the progress of science in answering fundamental questions about the Nature is rooted in a different way of approaching things. A scientific way to test the validity of a physical theory, using a methodical approach to compare the implications of the theory in question with the associated conclusions drawn from experiments and observations conducted to test it. The B.Sc. Programme in Physics is a rigorous study program at Undergraduate level covering both the depth and breadth of all relevant areas, and provides substantial research training. It is designed to impart a thorough knowledge of the fundamental principles of the several branches of physics, as mathematically and experimentally demonstrated; and also to execute with their own hands various experiments to have hands-on experience with the tools and methods of physics, not simply with the concepts. The program aims to train future generations of physicists with specialization in frontier of the areas research.

INTRODUCTION

The NEP-2020 presents a unique opportunity to revolutionize the higher education system in India by shifting the focus from teachers to students. This policy promotes Outcome-Based Education, where the desired graduate attributes serve as the foundation for designing programs, courses, and supplementary activities that enable students to achieve the desired learning outcomes. The curriculum framework in Physics aims to provide a strong foundation in the subject and equip students with valuable cognitive abilities and skills necessary for success in diverse professional careers in a developing and knowledgebased society. The framework adheres to globally competitive standards of knowledge and skills in Physics while emphasizing the development of scientific orientation, an enquiring spirit, problem-solving skills, and values that promote rational and critical thinking. The program's structure is multidisciplinary, allowing students to explore the intersections between physics and other fields of study. This approach provides students with a broader perspective and helps them understand the interconnectedness of various areas of knowledge. The program also aims to promote students' personal and professional growth by motivating them to engage in co-curricular and extracurricular activities, which will help them develop essential skills like leadership, teamwork, and communication. The program's syllabus is designed to promote critical thinking, develop problem-solving abilities, and encourage creativity. It includes laboratory work and practical exercises that give students the opportunity to apply theoretical concepts to real-world problems and enhance their scientific skills. The program's multidisciplinary and holistic approach equips students with the skills and knowledge necessary for success in a rapidly changing world. Its commitment to social responsibility and sustainable development reflects its mission to produce not only accomplished physicists but also responsible and ethical global citizens. The NEP 2020 promotes multidisciplinary education in the undergraduate program that integrates social sciences, arts and humanities with science, technology, engineering and mathematics. For holistic development of individuals it requires to develop all capacities of human beings including intellectual, social, physical, emotional and moral behavior. Individuals should be acquainted in fields across the arts, humanities, languages, sciences and social sciences; professional, technical and vocational fields; soft skills, such as communication, discussion and debate etc.. In order to develop such holistic and multidisciplinary education, the curriculum and credit framework in Physics are designed accordingly. The course in Physics consists of six different types of courses- (i) Core courses, (ii) Minor courses, (iii) Multidisciplinary courses (iv) Ability enhancement courses (AEC), (v) Value added courses (VAC) and (vi) Skill enhancement courses.

PROGRAMME LEARNING OUTCOMES

The NEP 2020 has placed significant emphasis on outcome-based education, which highlights the importance of specific learning outcomes for each course. For Physics ,programme learning outcomes include:

PO 1:Knowledge and Comprehension: Students will be able to demonstrate a thorough understanding of fundamental principles and concepts of physics, including classical mechanics, electromagnetism, thermodynamics, quantum mechanics, and statistical mechanics.

PO 2:Analytical and Problem-Solving Abilities: Students will have the ability to apply their knowledge of physics to analyze and resolve problems in various settings, using appropriate mathematical tools, experimental methods, and computational techniques.

PO 3:Research and Inquiry Skills: Students will possess the ability to participate in research and inquiry based activities, such as creating and executing experiments, collecting and evaluating data, and communicating their findings in a clear and effective manner.

PO 4:Communication and Presentation Skills: Students will be able to express their ideas and discoveries effectively through both written and oral presentations, utilizing suitable scientific language and tools.

PO 6:Ethics and Values: Students will possess knowledge of the ethical and social implications of their work and demonstrate a dedication to the ethical and responsible conduct of research and practice.

PO 7: Interdisciplinary and Multidisciplinary Learning: Students will be capable of combining their understanding and skills with other disciplines and participating in multidisciplinary research and innovation.

These programme learning outcomes have been formulated to ensure that students acquire a strong basis in physics while also developing a range of transferable skills and abilities that will equip them for a diverse range of professions and further studies. By implementing an outcome-based approach and emphasizing learner-centric pedagogies, students will be able to meet these objectives and satisfy the ever-changing job market demands.

Programme Structure

Semester	Major or Core Paper (4 credits each)	Inter-disciplinary Minor Paper (4 credits each)	Multidisciplinary Course (4 credits each)	Skill Enhancement courses (SEC) OR Internship/ Apprenticeship/Project/Commu nity Outreach (2 credits each)	Ability enhancement Courses (AEC) (2 credits each)	Value Added Course (VAC) (2 credits each)	Total Credits
I	PHC 1.1: Mathematical Physics-1 (3) PHC 1.1(P): Mathematical Physics-1 (1) PHC 1.2: Mechanics (3) PHC 1.2(P): Mechanics (1)	PHM 1: Mechanics (3) PHM 1(P): Mechanics (1)	MDC - 1: Environmental Studies	PHS 1: Renewable Energy and Energy Harvesting (2)	AEC- 1:English Communication (2)	VAC-1: Constitutional Values(2)	22
Π	PHC 2.1: Electricity and Magnetism (3) PHC 2.1(P): Electricity and Magnetism (1) PHC 2.2: Waves and Optics(3) PHC 2.2(P): Waves and Optics (1)	PHM 2: Electricity and Magnetism (3) PHM 2(P): Electricity and Magnetism (1)	MDC-2: Programming using Python	PHS 2 : Basic Instrumentation Skills (2)	AEC-2:Basic Functional English(2)	VAC-2: Consumer Rights(2)	22
		Exit option with Undergraduate					44
ш	PHC 3.1: Mathematical Physics-11 (3) PHC 3.1(P): Mathematical Physics-11 (1) PHC 3.2: Analog Systems & Applications(3) PHC 3.2(P): Analog Systems & Applications (1) PHC 3.3: Thermal Physics (3) PHC 3.3(P): Thermal Physics (1)	PHM 3: Thermal Physics & Statistical Mechanics (3) PHM 3(P): Thermal Physics & Statistical Mechanics (1)	MDC-3: Intellectual Property Rights	PHS 3: Radiation Safety (2)			22
IV	PHC 4.1: Mathematical Physics-III (3) PHC 4.1(P): Mathematical Physics-III (1) PHC 4.2: Elements of Modern Physics (3) PHC 4.2(P): Elements of Modern Physics (1) PHC 4.3: Digital Systems and Application (3) PHC 4.3(P): Digital Systems and Application (1)	PHM 4: Elements of Modern Physics(3) PHM 4(P): Elements of Modern Physics (1)		PHS 4: Electrical Circuit and Network (2)	AEC-3:Poetry, Prose and Short Stories (2)	VAC-3 :Work Ethics(2)	22
	TF	Exit option with Undergraduat	e Diploma (88 Credits)				88
V	PHC 5.1: Quantum Mechanics-I (3) PHC 5.1(P): Quantum Mechanics-I (1) PHC 5.2: Classical Dynamics (4) PHC 5.3:Solid state Physics (3) PHC 5.3(P): Solid state Physics (1)	PHM 5: Solid state Physics (3) PHM 5 (P): Solid state Physics (1)		PHS 5: Basic Workshop Skills (2)	AEC-4 : Novel and Drama (2)	VAC- 4:India through the ages(2)	22
VI	PHC 6.1: Quantum Mechanics-II(4) PHC 6.2: Nuclear and Particle Physics (4) PHC 6.3: Electromagnetic Theory(3) PHC 6.3(P): Electromagnetic Theory (1) PHC 6.4: Statistical Mechanics (3) PHC 6.4 (P): Statistical Mechanics (1)	PHM 6: Nuclear and Particle Physics (4)		PHS 6 : Weather forecasting (2)			22
		Exit option with Bachelor of Science, B.Sc	Physics (132 Credits)-UC	Degree			132

Semest er	Major or Core Paper (4 credits each)	Inter-disciplinary Minor Paper (4 credits each)	Multidisciplinary Course (4 credits each)	Skill Enhancement courses (SEC) OR Internship/ Apprenticeship/Project/Commu nity Outreach (2 credits each)	Research Project/ Dissertation (12 Credits) OR 3 Theory Papers (12 Credits)	Total Credits
VII	PHC 7.1:Astronomy and Astrophysics(4) PHC 7.2: Material Science & Nano Technology(4) RM: Research Methodology(4)	PHM 7: Digital, Analog & Instrumentation(3) PHM 7(P): Digital, Analog & Instrumentation (1) PHM 8: Bio Physics (4)			Research Project/ Dissertation will start	20
VIII	PHC 8.1: Photonics (3) PHC 8.1(P): Photonics (1)	PHM 9:Earth Science(4)			Research Project/Dissertation in major(12) OR PHM 10: Astrobiology and Extraterrestrial life (4) PHC 8.2: Bio Physics (4) PHC 8.3: Atmospheric Physics (3) PHC 8.3(P): Atmospheric Physics (1)	20
		Bachelor of Science, B.Sc Physics (Honou	rs)with Research (172 (Credits)		172

DISCIPLINE SPECIFIC COURSES (DSC)

SEMESTER	COURSES	PAPER	TITLE OF THE PAPER	CREDITS
	OPTED	CODE	IIILE OF THE FALER	CREDITS
Ι	DSC-1	PHC 1.1	Mathematical Physics-I	3
-	DSC-1 (P)	PHC 1.1(P)	Mathematical Physics I	1
	DSC-2	PHC 1.2	Mechanics	3
	DSC-2 (P)	PHC 1.2 (P)	Mechanics	1
II	DSC-3	PHC 2.1	Electricity and Magnetism	3
	DSC-3 (P)	PHC 2.1 (P)	Electricity and Magnetism	1
	DSC-4	PHC 2.2	Waves and Optics	3
	DSC-4 (P)	PHC 2.2 (P)	Waves and Optics	1
III	DSC-5	PHC 3.1	Mathematical Physics-II	3
	DSC-5(P)	PHC 3.1 (P)	Mathematical Physics-II	1
	DSC-6	PHC 3.2	Analog Systems and Application	3
	DSC-6(P)	PHC 3.2 (P)	Analog Systems and Application	1
	DSC-7	PHC 3.3	Thermal Physics	3
	DSC-7(P)	PHC 3.3 (P)	Thermal Physics	1
IV	DSC-8	PHC 4.1	Mathematical Physics-III	3
	DSC-8(P)	PHC 4.1 (P)	Mathematical Physics-III	1
	DSC-9	PHC 4.2	Elements of Modern Physics	3
	DSC-9(P)	PHC 4.2 (P)	Elements of Modern Physics	1
	DSC-10	PHC 4.3	Digital Systems and Application	3
	DSC-10(P)	PHC 4.3 (P)	Digital Systems and Application	1
V	DSC-11	PHC 5.1	Quantum Mechanics-I	3
	DSC-11(P)	PHC 5.1 (P)	Quantum Mechanics-I	1
	DSC-12	PHC 5.2	Classical Dynamics	4
	DSC-13	PHC 5.3	Solid state Physics	3
	DSC-13(P)	PHC 5.3 (P)	Solid state Physics	1
VI	DSC-14	PHC 6.1	Quantum Mechanics-II	4
	DSC-15	PHC 6.2	Nuclear & Particle Physics	4
	DSC-16	PHC 6.3	Electromagnetic Theory	3
	DSC-16(P)	PHC 6.3(P)	Electromagnetic Theory	1
	DSC-17	PHC 6.4	Statistical Mechanics	3
	DSC-17(P)	PHC 6.4 (P)	Statistical Mechanics	1
VII	DSC-18	PHC 7.1	Astronomy and Astrophysics	4
	DSC-19	PHC 7.2	Material Science & Nano Technology	4
	RM	RM	Research Methodology	4

SEMESTER	COURSES OPTED	PAPER CODE	TITLE OF THE PAPER	CREDIT S
VIII	DSC-20 DSC-20(P)	PHC 8.1 PHC 8.1(P)	Photonics Photonics	3 1
			3 Theory Papers in lieu of Research Project/Dissertation (For Honors Students not undertaking Research Projects)	
	DSC-21	PHC 8.2	Bio Physics	4
	DSC-22 DSC-22(P)	PHC 8.3 PHC 8.3(P)	Atmospheric Physics Atmospheric Physics	3 1

MINOR PAPERS

SEMESTER	COURSES	PAPER CODE	TITLE OF THE PAPER	CREDITS			
	OPTED						
Ι	IDM-1	PHM 1	Mechanics	3			
	IDM-1(P)	PHM 1(P)	Mechanics	1			
II	IDM-2	PHM 2	Electricity and Magnetism	3			
	IDM-2(P)	PHM 2 (P)	Electricity and Magnetism	1			
III	IDM-3	PHM 3	Thermal Physics & Statistical Mechanics	3			
	IDM-3(P)	PHM 3 (P)	Thermal Physics & Statistical Mechanics	1			
IV	IDM-4	PHM 4	Elements of Modern Physics	3			
	IDM-4(P)	PHM 4 (P)	Elements of Modern Physics	1			
V	IDM-5	PHM 5	Solid state Physics	3			
	IDM-5(P)	PHM 5 (P)	Solid state Physics	1			
VI	IDM-6	PHM 6	Nuclear and Particle Physics	4			
VII	IDM-7	PHM 7	Digital, Analog & Instrumentation	3			
	IDM-7(P)	PHM 7 (P)	Digital, Analog & Instrumentation	1			
	IDM-8	PHM 8	Bio Physics	4			
VIII	IDM-9	PHM 9	Earth Science	4			
	IDM-10	PHM 10	Astrobiology and Extraterrestrial life	4			

MULTIDISCIPLINARY/INTRODUCTORY COURSES

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	MDC-1	Environmental Studies	4
II	MDC-2	Programming using Python	4
III	MDC-3	Intellectual Property Rights (IPR)	4

SKILL ENHANCEMENT COURSES (SEC)

SEMESTER	COURSES OPTED	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	SEC-1	PHS 1	Renewable Energy and Energy Harvesting	2
II	SEC-2	PHS 2	Basic Instrumentation Skills	2
III	SEC-3	PHS 3	Radiation Safety	2
IV	SEC-4	PHS 4	Electrical Circuit and Network	2
V	SEC-5	PHS 5	Basic Workshop Skill	2
VI	SEC-6	PHS 6	Weather Forecasting	2

ABILITY ENHANCEMENT COURSES

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	AEC-1	English Communication	2
II	AEC-2	Basic Functional English	2
III	AEC-3	Poetry, Prose and Short Stories	2
IV	AEC-4	Novel and Drama	2

VALUE ADDED COURSES

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	VAC-1	Constitutional Values	2
II	VAC-2	Consumer Rights	2
III	VAC-3	Work Ethics	2
IV	VAC-4	India through the ages	2

DISCIPLINE SPECIFIC CORE PAPERS

Semester-I

Semester	Ι
Paper Code	PHC 1.1
Paper Title	Mathematical Physics –I
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Mathematical Physics-1:

CO 1:	To make the students understand the idea of Vector Analysis and Vector Differentiation
CO 2:	To enable the students understand about First order and second order differential equations
CO 3:	To make the students well versed in Vector Integration
CO 4:	To create an understanding on Orthogonal Curvilinear Coordinates
CO 5:	To introduce the basic idea on Dirac delta functions and probability

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 Vector Analysis and Vector Differentiation	Vector Analysis: Properties of vectors under rotation. Scalar product and its invariance under rotation. Vector product, scalar triple product and their interpretations in terms of area and volume respectively. Scalar and Vector fields. Vector Differentiation: Directional derivatives and normal derivative.	CSO 1.1: To define vectors(K) CSO 1.2: To explain the properties of vectors under rotation and calculate problems related to it (U+A) CSO 1.3: To define and explain scalar and vector products variance and invariance under rotation (K+U) CSO 1.4: To work out problems under scalar product and vector product and its variance and invariance(A) CSO 1.5: To explain about Scalar field and Vector field (U) CSO 1.6: To define and explain directional and normal derivatives (K+U) CSO 1.7: To work out Problems based on directional and normal derivatives (A)	13	25	Not to be filled- in

	geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities.	CSO 1.8: To define and explain gradient of a scalar field and its geometrical interpretation. (K+U) CSO 1.9: To solve problems based on gradient of a scalar field (A) CSO 1.10: To define and explain Divergence and Curl of a vector field. (K+U) CSO 1.11: To work out problems based on Divergence and Curl of a vector field (A) CSO 1.12: To define and explain Del and Laplacian operators and their differences (K+U) CSO 1.13: To solve problems based on Del and Laplacian operators (A)			
UNIT 2 First order and second order differential equations	First order differential equations, Integrating Factor. Homogenous Equations with constant coefficients. Wronskian and general solution. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration.	and Laplacian operators (A) CSO 2.1: To define and explain First order differential equation (K+U) CSO 2.2: Discuss on order and degree of differential equation (U) CSO 2.3: To define and discuss on integrating factors and solve problems based on it (K+U+A) CSO 2.4: To discuss various ways to solve 1st order differential equations (U) CSO 2.5: Work out problems based on the various ways to solve 1st order differential equation (A) CSO 2.6: To define and discuss homogenous differential equation (K+U) CSO 2.7: Discuss on ways to solve homogenous equations (U+A) CSO 2.8: Define and explain Wronskian equation and its general solution (K+U) CSO 2.9: To solve problems based on Wronskian CSO 2.10: To introduce the idea of partial differential equations and their difference from ordinary differential equations. (K+U) CSO 2.11: To discuss on ways to solve exact and inexact equations. (A)	8	19	Not to be filled- in
UNIT 3 Vector Integration	Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector	CSO 3.1: To define ordinary integrals (K) CSO 3.2: To discuss on various types of integral (U) CSO 3.3: To solve problems based on the various types of integral. (A) CSO 3.4: To define Jacobian (K) CSO 3.5: To discuss on various parameters	8	19	Not to be filled- in
	fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications	on Jacobian and solve problems based on it (U+A) CSO 3.6: To define and discuss flux of a vector filed (U) CSO 3.7: To define and discuss Gauss Divergence Theorem and Stokes Theorems (K+U) CSO 3.8: To worked out problems based on			

		the theorems (A)			
UNIT 4	Orthogonal Curvilinear	CSO 4.1: To Define and understand	8	17	Not
Orthogonal	Coordinates. Derivation	orthogonal curvilinear coordinate system			to be
Curvilinear	of Gradient,	(K+U)			filled-
Coordinates	Divergence, Curl and	CSO 4.2: To Derive and discuss the various			in
coor annuces	Laplacian in Cartesian,	parameters of Orthogonal Curvilinear			
	Spherical and	Coordinates (U+A)			
	Cylindrical Coordinate	CSO 4.3: To Explain spherical and			
	Systems	cylindrical coordinate systems and its			
		relationship. (U)			
		CSO 4.4: To solve problems based on co-			
		conversion from on coordinate system to			
		another (A)			
		CSO 4.5: To Derivation of Gradient,			
		Divergence, Curl and Laplacian based on			
		orthogonal curvilinear coordinate system (A)			
		CSO 4.6: To solve problems based			
		conversion (A)			
UNIT 5	Definition of Dirac	CSO 5.1: To define Dirac delta function (K)	8	20	Not
Dirac delta	delta function.	CSO 5.2: To explain the Dirac delta			to be
functions and	Representation as limit	functions and its properties (K+U)			filled-
Introduction	of a Gaussian function	CSO 5.3: To workout problems based on			in
to probability	and rectangular	Dirac delta functions (A)			
	function. Properties of	CSO 5.4: To discuss its representation as			
	Dirac delta function.	limit of Gaussian function and rectangular			
		function (K+U)			
	Discrete and	CSO 5.5: To discuss examples to			
	continuous random	complement the above representation(A)			
	variables, Probability	CSO 5.6: To Define and explain on			
	distribution	probability and its types (K+U)			
	functions, Binomial, Poisson and Gaussian	CSO 5.7: To define and explain variables (K) CSO 5.8: To introduce the idea of random			
	distributions, Mean and	and discrete variables (U)			
	variance of these				
	Distributions.	CSO 5.9: To explain on the various probability distribution and solve problems			
	Distributions.	based on it. (U+A)			
		CSO 5.10: To define mean and variance in			
		probability(K)			
		CSO 5.11: To supplement the definition with			
		some problem solving(A)			
		1	1		

1. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, 7th Edition, Elsevier, 2013.

- 2. E.A. Coddington, Anintroduction to ordinary differential equations, PHI learning 2009.
- 3. George F. Simmons, Differential Equations, McGraw Hill, 2007.
- 4. James Nearing, Mathematical Tools for Physics, Dover Publications, 2010.
- 5. D.A. McQuarrie, Mathematical methods for Scientists and Engineers, Viva Book, 2003.
- 6. D.G. Zill & W.S. Wright ,*Advanced Engineering Mathematics*, 5 Edition, Jones & Bartlett Learning , 2012.
- 7. S.Pal and S.C. Bhunia, Engineering Mathematics, Oxford University Press, 2015.
- 8. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India, 2008.
- 9. K.F.Riley&M.P.Hobson , Essential Mathematical Methods, Cambridge Univ. Press 2011.

Semester	Ι
Paper Code	PHC 1.1(P)
Paper Title	Mathematical Physics –I
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

- Laboratory Objective:
 Prepare algorithms and flowcharts for solving a problem.
 Design, code and test programs in C and C++ in the process of solving various
 Solve physics problems involving differentiation

Topics	Description with application	
Introduction and Overview	Computer architecture and organization, memory and Input/output devices	
Basics of scientific computing	Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow emphasize the importance of making equations in terms of dimensionless variables, Iterative methods	
Review of C & C++ Programming Fundamentals		
Programs:	Sum & average of a list of numbers, largest of a given list numbers and its location in the list, sorting of numbers ascending descending order, Maximum minimum and range numbers, addition, multiplication and inverse of matrix, solution of quadratic equation, solution of simultaneous equation, valu of sine, cosine and exponential function using their serie expansion	
Random number generation	Area of circle, area of square, volume of sphere, value of pi (π)	
Interpolation by Newton Gregory Forward and Backward difference	Evaluation of trigonometric functions e.g sin θ , cos θ , tan θ , etc.	

formula, Error estimation of linear interpolation	
Numerical differentiation (Forward and	Given Position with equidistant time data to calculate velocity
Backward difference formula) and	and acceleration and vice versa.
Integration (Trapezoidal and Simpson	
rules), Monte Carlo method	

- 1.S.S. Sastry, Introduction to Numerical Analysis, 5th Edn. PHI Learning Pvt. Ltd, 2012.
- 2. J. Hubbard , Schaum's Outline of Programming with C++, McGraw-Hill Pub, 2000.
- 3. W.H. Pressetal, Numerical Recipes in C: The Art of Scientific Computing, 3rd Edn., 2007.
- 4.U.M. Ascher& C. Greif, A first course in Numerical Methods, PHI Learning, 2012.
- 5.K.E. Atkinson, *Elementary Numerical Analysis*, 3rd Edn., Wiley India Edition ,2007.
- 6. R.W. Hamming, Numerical Methods for Scientists & Engineers, Courier Dover Pub., 1973.
- 7.T.Pang, An Introduction to computational Physics, 2nd Edn., Cambridge Univ. Press, 2006.
- 8. Darren Walker, Computational Physics, 1st Edn., Scientific International Pvt. Ltd., 2015.

Semester	Ι
Paper Code	PHC 1.2
Paper Title	Mechanics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Mechanics**:

CO 1:	To make the students understand the fundamentals of dynamics.
CO 2:	To learn the concept of dynamics and rotational dynamics.
CO 3:	To understand gravitation and central force motion.
CO 4:	To make the students learn non-inertial systems and Special theory of relativity.
CO 5:	To make the students well aware of the concept of oscillations, elasticity and fluid motion.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Reference frames.	CSO 1.1: To define Dynamics. (K)	10	24	Not to
Fundamentals	Inertial frames.	CSO 1.2: To define reference frame and			be
of Dynamics	Galilean	inertial frame. (K)			filled-
	transformations;	CSO 1.3: To derive the Galilean			in
		transformation equations. (A)			

	Galilean invariance. Momentum of variable mass system: motion of rocket. Motion of a projectile in a uniform gravitational field. Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy.	 CSO 1.4: To learn Galilean invariance.(K) CSO 1.5: To define variable mass system.(K) CSO 1.6: To apply the laws of motion to study projectile motion and rocket motion.(A) CSO 1.7: To learn the dynamics of a sytem of particles.(U) CSO 1.8: To define centre of mass and derive the formula for it.(K&A) CSO 1.9: To define momentum and explain the principle of conservation of momentum. (U) CSO 1.10: To define impulse and derive the formula for it.(K&A) CSO 1.11: To define work and energy and derive the work energy theorem. (K&A) CSO 1.12: To differentiate between conservative and non-conservative forces. (U) CSO 1.13: To explain potential energy and draw the energy diagram.(U) CSO 1.15: To Define elstic potential energy. (K) CSO 1.16: To derive the formula for force as gradient of potential energy.(A) CSO 1.18: To Explain the law of conservative forces.(A) CSO 1.18: To Explain the law of conservation of energy.(U) 			
UNIT 2 Collisions, Rotational Dynamics	Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. Angular momentum of a particle and a system of particles. Torque. Principle of conservation of angular momentum. Kinetic energy of rotation. Rotation about a fixed axis.	 CSO 2.1: To define collision.(K) CSO 2.2: To define elastic and inelastic collisions.(K) CSO 2.3: To obtain the relations for elastic and inelastic collisions.(U) CSO 2.4: To obtain the expressions for centre of mass and laboratory frames. (U) CSO 2.5: To define rotational dynamics.(K) CSO 2.6: To define angular momentum.(K) CSO 2.7: To explain angular momentum of a particle and system of particles.(U) CSO 2.8: To define torque and obtain the expression for it.(K&U) 	8	19	Not to be filled- in

	Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies.	 CSO 2.9: To explain the principle of conservation of angular momentum. (U) CSO 2.10: To define kinetic energy and obtain the expression for kinetic energy of rotation.(K&A) CSO 2.11:To derive the expression for rotation about a fixed axis. CSO 2.12:To define moment of inertia and derive its formula. (K) CSO 2.13: To find the moment of inertia for rectangular, cylindrical and spherical bodies. (A) 			
UNIT 3 Gravitation and Central Force Motion	Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to a spherical shell and solid sphere. Motion of a Particle under a Central Force Field: Two-body problem and its reduction to one- body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).	 CSO 3.1: To define gravitation and central force.(K) CSO 3.2: To explain the law of gravitation.(U) CSO 3.3: To define gravitational potential energy, inertial mass and gravitational mass.(K) CSO 3.4: To obtain expression for gravitational potential due to spherical shell and solid sphere.(U) CSO 3.5: To obtain expression for gravitational field due to spherical shell and solid sphere.(U) CSO 3.6: To explain two-body problem and derive its reduction to one-body problem and find the solution.(U) CSO 3.7: To derive the energy equation and explain the energy diagram. CSO 3.8: To state the Kepler's laws.(K) CSO 3.9: To explain motion of a satellite in circular orbit and write its applications.(U) CSO 3.11: To explain Geosynchronous orbits.(U) CSO 3.12: To explain the basic idea of global positioning system(GPS).(U) 	9	19	Not to be filled- in
UNIT 4 Non-Inertial Systems, Special Theory of Relativity	Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems.	CSO 4.1: To define non-inertial frames and fictitious forces. (K) CSO 4.2: To explain Uniformly rotating frame.(U) CSO 4.3: To explain the Laws of Physics in rotating coordinate systems.(U) CSO 4.4:To define Centrifugal force.(K)			Not to be filled- in

	Centrifugal force. Coriolis force and its applications. Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence.	CSO 4.5: To define coriolis force and write its applications.(K&U) CSO 4.6: To explain the Michelson- Morley Experiment and find its outcome.(U) CSO 4.7:To write the postulates of Special Theory of Relativity.(K) CSO 4.8:To derive Lorentz Transformation equations.(A) CSO 4.9: To explain time dilation.(U) CSO 4.10: To derive the expression for relativistic addition of velocities.(A) CSO 4.11:To derive the expression for Variation of mass with velocity.(A) CSO 4.12:To define massless Particles (photon) and derive an expression for it.(K&A) CSO 4.13:To obtain the expression for Mass-energy Equivalence.(U)			
UNIT 5 Oscillations, Elasticity, Fluid Motion	SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations. Resonance, sharpness of resonance and Quality Factor. Relation between Elastic constants. Twisting torque on a Cylinder or Wire. Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.	 CSO 5.1: To define simple harmonic oscillations. (K) CSO 5.2: To derive the differential equation of SHM and find its solution .(A) CSO 5.3:To define Kinetic energy, potential energy, total energy and find their time-average values.(K&A)) CSO 5.4: To define damped oscillation and obtain the expression for it. (K&U) CSO 5.5: To define forced oscillation and obtain the expression for it. (K&U) CSO 5.6: To define resonance, sharpness of resonance and Quality Factor and obtain expressions for each. (K&A) CSO 5.7: To define the types of elastic constants.(K) CSO 5.9: To derive the relation between Elastic constants.(A) CSO 5.10: To derive the expression for twisting torque on a Cylinder or Wire.(A) CSO 5.12: To derive expression for yolume of a liquid flowing through a Capillary Tube (Poiseuille's Equation). 	9	19	Not to be filled- in

- 1. D.Kleppner, R.J.Kolenkow, An Introduction to Mechanics, McGraw-Hill ,1973.
- 2. C.Kittel, W.Knight , Mechanics, BerkeleyPhysics, Vol.1, ,et.al. TataMcGraw-Hill ,2007.
- 3. G.R.Fowles and G.L.Cassiday, *Analytical Mechanics*, CengageLearning, 2005.
- 4. R.P.Feynman, R.B.Leighton, M.Sands, *Feynman Lectures*, Vol.1, Pearson Education 2008.
- 5. R.Resnick, Introduction to Special Relativity, John Wiley and Sons 2005.
- 6. Ronald Lane Reese, *University Physics*, ThomsonBrooks/Cole 2003.
- 7. D.S.Mathur, *Mechanics*, S.ChandandCompanyLimited, 2000.
- 8. F.WSears, M.WZemansky, H.DYoung 13, University Physics, AddisonWesley, 1986.

Semester	Ι
Paper Code	PHC 1.2(P)
Paper Title	Mechanics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

Students would perform basic experiments related to mechanics and also get familiar with various measuring instruments, would learn the importance of accuracy of measurements.

- 1. Measurements of length (or diameter) using Vernier caliper, screw gauge and travelling microscope.
- 2. To study the random error in observations.
- 3. To determine the height of a building using a Sextant.
- 4. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity.
- 5. To determine the Moment of Inertia.
- 6. To determine g and velocity for a freely falling body using Digital Timing Technique
- 7. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 8. To determine the Young's Modulus of a Wire.
- 9. To determine the Modulus of Rigidity.
- 10. To determine the elastic Constants of a wire by Searle 's method.
- 11. To determine the value of g using Compound Pendulum.
- 12. To determine the value of g using Kater's Pendulum.

SUGGESTED READINGS:

1. B.L. Flint and H.T. Worsnop , Advanced Practical Physics for students, Asia Publishing House, 1971.

2. I. Prakash & Ramakrishna, A Text Book of Practical Physics, 11th Ed., Kitab Mahal 2011.

3. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practical*, 4th Edition, reprinted ,Heinemann Educational Publishers ,1985.

4. D.P.Khandelwal, ALaboratory Manual of Physics for undergraduate classes, Vani Pub. 1985.

Semester-II

Semester	П
Paper Code	PHC 2.1
Paper Title	Electricity and Magnetism
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs) The following are the Course Objectives (COs) for the paper Electricity and Magnetism:

CO 1:	To make the students aware of the electric field and basic concepts of electric potential.
CO 2:	To aid the students in the understanding of Electrostatic energy and dielectric properties of matter.
CO 3:	To create an understanding among the students, the Magnetic field and its applications and Ballistic Galvanometer.
CO 4:	To inculcate and create interest among students in the understanding of Magnetic properties of matter and Electromagnetic Induction
CO 5:	To assist the students in the understanding of Electric circuits and the Network theorems.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Electric field:	CSO 1.1: To define the term electric field.	7	18	Not to
Electric Field	Electric field lines.	(K)			be
and Electric	Electric flux.	CSO 1.2: To define electric field lines. (K)			filled-
Potential	Gauss 'Law with	CSO 1.3: To define electric flux. (K)			in
	applications to	CSO 1.4: To Demonstrate Gauss law for			
	charge	the electric field, and apply to charge			
	distributions with	distributions with spherical, cylindrical and			
	spherical,	planar symmetry. (A)			
	cylindrical and				
	planar symmetry.	CSO 1.5: To discuss the conservative			
	Conservative	nature of electrostatic field. (U)			
	nature of	CSO 1.6: To define electrostatic potential.			
	Electrostatic Field.	(A)			
	Electrostatic	CSO 1.7: To define Laplace's and Poisson			
	Potential. Laplace	equations. (K)			
	's and Poisson	CSO 1.8: To define and determine the			
	equations. The	uniqueness theorem. (A)			
	Uniqueness	CSO 1.9: To discuss the potential and			
	Theorem. Potential	electric field of dipole.			
	and Electric Field	CSO 1.10: To derive the Laplace and			
	of a dipole.	Poisson equations.			
	*	<u>^</u>			

UNIT 2 Electrostatic energy and dielectric properties of matter.	Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant Displacement vector D . Relations between E , P and D .	 CSO 2.1: To define electrostatic energy. (K) CSO 2.2: To define and characterise conductors in an electrostatic field. (A) CSO 2.3: To explain the surface charge and force on a conductor. (U) CSO 2.4: To discuss the capacitance of a charged conductors. (U) CSO 2.5: To explain capacitor filled with dielectric. (U) CSO 2.6: To describe dielectric properties of matter. (U) CSO 2.7: To explain electric field in matter. (U) CSO 2.8: To define polarization and polarization charges. (K) CSO 2.9: To define and explain electrical susceptibility and dielectric constant. (K) CSO 2.11: To compare and contrast the relations between E, P and D. (U) CSO 2.12: To derive electrostatic energy for system of charges. (A) 	9	20	Not to be filled- in
UNIT 3 Magnetic field and Ballistic Galvanometer	Magnetic force between current elements and definition of Magnetic Field B . Biot-Savart 's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment. Torque on a current loop in a uniform Magnetic Field. Ampere 's Circuital Law and its application to	 CSO 3.1: To define magnetic force. (K) CSO 3.2: To explain magnetic force between current element. (U) CSO 3.3: To define Magnetic Field. (K) CSO 3.4: To describe Biot- Savart's Law and examine its application on straight wire and circular loop. (A) and (K) CSO 3.5: To describe current loop as a magnetic dipole and explain its dipole moment. (K) CSO 3.6: To demonstrate torque on a current loop in a uniform magnetic field. (A) CSO 3.7: To explain Ampere's Circuital Law. (U) CSO 3.8: To state and explain the properties of magnetic field. (K) CSO 3.10: To analyse the magnetic force on point charge, current carrying wire and between current elements. (A) 	12	23	Not to be filled- in

	 (1) Solenoid and (2) Toroid. Properties of B. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Ballistic Galvanometer: Ballistic Galvanometer Current and Charge Sensitivity. 	 CSO 3.11: To describe Ballistic Galvanometer. (K) CSO 3.12: To apply ampere,s law for solenoid and toroid. (A) CS) 3.13: To discuss current and charge sensitivity of Ballistic Galvanometer. (U) 			
UNIT 4 Magnetic properties of matter and Electromagnetic Induction	Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B , H , M . Ferromagnetism. B-H curve and hysteresis. Electromagnetic Induction: Faraday 's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current.	 CSO 4.1: To define magnetization vector M. (K) CSO 4.2: To explain Magnetic Intensity H. (U) CSO 4.3: To define magnetic susceptibility and permeability. (K) CSO 4.4: To derive the relation between B, H, M. (A) CSO 4.5: To define Ferromagnetism. (K) CSO 4.6: To examine B-H curve and construct hysteresis loop of a ferromagnetic material. (A) CSO 4.7: To define electromagnetic induction. (K) CSO 4.8: To explain Faraday's law and its derivation. (A) CSO 4.10: To explain Lenz's Law. (U) CSO 4.11: TO derive Reciprocity theorem. (A) CSO 4.12: To evaluate energy stored in a magnetic field. (A) CSO 4.14: To construct the charge conservation and displacement current of electromagnetic waves. (A) 	8	19	Not to be filled- in
UNIT 5 Electric circuits and Network theorems.	AC Circuits: Kirchhoff [*] s laws for AC circuits. Complex	CSO 5.1: To define AC Circuits. (K) CSO 5.2: To explain Kirchoff's laws for AC circuits. (U)	9	20	Not to be filled- in

Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit. Network theorems: Ideal Constant-voltage and Constant-	 CSO 5.3: To explain complex reactance and Impedance in an electrical circuit. (U) CSO 5.4: To describe LCR series Circuit. (K) CSO 5.5: To explain Parallel LCR circuit. (U) CSO 5.6: To define and explain Ideal Constant voltage and constant current sources. (K) CSO 5.7: To construct LCR series circuit and find its resonance factor, power, dissipation, quality factor and the band width. (A) 		
0	dissipation, quality factor and the band		
theorem, Maximum Power Transfer theorem. Applications to dc circuits.	theorem. (A) CSO 5.13: To construct the maximum power transfer theorem. (A)		

- 1. S. Mahajan and Choudhury, Electricity, Magnetism & Electromagnetic Theory, Tata McGraw, 2012.
- 2. Edward M. Purcell, Electricity and Magnetism, McGraw-Hill Education ,1986.
- 3. D.J. Griffiths, Introduction to Electrodynamics, 3rd Edn., Benjamin Cummings 1998.
- 4. R.P.Feynman, R.B.Leighton, M. Sands, Feynman Lectures Vol.2, Pearson Education 2008.
- 5.M.N.O. Sadiku, *Elements of Electromagnetics*, Oxford University Press ,2010.
- 6. J.H.Fewkes&J.Yarwood , *Electricity and Magnetism*, Vol. I, Oxford Univ. Press 1991.

Semester	II
Paper Code	PHC 2.1(P)
Paper Title	Electricity and Magnetism
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

Demonstration and practical laboratory experiments on electrical circuits and devices and uses of different electrical devices is the objective of the course. Moreover, raining on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors is also an aim of the course.

1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.

- 2. To study the characteristics of a series RC Circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- 7. To verify the Thevenin and Norton theorems.

8. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.

9. To study the response curve of a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q.

10. Determine a high resistance by leakage method using Ballistic Galvanometer.

- 1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House ,1971.
- 2. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, Heinemann Educational Publishers, reprinted 1985.
- 3. S. Panigrahi and B. Mallick, *Engineering Practical Physics*, Cengage Learning, 2015.
- 4. D. P. Khandelwal, A Laboratory Manual of Physics for undergraduate classes, Vani Pub ,1985.

Semester	II
Paper Code	PHC 2.2
Paper Title	Waves and Optics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The follow	he following are the Course Objectives (COs) for the paper Waves and Optics:					
CO 1:	To create understanding about the Superposition of Harmonic Oscillators.					
CO 2:	To make the students understand the velocity of waves and superposition of harmonic					
	waves.					
CO 3:	To study wave optics and interference in waves.					
CO 4:	To study Michelson Interferometer used to observe fringes and study the phenomenon of					
	diffraction					
CO 5:	To understand Fresnel diffraction and holography using the concept of waves.					

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Mark	LOs
		(CSOs)	Hours	S	
UNIT 1	Superposition of two	CSO 1.1: To define periodic	13	25	Not to
Superposition	collinear oscillations	motion and simple harmonic			be
of Harmonic	having (1) equal	motion.(K)			filled-
oscillators	frequencies and	CSO 1.2: To define frequency,			in
	(2)different	vibration, amplitude and time			
	frequencies(Beats).Super	period. (K)			
	position of N collinear	CSO 1.3: To define the			
	Harmonic Oscillations	Principle of Superposition and			
	with (1)equal phase	apply it to find the superposition			
	differences and (2)equal	of two collinear oscillations			
	frequency differences.	having same frequencies and			
	Superposition of two	different frequencies.(K&A)			
	perpendicular	CSO 1.4: To find the formula			
	Harmonic Oscillations:	for Superposition of N collinear			
	Graphical and Analytical	Harmonic Oscillations with			
	Methods. Lissajous	(1)equal phase differences and			
	Figures with equal and	(2)equal frequency differences.			
	unequal frequency and	(U)			
	their uses.	CSO 1.5: To define Lissajous			
	Wave Motion: Plane and	figures and used it to understand			
	Spherical Waves.	simple harmonic vibrations of			
	Longitudinal and	same frequency and different			
	Transverse Waves. Plane	frequencies. (K&A)			
	Progressive (Travelling)	CSO 1.6: To define wave			
	Waves. Wave Equation.	motion.(K)			
	Particle and Wave	CSO 1.7: To define transverse			
	Velocities. Differential	and longitudinal waves.(K)			
	Equation. Pressure of a	CSO 1.8: To define spherical			
	Longitudinal Wave.	and plane waves. (K)			
		CSO 1.9: To define particle			
		velocity, wave velocity and			
		group velocity and find the			
		relation between them.(K)			
		CSO 1.10: To derive the			

UNIT 2 Velocity of Waves, Superposition of Two Harmonic Waves	Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. Superposition of Two Harmonic Waves: Standing (Stationary) Waves in a String: Fixed and Free Ends. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes.	equation of a plane progressive wave(A) CSO 1.11:To derive the differential wave equation. (A) CSO 2.1: To derive the Velocity of Transverse Vibrations of Stretched Strings.(A) CSO 2.2: To find the solution of a wave equation.(U) CSO 2.3: To derive the Velocity of Longitudinal Waves in a Fluid in a Pipe. (A) CSO 2.4: To derive Newton's formula for the velocity of sound. (A) CSO 2.5: To explain Laplace correction.(U) CSO 2.6: To define stationary waves.(K) CSO 2.7: To explain the standing waves with two fixed ends of a string. (U) CSO 2.8: To explain the standing waves with two free ends and one free end.(U) CSO 2.9: To derive formula for energy of vibrating string. (A) CSO 2.11:To derive a formula for energy in the nth mode of a vibrating string. CSO 2.11: To explain wave groups and group velocity.(U) CSO 2.13: To derive the equation for motion of a plucked string and struck string. (A) CSO 2.14: To explain Melde's experiment.(U)	8	19	Not to be filled- in
UNIT 3 Wave Optics, Interference	Electromagnetic nature of light. Definition and properties of wavefront. Huygens Principle. Temporal and Spatial Coherence. Interference: Division of	CSO 3.1: To define light.(K) CSO 3.2: To explain the electromagnetic nature of light. (U) CSO 3.3: To define wavefront and explain its types.(K) CSO 3.4: To explain the	8	20	Not to be filled- in

	amplitude and wavefront.	Huygen's Principle using the			
	Young's double slit	concept of wavefront. (U)			
	experiment. Lloyd's	CSO 3.5: To state the difference			
	Mirror and Fresnel's	between spatial and temporal			
	Biprism. Phase change on	coherence. (K)			
	reflection: Stokes'	CSO 3.6: To define the			
	treatment. Interference in	principle of interference. (K)			
	Thin Films, Newton's	CSO 3.7: To find the condition			
	Rings: Measurement of	necessary to observe the			
	wavelength and refractive	interference of two light beams.			
	index.	(U)			
		CSO 3.8: To define constructive			
		and destructive interference. (K)			
		CSO 3.9: To define coherent			
		sources.(K)			
		CSO 3.10: To explain the			
		methods for obtaining the			
		interference pattern.(U)			
		CSO 3.11: To explain Young's			
		double slit experiment,Lloyd's			
		mirror and Fresnel's biprism			
		(U)			
		CSO 3.12: To understand			
		Stoke's treatment.(U)			
		CSO 3.13: To explain the			
		interference in thin films. (U)			
		CSO 3.14 :To give a brief introduction of Newton's rings			
		and find its Wavelength and			
		refractive index. (U)			
UNIT 4	Interferometers:	CSO 4.1: To define	8	18	Not to
Interferometers,	Michelson	Interferometer.(K)	-		be
Diffraction	Interferometer- (1)Idea of	CSO 4.2: To understand the			filled-
	form of fringes(No theory	working of Michelson's			in
	required),(2)Determinatio	interferometer .(U)			
	n of	CSO 4.3: To explain Fabry –			
	Wavelength,(3)Waveleng	perot interferometer. (U)			
	th Difference,(CSO 4.4: To define			
	4)Refractive Index,	diffraction.(K)			
	and(5)Visibility of	CSO 4.5: To give the difference			
	Fringes.	between diffraction and			
	Fabry – perot	interference.(K)			
	interferometer.	CSO 4.6: To explain the types			
	Diffraction: Types of	of diffraction. (U			
	diffraction Fraunhofer	CSO 4.7: To explain the			
	diffraction: Single slit.	different types of Fraun hoffer's			
	Circular aperture,	class of diffraction(single slit,			
	Resolving Power of a talascopa. Double slit	circular aperture, double slit). (A)			
	telescope. Double slit.	CSO 4.8: To define resolving			
	Diffraction grating. Resolving power of	power and limit of resolution.(K)			
	• •				
	grating.	CSO 4.9: To give the			

UNIT 5	Fresnel Diffraction:	Rayleigh's criterion for resolution.(K) CSO 4.10: To explain the resolving power of telescope. (U) CSO 4.11: To define diffraction grating and find resolving power of a diffraction grating. (K)	8	18	
Fresnel Diffraction, Holography	Fresnel's Assumptions Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge. Holography: Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms.	CSO 5.1: To explain Fresnel's assumptions. (U) CSO 5.2: To explain Fresnel's Half-Period Zones for Plane Wave.(U) CSO 5.3: To find the radii and area of half-period zones. (U) CSO 5.4: To explain rectilinear propagation of light.(U) CSO 5.5: To define zone plate and explain its construction.(K) CSO 5.6: To define positive and negative zone plates.(K) CSO 5.7: To explain the theory and multiple foci of a zone plate. (U) CSO 5.8: To explain cornu's spiral.(U) CSO 5.9: To explain Fresnel's integrals.(U) CSO 5.10: To explain Fresnel diffraction at a straight edge. (U) CSO 5.11: To define holography.(K) CSO 5.12: To give the principle of holography.(K) CSO 5.13: To explain the recording of a hologram.(U) CSO 5.14: To explain the reconstruction of the image from a hologram. (U) CSO 5.16: To explain the preceding of a hologram.(U) CSO 5.16: To explain the reconstruction of the image from a hologram. (U)			Not to be filled- in

- 1. Francis Crawford, *Waves*: Berkeley Physics Course, vol. 3, Tata McGraw-Hill ,2007.
- 2. F.A. Jenkins and H.E. White, Fundamentals of Optics, McGraw-Hill ,1981.
- 3. Max Born and Emil Wolf, *Principles of Optics*, 7th Edn, Pergamon Press, 1999.
- 4. Ajoy Ghatak, *Optics*, Tata McGraw Hill ,2008.
- 5. H. J. Pain, *The Physics of Vibrations and Waves*, John Wiley and Sons, 2013.
- 6. N.K. Bajaj, The Physics of Waves and Oscillations, Tata McGraw Hill ,1998.
- 7. A. Kumar, H.R. Gulati and D.R. Khanna, *Fundamental of Optics*, R. Chand Publications, 2011.

Semester	II
Paper Code	PHC 2.2(P)
Paper Title	Waves and Optics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The practical knowledge of wave motion doing experiments: Tuning fork, electric vibrations. They would also learn optical phenomena such as interference, diffraction and dispersion and do experiments related to optical devices: Prism, grating, spectrometers

- 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify $\lambda 2$ –T law.
- 2. To investigate the motion of coupled oscillators.
- 3. To study Lissajous Figures.
- 4. Kundt's tube experiment.
- 5. Familiarization with: Schuster's focusing; determination of angle of prism.
- 6. To determine refractive index of the Material of a prism using sodium source.
- 7. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
- 8. To determine the wavelength of sodium source using Michelson's interferometer.
- 9. To determine wavelength of sodium light using Fresnel Bi-prism.
- 10. To determine wavelength of sodium light using Newton 's Rings.
- 11. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
- 12. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 13. To determine dispersive power and resolving power of a plane diffraction grating.

- 1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House ,1971.
- 2. Prakash & Ramakrishna, A Text Book of Practical Physics, I. 11th Ed., Kitab Mahal ,2011.
- 3. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practical*, 4th Edition, Heinemann Educational Publishers, reprinted 1985.
- 4. D.P.Khandelwal, A Laboratory Manual of Physics for undergraduate classes, Vani Pub, 1985.

Semester-III

Semester	Ш
Paper Code	PHC 3.1
Paper Title	Mathematical Physics –II
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Mathematical Physics II:

CO 1:	To make the students understand the Fourier series expansion of periodic and non periodic
	functions.
CO 2:	To aid the students in the understanding of second order differential equation and help them to solve differential equations by using frobenius methods.
CO 3:	To make the student understand the properties of Bessel and Legengre polynomials.
CO 4:	To make the student understand about the importance of Beta and gamma functions and give ideas about different kind of errors.
CO 5:	To assist the students in the understanding of partial differential of wave and Laplace equations.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
Unit & Title UNIT 1 Fourier Series	Unit Contents Periodic functions. Dirichlet's Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non- periodic functions over an interval. Even and odd functions and their Fourier	Course Specific Objective (CSOs) CSO 1.1: To define periodic functions. (K) CSO 1.2: To Write Dirichlet's conditions. (K) CSO 1.3: To construct periodic functions in a series of sine function. (A) CSO 1.4: To construct periodic functions in a series of sine function. (A) CSO 1.5: To understand fourier coefficients. (U) CSO 1.6: To understand the fourier series in complex form. (U) CSO 1.7: To describe even and odd functions and their fourier expansion. (K) CSO 1.8: To understand non periodic functions. (U)		Marks 20	LOs Not to be filled- in
	expansions.				

	Application. Parseval				
	Identity.				
UNIT 2	Singular Points of	CSO 2.1: To describe second order	9	20	Not to
Frobenius	Second Order Linear	differential equations. (K)			be
Method and	Differential Equations	CSO 2.2: To understand singular			filled-
Special	and their importance.	point of a second order linear			in
Polynomials	Frobenius method and	differential equations. (U)			
	its applications to	CSO 2.3: To write frobenius method.			
	differential equations.	(K)			
	Legendre, Bessel,	CSO 2.4: To derive Legendre			
	Hermite and Laguerre	differential equation. (A)			
	Differential	CSO 2.5: To derive Bessel			
	Equations.	differential equation. (A)			
		CSO 2.6: To derive Hermite			
		differential equation. (A)			
		CSO 2.7: To derive Laguerre			
		differential equation. (A)			
		CSO 2.8: To understand the			
		generating function of Hermite			
		Polynomial. (U)			
		CSO 2.9: To understand the			
		generating function of Laguerre Polynomial. (U)			
UNIT 3	Legendre function:	CSO 3.1: To state generating	9	20	Not to
Properties of	Generating Function,	function. (K)	,	20	be
Legendre and	Simple recurrence	CSO 3.2: To write the generating			filled-
Bessel	relations. Expansion	function of Legendre Polynomial. (K)			in
Polynomials	of function in a series	CSO 3.3: To write the generating			
v	of Legendre	function of Bessel Polynomial. (K)			
	Polynomials. Bessel	CSO 3.4: To understand recurrence			
	Functions of the First	relations of Legendre and Bessel			
	Kind: Generating	Polynomials. (U)			
	Function, simple	CSO 3.5: To derive the expansion of			
	recurrence relations.	the function in series of Legendre			
	Zeros of Bessel	Polynomials. (A)			
	Functions $(Jo(x) and$	CSO 3.6: To express the Bessel			
	J1(x)).	function of the first kind. (A)			
		CSO 3.7: To explain the zeros of			
UNIT 4	Beta and Gamma	Bessel Functions. (U) CSO 4.1: To define Beta function.	7	16	Not to
Some Special	Functions and	(K)	/	10	be
Functions and	Relation between	CSO 4.2: To define Gamma function.			filled-
Theory of	them. Relation	(K)			in
Errors	between Beta and	CSO 4.3: To explain the relationship			
	Gamma Functions.	between Beta and Gamma functions.			
	Theory of Errors:	(U)			
	Systematic and	CSO 4.4: To describe systematic and			
	Random Errors.	random errors. (K)			
	Propagation of Errors.	CSO 4.5: To understand different			
	Standard and	types of Propagation errors. (U)			

	Probable Error. Least- squares fit. Error in slope and intercept.	CSO 4.6: To understand Standard error. (U) CSO 4.7: To understand Probable error. (U) CSO 4.8: To construct the least square fit error in slope and intercept. (A)			
UNIT 5 Partial Differential Equations	Solutions to partial differential equations using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes.	 CSO 5.1: To define partial differential equation. (K) CSO 5.2: To understand the solution of partial differential equation by method of separation of variables. (U) CSO 5.3: To express the Laplace Equation in rectangular coordinate system. (A) CSO 5.4: To discuss Laplace equation. (U) CSO 5.5: To express the Laplace equation in cylindrical coordinate system. (A) CSO 5.6: To express the Laplace equation in spherical coordinate system. (A) CSO 5.7: To discuss the Wave equation. (U) CSO 5.8: To derive the wave equation for stretched string. (A) CSO 5.9: To derive the wave equation for rectangular membrane. (A) CSO 5.10: To derive the wave equation for circular membrane. (A) 	11	24	Not to be filled- in

- 1. Arfken, Weber, Mathematical Methods for Physicists: Harris, Elsevier ,2005.
- 2. M.R. Spiegel, Fourier Analysis , Tata McGraw-Hill ,2004.
- 3. Susan M. Lea, *Mathematics for Physicists*, Thomson Brooks/Cole, 2004.
- 4. George F. Simmons, *Differential Equations*, Tata McGraw-Hill ,2006.
- 5. S.J. Farlow, Partial Differential Equations for Scientists & Engineers, Dover Pub ,1993.
- 6. S.Pal and S.C. Bhunia, *Engineering Mathematics*, Oxford University Press ,2015.
- 7. D.A. Mc Quarrie, Mathematical methods for Scientists & Engineers, Viva Books ,2003.

Semester	III
Paper Code	PHC 3.1 (P)
Paper Title	Mathematical Physics- II
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The aim of this course is to

- 1. Highlights the use of computational methods to solve physical problems.
- 2. Course will consist of hands-on training on the Problem solving on Computers.

Topics	Descriptions with applications			
	environment, Command window, Figure window, Edit window, Variables and arrays, Initialising variables in Scilab, Multidimensional arrays, Subarray, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3D plotting (2), Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization (2) User defined functions, Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Complex and Character data, string function, Multidimensional arrays (2) an introduction to Scilab file processing, file opening and closing, Binary I/o functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program (2).			
Curve fitting,Leas t square fit, Goodness Off it,standard deviation	Ohms law to calculate R,Hooke's law to calculate spring Constant			
Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen	Solution of mesh equations of electric circuits(3meshes) Solution of coupled spring mass systems (3 masses)			
vectors,eigen values problems Solution of ODE First order Differential equation Euler, modified Euler and Runge-Kutta second order methods Second order differential equation Fixed difference method Using Scicos/ xcos	 First order differential equation Radioactive decay Current in RC,LCcircuits with DC source Newton's law of cooling Classical equations of motion Second Order Differential Equation Harmonic oscillator(no friction) Damped Harmonic oscillator Over damped Critical damped Oscillatory Forced Harmonic oscillator Transient and Steady state solution 			

•	Generating square wave, sine wave, sawtooth wave
•	Solution to harmonic oscillator
•	Study of beat phenomenon
•	Phases pace plots

- 1.K.FRiley,M.P.Hobson and S. J.Bence,*Mathematical Methods for Physics and Engineers*, 3rded.,CambridgeUniversity Press,2006.
- 2.A.S.Fokas&M.J.Ablowitz, Complex Variables, 8th Ed., Cambridge Univ. Press, 2011.
- 3.D.G.ZillandP.D.Shanahan ,*First course in complex analysis with applications*, Jones & Bartlett, 1940.
- 4.H.Ramchandran, A.S.Nair.Scilab(A free software to matlab): Chand& Company, 2011.
- 5.Lambert M.Surhone, Scilab Image Processing:. Betascript Publishing, 2010.

Semester	III
Paper Code	PHC 3.2
Paper Title	Analog Systems and Applications
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Analog Systems and Applications:

CO 1:	To create an awareness among the students about Semiconductor Diodes, its mechanism and
	application
CO 2:	To instil the idea of Two-terminal Devices and Bipolar Junction transistors and its working
	mechanism among the students
CO 3:	To let the students understand the concepts of Amplifiers and coupled amplifiers and its applications
CO 4:	To inculcate and create interest among students in Feedback Amplifier, Sinusoidal Oscillators and
	Operational Amplifiers
CO 5:	To assist the students in understanding Applications of Op-Amps

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Mark	LOs
			Hours	S	
UNIT 1	P and N type	CSO 1.1: To define semiconductor	7	16	Not
Semiconductor	semiconductors. Energy	diode (K)			to be
Diodes	Level Diagram.	CSO 1.2: To explain the different			fille
	Conductivity and	types of semiconductors (U)			d-in
	Mobility, Concept of Drift	CSO 1.3: To explain the			
	velocity. PN Junction	semiconductors based on energy			
	Fabrication (Simple Idea).	level diagram (U)			
	Barrier Formation in PN	CSO 1.4: To define and explain the			
	Junction Diode. Static and	idea of conductivity, mobility and			
	Dynamic Resistance.	drift velocity (K+U)			
	Current Flow Mechanism	CSO 1.5: To give the idea on PN			
	in Forward and Reverse	junction fabrication (A)			
	Biased Diode. Derivation	CSO 1.6: To explain on barrier			

	for Barrier Potential, Barrier Width and Current for Step Junction.	formation (U) CSO 1.7: To explain on the resistance in semiconductor diode (U) CSO 1.8: To define and explain the Current Flow Mechanism in Forward and Reverse Biased Diode (U+A) CSO 1.9: To show how to derive barrier potential and barrier width equation (U+A) CSO 1.10: To work out problems based on the barrier potential and width			
UNIT 2 Two-terminal Devices and their Applications Bipolar Junction transistors	Rectifier Diode: Half- wave Rectifiers. Centre- tapped and Bridge Full- wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter, Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell Bipolar Junction transistors: n-p-n and p- n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions.	CSO 2.1: To define rectifier (K) CSO 2.2: To explain and derive full wave and half wave rectifier equation and calculate its parameters (U+A) CSO 2.3: To work out problems based on the rectifier equation (A) CSO 2.4: To define and explain on the use of filters in rectifiers (U+A) CSO 2.5: To define Zener diode (K) CSO 2.6: To discuss Zener diode application as a voltage regulator (U+A) CSO 2.7: To discuss the structure and principle of LED, Photodiode and Solar cell (U+A) CSO 2.8: To define transistor(K) CSO 2.9: To explain on the types of transistors and its characteristics in various modes (U+A) CSO 2.10: To define and explain on power amplification factors (K) CSO 2.11: To explain the relationship of α and β (A) CSO 2.12: To discuss on the mechanism of current flow (A+U)	11	24	Not to be fille d-in
UNIT 3 Amplifiers Coupled Amplifier	Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h- parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and	CSO 3.1: To define amplifiers (K) CSO 3.2:To explain the various ways to bias transistors (U) CSO 3.3:To work out problems based on bias of transistors(A) CSO 3.4:To define H-parameters and its introduction to transistor equation (K+U) CSO 3.5:To analyse single stage CE amplifier using H-parameters(U) CSO 3.6:To calculate input, output,	11	24	Not to be fille d-in

	Power Gains. Classification of Class A, B & C Amplifiers. Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response	 impedance, current, voltage and power gain of CE amplifier (U+A) CSO 3.7:To discuss on the classification of amplifiers (U) CSO 3.8:To define coupled amplifier and its difference to amplifier (K+U) CSO 3.9:To explain on two staged RC coupled amplifier and its frequency response (U) CSO 3.10:To study the application of Coupled amplifier(U+A) 			
UNIT 4 Feedback in Amplifier Sinusoidal Oscillators Operational Amplifiers	Effects of Positive and Negative, Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground.	of Coupled amplifier(U+A) CSO 4.1: To define Feedback in amplifiers (K) CSO 4.2: To discuss on the types of feedback and its effects on various parameters like input, impedance, output, etc (U) CSO 4.3: To define noise and distortion(K) CSO 4.4: To Discuss on the application feedback in oscillators.(U+A) CSO 4.5: To define and explain RC phase shift oscillator, Hartley and Colpitts oscillator (A+U) CSO 4.6: To explain Barkhausen's Criterion for Self-sustained oscillator CSO 4.7: To define operational amplifier and its difference from normal amplifier (U) CSO 4.8: To explain the characteristics of op-amp ic 741 (U) CSO 4.10: To give an idea on slew rate and virtual ground (U)	8	18	Not to be fille d-in
UNIT 5 Applications of Op-Amps	 (1) Inverting and non- inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator 	CSO 5.1:To explain on inverting and non-inverting amplifiers(U+A) CSO 5.2:To discuss on the use of op-amps as an adder, subtractor, differentiator, and integrator. (U+A) CSO 5.3:To discuss on wein bridge oscillator (A) CSO 5.4:To explain Op-amps as a log amplifier(A)	8	18	Not to be fille d-in

- 1. J. Millman and C.C. Halkias, *Integrated Electronics*, Tata Mc-Graw Hill ,1991.
- 2. J.D. Ryder, Electronics: Fundamentals and Applications, Prentice Hall ,2004.
- 3. B.G.Streetman&S.K.Banerjee, Solid State Electronic Devices, 6th Edn., 2009.
- 4. S.Salivahanan&N.S.Kumar, PHI *Learning Electronic Devices & circuits*, 3rd Ed., Tata Mc-Graw Hill ,201.,
- 5. R. A. Gayakwad, OP-Amps and Linear Integrated Circuit, 4th edition, Prentice Hall, 2000.

Semester	III
Paper Code	PHC 3.2(P)
Paper Title	Analog Systems and Applications
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The objective of this is to learn fundamentals of electronic devices, design and apply them to electronic circuits.

- 1. To study V-I characteristics of PN junction diode, and Light emitting diode.
- 2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
- 4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 5. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 6. To study the frequency response of voltage, gain of a single stage RC-coupled transistor amplifier.
- 7. To design a phase shift oscillator of given specifications using BJT.
- 8. To design a Wien bridge oscillator for given frequency using an op-amp.
- 9. To design an inverting amplifier using Op-amp (741,351) for dc input voltage and study its closed loop gain.
- 10. To design inverting amplifier using Op-amp (741,351) and study its frequency response
- 11. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
- 12. To investigate the use of an op-amp (741,351) as an Integrator and Differentiator.
- 13. To add two dc voltages using Op-amp (741,351) in inverting and non-inverting mode
- 14. To investigate the use of an op-amp (741,351) as adder and subtractor.

- 1. P.B. Zbar, A.P. Malvino, M.A. Miller, BasicElectronics: A text lab manual, Mc-Graw Hill ,1994.
- 2. Albert Malvino, *Electronic Principle*, Tata Mc-Graw Hill, 2008.

Semester	III
Paper Code	РНС 3.3
Paper Title	Thermal Physics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **THERMAL PHYSICS**:

CO 1:	To introduce students to thermodynamics and acquire knowledge of the zeroth, first and
	second law of thermodynamics
CO 2:	To aid the students in the understanding of Entropy and Thermodynamic Potential.
CO 3:	To create an understanding among the students about the Maxwell thermodynamic
	relation, its application and the different phase transition involved in thermal physics.
CO 4:	To inculcate and create interest among students in the understanding of Kinetic theory of
	gases based on Maxwell- Boltzmann law of distribution of velocities and molecular
	collisions.
CO 5:	To assist the students in the understanding of Real gases.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Extensive and	CSO 1.1: To describe extensive	15	30	Not to
Introduction to	intensive	and intensive thermodynamic			be
Thermodynamics:	Thermodynamic	variables. (K)			filled-
zeroth, first and	Variables,	CSO 1.2: To define			in
second law of	Thermodynamic	thermodynamic equilibrium. (K)			
thermodynamics	Equilibrium, Zeroth	CSO 1.3: To state and describe			
	Law of	zeroth law of thermodynamics. (K)			
	Thermodynamics &	CSO 1.4: To discuss the concept			
	Concept of	of temperature. (U)			
	Temperature, Concept	CSO 1.5: To elaborate the concept			
	of Work & Heat, State	of work and heat. (U)			
	Functions, First Law	CSO 1.6: To describe state			
	of Thermodynamics	functions. (K)			
	and its differential	CSO 1.7: To state the first law of			
	form, Applications of	thermodynamics and describe its			
	First Law: General	differential form(K)			
	Relation between CP	CSO 1.8: To evaluate general			
	and CV, Work Done	relation between CP and CV. (A)			
	during Isothermal and	CSO 1.9: To derive work done			
	Adiabatic Processes,	during isothermal process. (A)			
	Compressibility and	CSO 1.10: To derive work done			
	Expansion Co-	during adiabatic process. (A)			
	efficient.	CSO 1.11: To discuss			
	Second Law of	compressibility and expansion			
	Thermodynamics:	coefficient. (U)			
	Reversible and	CSO 1.12: To state second law of			
	Irreversible process	thermodynamics. (K)			
	with examples.	CSO 1.13: To discuss reversible			
	Conversion of Work	and irreversible process with			
	into Heat and Heat	examples. (U)			
	into Work.	· · · · /			

	Heat Engines. Carnot 's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot 's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.	CSO 1.14: To compare conversion of work into heat and heat into work. (U) CSO 1.15: To discuss heat engines. (U) CSO 1.16: To elaborate Carnot engine and its efficiency. (U) CSO 1.17: To discuss refrigerator and coefficient of performance. (U) CSO 1.18: To discuss Kelvin- Planck and Clausius statements and their equivalence. (U) CSO 1.19: To elaborate Carnot's theorem. (U) CSO 1.20: To apply the second law of thermodynamics and study thermodynamic scale of temperature and its equivalence to perfect gas scale. (A)			
UNIT 2 Entropy and Thermodynamic Potentials	Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. Thermodynamic Potentials : Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy. Their Definitions, Properties and Applications.	CSO 2.1: To explain the concept of Entropy. (U) CSO 2.2: To discuss Clausius theorem. (U) CSO 2.3: To discuss Clausius inequality. (U) CSO 2.4: To describe second law of thermodynamics in terms of Entropy. (K) CSO 2.5: To explain entropy changes in reversible and irreversible processes with examples. (U) CSO 2.6: To describe the principle of increase of entropy. (K) CSO 2.7: To illustrate temperature- entropy diagrams for Carnot's cycle. (A) CSO 2.8: To state and describe the third law of thermodynamics. (K) CSO 2.9: To explain the unattainability of absolute zero. (U) CSO 2.10: To classify thermodynamic potentials- Internal Energy definition and properties. (U)	8	18	Not to be filled- in

UNIT 3 Maxwell's Thermodynamic Relations and Phase transitions.	Derivations and applications of Maxwell 's Relations, Maxwell 's Relations, Maxwell 's Relations:(1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases Phase Transition: First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations	CSO 2.11: To classify thermodynamic potentials- Enthalpy. (U) CSO 2.12: To classify thermodynamic potentials- Helmholtz free energy. (U) CSO 2.13: To classify thermodynamic potentials- Gibb's free energy. (U) CSO 2.14: To apply thermodynamic potential and study its application. (A) CSO 3.1: To derive Maxwell's thermodynamic relations. (A) CSO 3.2: To derive Clausius Clapeyron equation using Maxwell's relation. (A) CSO 3.3: To express the value of Cp-Cv using Maxwell's relation. (A) CSO 3.4: To derive first and second Tds equation using maxwell's relation. (A) CSO 3.5: To determine Joule – kelvin coefficient for Ideal and Van del Waal gases using Maxwell's relation. (A) CSO 3.6: To discuss first and second order phase transitions with examples. (U) CSO 3.7: To determine Clausius Clapeyron equation. (A) CSO 3.8: To explain Ehrenfest equations. (U)	8	18	Not to be filled- in
UNIT 4 Kinetic Theory of Gases: Distribution of Velocities and Molecular Collisions	Distribution of Velocities: Maxwell- Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required)	CSO 4.1: To derive Maxwell's Boltzmann law of distribution of velocities in an ideal gas. (A) CSO 4.2: To explain experimental verification of MB law of distribution of velocities- Doppler broadening of spectral lines. (U) CSO 4.3: To explain experimental verification of MB law of distribution of velocities- Stern's experiment. (U) CSO 4.4: To determine mean velocity. (A) CSO 4.5: To determine RMS velocity. (A) CSO 4.6: To determine most probable velocity. (A)	7	17	Not to be filled- in

	Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance.	CSO 4.7: To describe degrees of freedom. (K) CSO 4.8: To define law of equipartition of energy. (K) CSO 4.9: To describe mean free path. (K) CSO 4.10: To explain collision probability. (U) CSO 4.11: To explain the estimates of mean free path. (U) CSO 4.12: To explain transport phenomenon in ideal gases- viscosity. (U) CSO 4.13: To explain transport phenomenon in ideal gases- thermal conductivity. (U) CSO 4.14: To explain transport phenomenon in ideal gases- thermal conductivity. (U) CSO 4.15: To discuss Brownian motion and its significance. (U)			
UNIT 5	Behaviour of Real	CSO 5.1: To describe behaviour of	7	17	Not to
UNIT 5 Real Gases	Behaviour of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Boyle Temperature. Law of Corresponding States. Comparison with Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Joule- Thomson Cooling.	CSO 5.1: To describe behaviour of real gases due to deviations from the Ideal Gas. (K) CSO 5.2: To explain the Virial equation. (U) CSO 5.3: To explain Abdrew's experiment on CO2 gas. (U) CSO 5.4: To describe the critical constants. (K) CSO 5.5: To derive Van Der Waal's equation of state for real gases. (A) CSO 5.6: To derive values of critical constants. (A) CSO 5.7: To explain Boyle's temperature. (U) CSO 5.8: To discuss the law of corresponding states. (U) CSO 5.9: To compare experimental curves. (A) CSO 5.10: To explain P-V diagram. (U) CSO 5.11: To explain Joule's experiment. (U) CSO 5.12: To discuss free adiabatic expansion of a perfect gas. (U)	7	17	Not to be filled- in

	CSO 5.13: To explain Joule-		
	Thomson effect for real and van		
	der waal gases. (U)		
	CSO 5.14: To examine Joule-		
	Thomson cooling. (A)		

- 1. M.W. Zemansky, Richard Dittman, Heat and Thermodynamics, McGraw-Hill, 1981.
- 2. MeghnadSaha, and B.N.Srivastava, A Treatise on Heat, Indian Press, 1958.
- 3. S. Garg, R. Bansal and Ghosh, *Thermal Physics*, 2nd Edition, Tata McGraw-Hill, 1993.
- 4. Carl S. Helrich, Modern Thermodynamics with Statistical Mechanics, Springer, 2009.
- 5. Sears & Salinger, Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Narosa, 1988.
- 6. S.J. Blundell and K.M. Blundell, Concepts in Thermal Physics, 2nd Ed., Oxford University Press, 2012.
- 7. A. Kumar and S.P. Taneja, *Thermal Physics*, R. Chand Publications, 2014.

Semester	ш
Paper Code	PHC 3.3(P)
Paper Title	Thermal Physics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The objective of this lab coursework is to observe certain laws that have been learnt in theory classes.

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3. To determine the coefficient of linear expansion by optical lever method or any other suitable method.
- 4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
- 5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).
- 6. To study the variation of resistance with temperature by Carry-Foster bridge and hence determine the temperature coefficient of the material using hotplate.

7. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.

8. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.

- 1. B. L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971
- 2. I.Prakash& Ramakrishna, A Text Book of Practical Physics, 11th Ed., Kitab Mahal, 2011.
- 3. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, reprinted 1985, Heinemann Educational Publishers, 2011.
- 4. D.P. Khandelwal, A Laboratory Manual of Physics for undergraduate classes, Vani Pub, 1985.

 	 -										
a		-									

Semester-IV

Semester	IV
Paper Code	PHC 4.1
Paper Title	Mathematical Physics – III
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Mathematical Physics III:

	ing are the course coljectives (cos) for the paper intutionation in hysics in.
CO 1:	To make the students understand maths of complex number and application of Cauchy-Riemann
	Equations.
CO 2:	To make the student understand integration of complex variables, Cauchy integral theorem,
	Cauchy integral formula, Residue Theorem and Taylor and Laurent series for analytic functions.
CO 3:	To be aware of the connection between Fourier and Laplace transforms and be able to use the
	latter to solve mathematical problems relevant to the physical sciences.
CO 4:	To understand the implications of Laplace transform.
CO 5:	To understand the implications of inverse Laplace transform and Laplace transform to first and
	second order differential equations

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1	Brief Revision of	CSO 1.1: To describe complex	10	20	Not to
Complex	Complex Numbers	numbers. (K)			be
Analysis	and their Graphical	CSO 1.2: To state De Moivre's			filled-
-	Representation. De	theorem. (K)			in
	Moivre's theorem,	CSO 1.3: To discuss Argand diagram.			
	Roots of Complex	(U)			
	Numbers. Functions	CSO 1.4: To derive De Moivre's			
	of Complex	theorem. (A)			
	Variables. Analyticity	CSO 1.5: To explain the roots of a			
	and Cauchy-Riemann	complex numbers. (U)			
	Conditions. Singular	CSO 1.6: To explain the different			
	functions: poles and	functions of complex variables. (U)			
	branch points, order	CSO 1.7: To examine the analuticity of			
	of singularity, branch	complex numbers. (A)			
	cuts.	CSO 1.8: To apply Cauchy-Riemann			
		conditions to find the analyticity of			
		complex functions. (A)			
		CSO 1.9: To differentiate between a			
		single valued and multi valued			
		functions. (U)			
		CSO 1.10: To analyse the pole, branch			
		point and brunch cut of a function. (A)			

UNIT 2	Integration of a	CSO 2.1: To discuss the integration of	9	19	Not to
Complex	function of a complex	a complex variable. (U)			be
Integration	variable. Cauchy's	CSO 2.2: To define simply and			filled-
	Integral theorem,	multiply connected region. (K)			in
	Simply and multiply				
	connected region.				
	Cauchy's Integral				
	formula. Laurent and	1 5 1 5			
	Taylor's expansion.	connected region. (A)			
	Residues and Residue	CSO 2.5: To state Cauchy integral			
	Theorem.	formula. (K)			
		CSO 2.6: To apply Cauchy integral			
		formula to solve different functions. (A)			
		CSO 2.7: To derive Laurent and			
		Taylor's theorem. (A)			
		CSO 2.8: To define residue. (K) CSO 2.9: To explain Cauchy residue			
		theorem. (U)			
		CSO 2.10: To calculate the residue of			
		different functions. (A)			
UNIT 3	Fourier Transforms:	CSO 3.1: To state Fourier transform.	11	25	Not to
Integrals	Fourier Transform.	(K)			be
Transforms	Fourier transform of	CSO 3.2: To construct the fourier			filled-
	Gaussian, finite wave	transform of gaussian function, finite			in
	train & other	wave train function and other functions.			
	functions.	(A)			
	Representation of	CSO 3.3: To apply Fourier transform to			
	Dirac delta function	1 , ,			
	as a Fourier Integral.				
	Fourier transform of				
	derivatives,	CSO 3.5: To list the properties of			
	Convolution theorem.				
	Properties of Fourier				
	transform. Three				
	dimensional Fourier transforms with	CSO 3.7: To define convolution			
	transforms with examples.	theorem. (K) CSO 3.8: To express the Fourier			
	Application of	transform of convolution. (A)			
	Fourier Transforms to	CSO 3.9: To derive the three			
	differential equations:	dimentional Fourier transforms. (A)			
	One dimensional	CSO 3.10: To discuss Fourier			
	Wave.	Transform to different applications. (U)			
UNIT 4	Laplace Transform	CSO 4.1: To define Laplace Transform.	8	18	Not to
Laplace	(LT) of Elementary	(K)			be
Transforms	functions. Properties	CSO 4.2: To write the conditions of			filled-
	of LTs: Change of	-			in
	Scale Theorem,	CSO 4.3: To analyse the Laplace			
	Shifting Theorem.	Transform of different functions. (A)			
	Derivatives and	CSO 4.4: To discuss the properties of			
	Integrals of LTs. LT	Laplace Transform. (U)			
	of Unit Step function,	CSO 4.5: To apply Laplace Transform			

					1
	Dirac Delta function,	to solve unit step function, Dirac Delta			
	Periodic Functions.	function and Periodic function. (A)			
		CSO 4.6: To apply Laplace Transform			
		of periodic function to solve some			
		system of period functions. (A)			
		CSO 4.7: To construct the derivative of			
		Laplace Transform. (A)			
		CSO 4.8: To discuss the integral of			
		Laplace Transform. (U)			
		CSO 4.9: To write the formula for			
		Laplace Transform. (K)			
UNIT 5	Inverse LT.	CSO 5.1: To define inverse Laplace	8	18	Not to
Convolution	Application of	1			be
Theorem and	Laplace Transforms	CSO 5.2: To write the formula for			filled-
Laplace	to 2nd order	inverse Laplace Transform. (K)			in
Tranforms	Differential	CSO 5.3: To differentiate between			
	Equations: Damped				
	Harmonic Oscillator,				
	Simple Electrical				
	Circuits, Coupled	in solving initial value problems. (A)			
	differential equations	CSO 5.5: To discuss convolution			
	of 1st order. Solution				
	of heat flow along	CSO 5.6: To understand the Laplace			
	infinite bar using	transform to second order differential			
	Laplace transform.	equation. (U)			
	Euplace transform.	CSO 5.7: To explain the first order			
		coupled differential equation of Laplace			
		Transform. (U)			
		CSO 5.8: To apply Laplace Transform			
		to sole damped harmonic oscillator. (A)			
		CSO 5.9: To analyse Laplace			
		Transform for simple electrical			
		circuits.(A)			
		CSO 5.10: To develop the Laplace			
		Transform for the solution of heat flow			
		on an infinite bar. (A)			

- 1. K.F Riley, M.P. Hobson and S. J. Bence, *Mathematical Methods for Physics and Engineers*, 3rd ed., Cambridge University Press, 2006.
- 2. P. Dennery and A.Krzywicki, *Mathematics for Physicists*, Dover Publications, 1967.
- 3. A.S.Fokas&M.J.Ablowitz, Complex Variables, 8th Ed., Cambridge Univ. Press, 2011.
- 4. A.K. Kapoor, Complex Variables, Cambridge Univ. Press, 2014.
- 5. J.W. Brown & R.V. Churchill, Complex Variables and Applications, 7th Ed., Tata McGraw-Hill, 2003.
- 6. D.G. Zill and P.D. Shanahan, *First course in complex analysis with applications*, Jones & Bartlet, 1940.

Semester	IV
Paper Code	PHC 4.1(P)
Paper Title	Mathematical Physics-III
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The aim of this course is to

- Highlights the use of computational methods to solve physical problems.
- Course will consist of hands-on training on the Problem solving on Computers.

Scilab/FORTRAN/C/C++ /others based simulations experiments on Mathematical Physics problems like 1. Solve differential equation

$$\frac{dy}{dx} = e^{-x} \text{ with } y = 0 \text{ for } x = 0$$
$$\frac{dy}{dx} + e^{-x}y = x^2$$

2. Dirac Delta Function:

Evaluate $\frac{1}{\sqrt{2\pi\sigma^2}}\int e^{\frac{-(x-2)^2}{2\sigma^2}}(x+3)dx$, for $\sigma = 1, 0.1, 0.01$ and show it tends to 5.

3. Fourier Series:

Program to sum $\sum_{n=1}^{\infty} (0.2)^n$ Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions:

$$\int_{-1}^{+1} P_n(\mu) P_m(\mu) d\mu = \delta_{n,m}$$

Plot $P_n(x), j_v(x)$
Show recursion relation

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} = -y$$
$$\frac{d^2y}{dt^2} + e^{-t}\frac{dy}{dt} = -y$$

5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).

- 1. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.
- 2. Evaluation of trigonometric functions e.g. $sin \theta$, Given Bessel's function at N points find its value at an intermediate point. Complex analysis:Integrate $1/(x^2+2)$ numerically and check with computer integration.
- 3. Integral transform: FFT of e^{x^2}

- 1. K.FRiley, M.P.Hobson and S.J. Bence, *Mathematical Methods for Physics and Engineers*, 3rd ed., Cambridge University Press, 2006.
- 2. P.Dennery and A.Krzywicki, Mathematics for Physicists, Dover Publications, 1967.
- 3. A.V and eWouwer, P.Saucez, C.V. Fernandez, *Simulation of ODE/PDE Models with MATLAB®*, *OCTAVE and SCILAB: Scientific and Engineering Applications*, Springer ISBN: 978-3319067896, 2014.
- 4. M.Affouf, *Scilab by example*: ISBN:978-1479203444, 2012.
- 5. H.Ramchandran, A.S.Nair, Scilab(A free software to Matlab), S.Chand&Company, 2011
- 6. Lambert M.Surhone, Scilab Image Processing, Betascript Publishing, 2010.

Semester	IV
Paper Code	PHC 4.2
Paper Title	Elements of Modern Physics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Elements of modern physics**:

1 me romo m	ing are the course objectives (COS) for the paper Exements of modern physics.
CO 1:	To make the students understand the principle of quantum mechanics, wave-particle duality and the
	experimental evidence support theories for photo-electric, Compton scattering. De Broglie
	wavelength, and should be able to analyse and interpret various phenomena at quantum level.
CO 2:	To understand the foundational principles of quantum mechanics, particularly regarding the
	limitations on our ability to simultaneously measure certain parts of properties and the
	consequences of these limitations on understanding of limitation behaviour and atomic structure.
CO 3:	To create an understanding among the students about the Schrodinger equation for non-relativistic
	particles, two slit interference and Probabilities and normalization with atoms and particles,
	understand the wave-particle duality and the interpretation of wave functions.
CO 4:	To create comprehensive understanding of quantum mechanical phenomena in confined system,
	scattering and tunnelling and should be familiar with the nuclear forces, the liquid drop model, and
	the nuclear shell model, providing insight into the structure and stability of atomic nuclei.
CO 5:	To aid the student in understanding the principle underlying radioactivity, nuclear reactions and
	laser physics and apply the concept to analyse and interpret various phenomena in nuclear and laser
	physics.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1	Planck's quantum,	CSO 1.1: To understand plancks	8	18	Not to
Introduction	Planck's constant and	quantum hypothesis.(U)	0	10	be
to Quantum	light as a collection of	CSO 1.2: To explain the concept			filled-
mechanics	photons; Blackbody	of quantization of energy.(U)			in
through	Radiation: Quantum	CSO 1.3: To define and calculate			
Planck's	theory of Light;	Plancks constant. (K)			
equation	Photo-electric effect				
equation	and Compton	collection of photons.(K)			
	scattering. De Broglie	CSO 1.5: To explain blackbody			
	wavelength and matter	radiation and its classical			
	waves; Davisson-	problems.(U)			
	Germer experiment.	CSO 1.6: To understand the			
	Two slit experiment	photoelectric effect and its			
	with electron and	1			
	proton, Wave	CSO 1.7: To understand Compton			
	description of	scattering and its implication for			
	-	the particle like behaviour of			
		photons.(U)			
	packets. Group and Phase velocities and	CSO 1.8: To define and calculate			
		the de Broglie wavelength.(K) CSO 1.9: To understand the			
	them. Wave amplitude				
	and wave functions	concept of matter waves.(U)			
		CSO 1.10: To explain the			
		Davisson-Germer experiment.(U)			
		CSO 1.11:To understand the			
		interference patterns observed in			
		the experiment.(U)			
		CSO 1.12: To understand the			
		concept of the wave packets.(U)			
		CSO 1.13: To describe how the			
		particles can be described as wave			
		packets.(K)			
		CSO 1.14: To define phase			
		velocity and group velocity.(K)			
		CSO 1.15: To understand the			
		relation between phase velocity			
		and group velocity.(U)			
		CSO 1.16: To define wave			
		amplitude and wave function. (K)			
		CSO 1.17: To understand the			
		significance of wave function in			
		quantum mechanics.(U)	10	20	NT 4
UNIT 2	Position	CSO 2.1: To understand the	10	20	Not to
Heisenberg	measurement- gamma	challenges in precisely measuring			be
uncertainty	ray microscope	the position of particles.(U)			filled-
principle	thought experiment;	CSO 2.2: To analyse the			in
	Wave-particle duality,	limitation posed by the wavelength			
	Heisenberg	of the probing radiation i.e.,			1

		1		
uncertainty print				
(Uncertainty relat	ons position measurement.(A)			
involving Canor	ical CSO 2.3: To explain the concept			
pair of variab	1			
Derivation from W	Tave CSO 2.4: To understand the			
Packets impossib	ility particles exhibit both wave-like			
of a particle follow	ing and particle-like			
a traject	ory; characteristics.(U)			
Estimating minir	num CSO 2.5: To derive the			
energy of a conf	ned Heisenberg uncertainty principle			
particle u	sing involving canonical pairs of			
uncertainty princ	ple; variables.(A)			
Energy-time	CSO 2.6: To understand the			
uncertainty princ	ple- limitation in simultaneously			
application to	Size measuring certain pairs of			
and structure	of conjugate variables.(U)			
atomic nuc	eus, CSO 2.7: To understand how the			
Impossibility of	an uncertainty principle arises from			
electron being in				
nucleus as	a CSO 2.8: To discuss the			
consequence of	the implications of the uncertainty			
uncertainty princip	le principle on the predictability of a			
	particle's trajectory.(U)			
	CSO 2.9: To apply the uncertainty			
	principle to estimate the minimum			
	energy of a confined particles.(A)			
	CSO 2.10: To understand the			
	connection between position			
	uncertainties and energy			
	uncertainties.(U)			
	CSO 2.11: To derive the energy-			
	time uncertainty principles.(A)			
	CSO 2.12: To apply energy-time			
	uncertainty principle to analyse the			
	size and structure of an atomic			
	nucleus.(A)			
	CSO 2.13: To discuss the			
	implications of the uncertainty			
	principle on the probability of			
	finding an electron inside the			
	nucleus.(U)			
	CSO 2.14: To understand the role			
	of quantum mechanical			
	probabilities in describing the			
	electrons position within an			
	atom.(U)			
UNIT 3 Two slit interfere	nce CSO 3.1:To understand the	9	20	Not to
Schrodinger experiment v	ith concept of interference in the			be
equation for photons, atoms		1		0.11 1
-	and context of the two-slit			filled-
-	and context of the two-slit ear experiment.(U)			filled- in

nrohobilition		interformed patterns differ when			
probabilities	as a consequence;	interference patterns differ when			
and	Matter waves and	conducting the experiment with			
normalization.	wave amplitude;	photons, atoms and particles.(A)			
	Schrodinger equation	CSO 3.3:To define and			
	for nonrelativistic	understand the linear superposition			
	particles; Momentum	principle.(K)			
	and Energy operators;	CSO 3.4: To explain the concept			
	stationary states;	of matter waves.(U)			
	physical interpretation	CSO 3.5:To understand wave			
	of a wave function,	amplitude and its significance in			
	probabilities and	describing the behaviour of			
	hormalization;	particles at the quantum level.(U)			
	Probability and	CSO 3.6: To derive Schrodinger			
	probability current	equation for nonrelativistic			
	densities in one	particles.(A)			
	dimension	CSO 3.7:To understand the			
		mathematical framework that			
		describe the evolution of wave			
		functions in quantum			
		mechanics.(U)			
		CSO 3.8:To define momentum			
		and energy operators in the			
		context of quantum mechanics.(K)			
		CSO 3.9: To explore the concept			
		of stationary states and their			
		significance in Schrodinger's			
		equations.(A)			
		CSO 3.10: To discuss the physical			
		interpretation of wave			
		functions.(U)			
		CSO 3.11: To understand how			
		probabilities are related to the			
		square of the wave functions.(U)			
		CSO 3.12:To define probability			
		density and probability current			
		density.(K)			
		CSO 3.13: To explore the concept			
		of probability density in one			
		dimension and its relationship to			
	 	the wave function.(A)			
UNIT 4	One dimensional	CSO 4.1:To understand the	8	20	Not to
Quantum	nfinitely rigid box-	concept of an infinitely rigid box			be
tunnelling and	energy eigenvalues	in quantum mechanics.(U)			filled-
nuclear force	and Eigen functions,	CSO 4.2:To calculate energy			in
	normalization;	eigenvalues and eigenfunctions for			
	Quantum dot as	a particle confined in a one-			
	example; Quantum	dimensional box.(A)			
	mechanical scattering	CSO 4.3:To discuss the			
	and tunneling in one	normalization wave function.(U)			
	dimension across a	CSO 4.4: To explain the concept			
	step potential &	of quantum dots.(U)			
	prop potential &	of quantum dots.(0)			

	rectangular potential	CSO 4.5:To analyse quantum			
	parrier.	mechanical scattering			
	Nature of nuclear	phenomena.(A)			
	force, NZ graph,	CSO 4.6: To understand tunnelling			
	Liquid Drop model:	through potential barriers, both			
	semi-empirical mass	step potential and rectangular			
	formula and binding	potential.(U)			
	energy, Nuclear Shell Model and magic	CSO 4.7: To explore the nature of			
	Model and magic numbers.	nuclear forces and their role in atomic nuclei.(A)			
	lumoers.	CSO 4.8 :To understand the NZ			
		graph, which represents the			
		number of neutrons versus photons			
		in stable nuclei. (U)			
		CSO 4.9: To discuss the Liquid			
		drop model as a representation of			
		nuclear structure.(U)			
		CSO 4.10:To explore the semi-			
		empirical mass formula and			
		understand its components			
		including binding energy.(A)			
		CSO 4.11: To explain nuclear shell			
		model.(U)			
		CSO 4.12:To understand the			
		concept of magic numbers and			
		their significance in the stability of atomic nuclei.(U)			
		CSO 4.13: To discuss how the			
		shell model explains certain			
		nuclear properties.(U)			
UNIT 5	Radioactivity: stability	CSO 5.1: To understand the	10	22	Not to
Radioactive	•	factors influencing the stability of			be
and laser	adioactive decay;	atomic nuclei.(U)			filled-
concept	Mean life and half-life;	CSO 5.2:To explain the concept			in
	Alpha decay; Beta	of radioactive decay and its			
	lecay- energy	relation to radioactive decay.(U)			
	eleased, spectrum and	CSO 5.3:To discuss the law of			
	Pauli's prediction of	radioactive decay.(U)			
	heutrino; Gamma ray	CSO 5.4: To define and calculate mean life and half-life of			
	emission, energy- momentum	mean life and half-life of radioactive substance.(K)			
	conservation: electron-	CSO 5.5: To explain the process of			
	positron pair creation	alpha decay.(U)			
	by gamma photons in	CSO 5.6: To discuss energy			
	the vicinity of a	released in beta decay.(U)			
	nucleus.	CSO 5.7:To explore the beta			
	Fission and fusion-	decay spectrum and the role			
	mass deficit, relativity	neutrons, as predicted by Pauli.(A)			
	and generation of	CSO 5.8:To understand the			
	energy; Fission -	emission if gamma rays in nuclear			
1	nature of fragments	processes.(U)			

		r	
and emission of	CSO 5.9:To discuss the principle		
neutrons. Nuclear	of energy-momentum conservation		
reactor: slow neutrons	in gamma decay.(U)		
nteracting with	CSO 5.10:To explain the process		
Uranium 235; Fusion	of electron-positron pair creation		
and thermonuclear	by gamma photons.(U)		
reactions driving	CSO 5.11: To explain the concept		
stellar energy (brief	of mass deflect in nuclear		
qualitative	reaction.(U)		
discussions).	CSO 5.12: To understand the role		
Lasers: Einstein's A	of relativity in explaining mass-		
and B coefficients.	• • •		
	energy equivalence.(U)		
Metastable states.	CSO 5.13:To explore the		
Spontaneous and	generation of energy in nuclear		
Stimulated emissions.	fission and fusion reaction.(A)		
Optical Pumping and	CSO 5.14:To describe the nature		
Population Inversion.	if fragments produced in nuclear		
Three-Level and Four-	fission.(K)		
Level Lasers. Ruby	CSO 5.15:To understand the		
Laser and He-Ne	significance of neutron emission in		
Laser. Basic lasing.	fission reaction.(U)		
	CSO 5.16:To explain the basic		
	principle if nuclear reactor.(U)		
	CSO 5.17: To understand the role		
	of sloe neutron in sustaining a		
	chain reaction in uranium-235.(U)		
	CSO 5.18: To discuss fusion		
	reactions and their role in stellar		
	energy production.(U)		
	CSO 5.19: To understand the		
	principles of Einstein's A and B		
	coefficients in laser physics.(U)		
	CSO 5.20: To discuss the concept		
	of metastable states in laser.(U)		
	CSO 5.21: To define and		
	differentiate between spontaneous		
	and stimulated emission.(K)		
	CSO 5.22: To explain the process		
	of optical pumping and its role in		
	achieving population inversion.(U)		
	CSO 5.23: To understand the		
	operation of three-level and four-		
	level laser.(U)		
	CSO 5.24: To discuss specific		
	examples such as the ruby laser		
	and He-Ne laser.(U)		
	CSO 5.25: To explain the basic		
	principle of lasing, including		
	stimulated emission and		
	feedback.(U)		
	······································		

- 1. Arthur Beiser, Concepts of Modern Physics, McGraw-Hill, 2002.
- 2. Rich Meyer, Kennard, Coop, Introduction to Modern Physics, Tata McGraw Hill, 2002.
- 3. David J. Griffith, Introduction to Quantum Mechanics, Pearson Education, 2005.
- 4. Jewett and Serway, *Physics for scientists and Engineers with Modern Physics*, Cengage Learning, 2010.
- 5. G.Kaur and G.R. Pickrell, *Modern Physics*, McGraw Hill, 2014.
- 6. A.K.Ghatak&S.Lokanathan, *Quantum Mechanics: Theory & Applications*, Macmillan, 2004.
- 7. J.R. Taylor, C.D. Zafiratos, M.A. Dubson, , 2004, PHI Learning, 2004.
- 8. E.H.Wichman, *Quantum Physics*, Berkeley Physics, Vol.4, Tata McGraw-Hill Co., 1971.

Semester	IV
Paper Code	PHC 4.2(P)
Paper Title	Elements of Modern Physics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

Sessions on the construction and use of specific measurement instruments and experimental apparatus used in the modern physics lab, including necessary precaution. Application to the specific experiments done in the lab.

1. Measurement of Planck's constant using black body radiation and photo-detector

2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photoelectrons versus frequency of light

- 3. To determine work function of material of filament of directly heated vacuum diode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the value of e/m by Magnetic focusing/ Bar magnet or by any suitable method.
- 7. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 8. To show the tunnelling effect in tunnel diode using I-V characteristics.
- 9. To determine the wavelength of laser source using diffraction of single slit.
- 10. To determine the wavelength of laser source using diffraction of double slits.

- 1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971.
- 2. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, Heinemann Educational Publishers, 1985.
- 3. I.Prakash& Ramakrishna, A Text Book of Practical Physics, 11th Edn, Kitab Mahal, 2011.

Semester	IV
Paper Code	PHC 4.3
Paper Title	Digital Systems and
	Applications
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Digital System and its Application**:

To make the student aware of concepts of Integrated Circuits, Digital Fundamentals and Basic
Logic gates
To assist the students in problem solving using the idea of Boolean algebra and also get
acclimatise to Arithmetic Circuits
To create an awareness among the students in Data processing circuits, Sequential Circuits and
Counters and solve problems accordingly
To inculcate the idea in the working and application of Timer, Shift registers and Computer
Organization
To make the students understand the various Digital Logic Families

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Integrated Circuits:	CSO 1.1: To define integrated circuit	8	18	Not to
Integrated	Active & Passive	(K)			be
Circuits,	components. Discrete	CSO 1.2: To define and discuss on			filled-
Digital	components. Wafer.	types of components: Active, passive			in
Fundamentals	Chip. Advantages	and discrete components (K+U)			
and Basic	and drawbacks of	CSO 1.3: To explain on the advantages			
Logic gates	ICs. Scale of	and disadvantages of IC. (U)			
	integration: SSI,	CSO 1.4: To introduce on the idea if			
	MSI, LSI and VLSI	scale of integration (U)			
	(basic idea and	CSO 1.5: To discuss on various types			
	definitions only).	of ICs with proper examples (U)			
	Classification of ICs	CSO 1.6: To explain, understand and			
	with examples	examine the structure of various			
	Digital	number systems and its application in			
	Fundamentals:	digital design. (K+U+A)			
	Binary, Octal and	CSO 1.7: To define and explain the			
	Hexadecimal number	various logic gates (K+U)			
	systems and their	CSO 1.8: To solve and Design circuits			
	inter conversion,	based on the logics gates mentioned			
	Binary arithmetic	above (A)			
	(addition,				
	subtraction,				
	multiplication and				

	division				
	division).				
	Basic Logic gates:				
	OR, AND, NOT,				
	NOR XOR, XNOR,				
	positive and negative				
	logic		0	20	NT
UNIT 2	Boolean algebra: De	CSO 2.1: To define Boolean algebra	9	20	Not to
Boolean	Morgan's Theorems.				be
algebra and	Boolean Laws.	CSO 2.2: Define and explain De			filled-
Arithmetic	Simplification of	Morgan's theorem (K+U)			in
Circuits	Logic Circuit using	CSO 2.3: To work out problems based			
	Boolean Algebra.	on the theorem (A)			
	Fundamental	CSO 2.4: To discuss on various			
	Products. Idea of	Boolean laws (K)			
	Minterms and	CSO 2.5: To explain on how to use			
	Maxterms.	these laws to solve digital equations			
	Conversion of a	and design circuits.			
	Truth table into	CSO 2.6: To introduce the idea of			
	Equivalent Logic	Minterms and Maxterms (K+U)			
	Circuit by (1) Sum of	CSO 2.7: To formulate digital			
	Products Method and	equations using minterms and			
	(2) Karnaugh Map.	maxterms provided (A)			
	Arithmetic Circuits:	CSO 2.8: To introduce on how to			
	Binary Addition.	make digital circuits based on an			
	Binary Subtraction	equation provided or vice versa (K+A)			
	using 2's	CSO 2.9: To define and explain the			
	Complement. Half	concept of Karnaugh Map (K+U)			
	and Full Adders. Half	CSO 2.10: To solve digital logic			
	& Full Subtractors, 4-	circuit problems based on K-Map (A)			
	bit binary Adder/	CSO 2.11: To introduce the idea on			
	Subtractor.	binary addition, binary subtraction with			
		proper examples (K+U+A)			
		CSO 2.12: To define 2's complement			
		(K)			
		CSO 2.13: To work out problems			
		based on 2's complement (A)			
		CSO 2.14: To define half adder, full			
		adder, half subtrators, full subtractors			
		(K)			
		CSO 2.15: To discuss on how to			
		design the various circuits mentioned			
		above and its applications (A+U)			
UNIT 3	Basic idea of	CSO 3.1: To define data processing	11	24	Not to
Data	Multiplexers, De-	(K)			be
processing	multiplexers,	CSO 3.2: To define and discuss on			filled-
circuits,	Decoders, Encoders.	multiplexers, de-multiplexers, decoders			in
Sequential		and encoders with proper circuit design			
Circuits and	Sequential Circuits:	and circuit breakup. (K+U+A)			
Counters	SR, D, and JK Flip-	CSO 3.3: To define sequential circuit			
	Flops. Clocked				
	(Level and Edge	CSO 3.4: To define flip-flop (K)			

UNIT 4 Timers, Shift registers and Computer Organization	Triggered) Flip- Flops. Preset and Clear operations. Race-around conditions in JK Flip- Flop. M/S JK Flip- Flop. Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. Timers: IC 555: block diagram and applications: A stable multi vibrator and Mono stable multi vibrator. Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in- Parallel-in- Parallel-in- Parallel-in- Parallel-out Shift Registers (only up to 4 bits). Computer Organization: Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory	CSO 3.5: To define and explain on SR, D, JK and MS flip-flop with proper circuit designs and its breakups (K+U+A) CSO 3.6: To introduce the idea on clear, preset and clock (K) CSO 3.7: To define and explain race around condition and its importance in flip-flop (K+A) CSO 3.8: To define counters (K) CSO 3.9: To discuss on types of counters. (U) CSO 3.10: To Explain and solve problems with ripple diagrams (U+A) CSO 4.1: To define Time 555 (K) CSO 4.2: To elaborate on the block diagram and symbolic diagram of timer ic555 (U) CSO 4.3: To discuss on the working of timer ic555 and its various applications. (A) CSO 4.4: To define shift register (K) CSO 4.5: To Discuss in detail the different types and working of various Shift registers (U) CSO 4.6: To explain on how to translate ripple diagrams from the registers and make sense out of it. (A) CSO 4.8: To Define storage in computer (K) CSO 4.9: To explain the types of storage (RAM, ROM) (U) CSO 4.10: To discuss the basic idea in memory addressing, memory interfacing and memory map (U)	9	20	Not to be filled- in
UNIT 5 Digital Logic Families	Interfacing. Memory Map.Digital Families: Introduction performance for logic families,	CSO 5.1: To introduce the idea of digital logic family(K+U) CSO 5.2: To Discuss on the various logic families and its performance criteria (U)	8	18	Not to be filled- in
	for logicfamilies,variouslogicfamilies:DCTL,RTL,TTL and ECLworkingandcharacteristics	CSO 5.3: To discuss with proper diagram the working of DCTL, RTL,			

fea	atures, Saturated	CSO 5.5: To discuss on the difference		
an	nd non-saturated,	between fan in and fan out (U)		
fai	n in and fan out,	CSO 5.6: To Introduce the idea of		
M	IOS gates and	MOS and CMOS gate (K)		
CN	MOS gate,	CSO 5.7: To bring out a comparison		
со	omparison of	table of the logic families(U+A)		
va	arious logic families	-		

- 1. A.P. Malvino, D.P.Leach and Saha, *Digital Principles and Applications*, 7 Ed., Tata McGraw, 2011.
- 2. Anand Kumar, Fundamentals of Digital Circuits, 2ndEdn, PHI Learning Pvt. Ltd., 2009.
- 3. Venugopal, Digital Circuits and systems, Tata McGraw Hill, 2011.
- 4. G K Kharate, *Digital Electronics*, Oxford University Press, 2010.
- 5. R.J.Tocci, N.S.Widmer, Digital Systems: Principles & Applications, PHI Learning, 2001.
- 6. Shimon P. Vingron, *Logic circuit design*, Springer, 2012.
- 7. SubrataGhoshal, *Digital Electronics*, Cengage Learning, 2012.
- 8. S.K. Mandal, Digital Electronics, 1st edition, McGraw Hill, 2010.

Semester	IV
Paper Code	PHC 4.3(P)
Paper Title	Digital Systems and Applications
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The Objective of the laboratory is to present concepts and techniques in designing, realizing, debugging and documenting digital circuits and systems.

- 1. To measure (a) Voltage, and (b)Time period of a periodic waveform using CRO.
- 2. To test a Diode and Transistor using a Multimeter.
- 3. To design a switch (NOT gate) using a transistor.
- 4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 5. To design a combinational logic system for a specified Truth Table.
- 6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
- 7. To minimize a given logic circuit. Half Adder, Full Adder and 4-bit binary Adder. Half Subtractor, Full Subtractor, Adder
- 8. To build JK Master-slave flip-flop using Flip-Flop ICs
- 9. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- 10. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
- 11. To design an a stable multivibrator of given specifications using 555 Timer.
- 12. To design a monostable multivibrator of given specifications using 555 Timer.

- 1. R.P. Jain, Modern Digital Electronics, 4th Edition, Tata McGraw Hill, 2010.
- 2. P.B. Zbar, A.P. Malvino, M.A. Miller, Basic Electronics: A text lab manual, Mc-Graw Hill, 1994.
- 3. R.S. Goankar, *Microprocessor Architecture Programming and applications with 8085*, Prentice Hall, 2002

Semester-V

Semester	V
Paper Code	PHC 5.1
Paper Title	Quantum Mechanics –I
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Quantum Mechanics I:

CO 1:	To make the students aware of the failures in Classical Mechanics that led to the development of
	Quantum Mechanics
CO 2:	To aid the students in the understanding of the basis of Linear spaces that are required for Quantum
	Mechanics
CO 3:	To introduce the notations and different type of operators and how they are represented in matrix.
CO 4:	To make the students understand the Schrodinger wave equation.
CO 5:	To assist the students in the understanding of one-dimensional problems.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1	Black body	CSO 1.1: To identify the limitations of	8	18	Not to
Introduction	radiation, Plank	Classical mechanics in explaining Black			be
to Quantum	hypothesis, Specific	Body Radiation(K)			filled-
Mechanics	heat of solids,	CSO 1.2: To explain the need for			in
	Photoelectric effect,	Plank's Hypothesis(U)			
	Compton effect,	CSO 1.3: To identify the limitations of			
	Classical atomic	Classical mechanics in explaining			
	structure models,	specific heat of solids. (U)			
	Bohr's theory of	CSO 1.4: To discuss the Photoelectric			
	Hydrogen spectrum,	effect. (U)			
	Stern - Gerlach	CSO 1.5: To discuss the Compton			
	Experiment,	effect. (U)			
	Heisenberg's	CSO 1.6: To recall the classical atomic			
	uncertainty relation,	structure models. (K)			
	wave- particle	CSO 1.7: To examine and derive the			
	duality, Inadequacy	hydrogen spectrum(A)			
	of classical physics.	CSO 1.8: To evaluate the importance of			
		Stern-Gerlach experiment. (A)			
		CSO 1.9: To understand the			
		Heisenberg's uncertainty principle. (U)			
		CSO 1.10: To recall the wave-particle			
		duality(K)			
		CSO 1.11: To identify the inadequacy			
		of classical physics. (K)			

UNIT 2	Vector spaces and	CSO 2.1: To explain vector spaces and	7	16	Not to
Linear	subspaces, Linear	sub spaces(U)	/	10	be
Spaces	dependence and	CSO 2.2: To define linear dependence			filled-
Spaces	independence, Basis	and independence. (K)			in
	and dimensions,	CSO 2.3: To explain basis and			
	Linear operators,	dimensions. (U)			
	Inverses, Matrix	CSO 2.4: To recall linear operators(K)			
	representation,	CSO 2.5: To recall matrix			
	Similarity	representation. (K)			
	Transformations,	CSO 2.6: To apply Newton's method to			
	Eigen values and	solve some Transcendental and			
	eigen vectors,	polynomial equations. (A)			
	Norm and inner	CSO 2.7: To express similarity			
	product, Cauchy-	transformations. (A)			
	Schwarz inequality,	CSO 2.8: To explore eigen vales and			
	Orthogonality,	eigen vectors(A)			
	introduction only to	CSO 2.9: To discuss norm and inner			
	Gramm-Schmidt	product(U)			
	Orthogonalization	CSO 2.10: To analyse Cauchy-			
	procedure	Schwarz inequality. (A)			
		CSO 2.11: To describe Orthogonality.			
		(K)			
		CSO 2.12: To classify Gramm-Schmidt			
		Orthogonalization procedure.			
UNIT 3	Introduction to	CSO 3.1: To describe Hilbert space.	10	22	Not to
Operators	Hilbert space,	(K)			be
	Dirac's Bra and Ket	CSO 3.2: To classify Dirac's Bra and			filled-
	notations, quantum	Ket notations. (U)			in
	mechanical	CSO 3.3: To construct quantum			
	operators and	mechanical operators and observables.			
	observables,				
	different types of				
	operators-linear	operators such as linear operator,			
	operator, Hermitian	Hermitian operator, Parity operator,			
	operator, parity operator, projection	Projection operator, Identity operator, Reflection operator and Unitary			
	operator, Identity	Reflection operator and Unitary operator. (U)			
	operator, Reflection	CSO 3.5: To explain unitary			
	operator and	transformations. (U)			
	Unitary operator,	CSO 3.6: To elaborate matrix			
	Unitary	representation of operator. (U)			
	Transformation,	CSO 3.7: To describe change of basis.			
	matrix	(K)			
	representation of	CSO 3.8: To explore commutation			
	operator, change of	relations for orbital angular momentum.			
	basis, commutation	(A)			
	relations for orbital	CSO 3.9: To derive eigen function of			
	angular momentum,	angular momentum operators. (A)			
	eigen function of	CSO 3.10: To illustrate matrix			
	angular momentum	representation of angular momentum			
	operators, matrix	operators. (A)			
	representation of				

	angular momentum				
	operators.				
UNIT 4	Development of	CSO 4.1: To investigate the	10	22	Not to
Schrödinger	wave equation-	development of Schrodinger time-	-		be
wave	Schrödinger time-	independent and dependent wave			filled-
equation	independent and	equation. (A)			in
· 1 ·····	dependent wave	CSO 4.2: To examine Ehrenfest			
	equation,	theorem. (A)			
	Ehrenfest theorem,	CSO 4.3: To explain postulates of			
	postulates of	quantum mechanics. (U)			
	quantum	CSO 4.4: To discuss solution of time			
	mechanics, solution	dependent Schrodinger equation. (U)			
	of time dependent	CSO 4.5: To describe the properties of			
	Schrödinger	wave function. (K)			
	equation, properties	CSO 4.6: To analyse the interpretation			
	of wave function,	of wave function. (A)			
	interpretation of	CSO 4.7: To discuss probability and			
	wave function,	probability current densities in three			
	Probability and	dimensions conditions for physical			
	probability current	acceptability of wave function. (U)			
	densities in three	CSO 4.8: To discuss Normalization.			
	dimensions	(U)			
	condition for				
	physical				
	acceptability of				
	wave function,				
	Normalization.				
UNIT 5	Particle in one	CSO 5.1: Todiscuss particle in one	9	20	Not to
One	dimension:	dimension with boundary conditions at			be
dimensional	boundary	the surface of infinite potential. (U)			filled-
problem	conditions at the	CSO 5.2: To analyse particle in one-			in
	surface of infinite	dimension infinite potential well. (A)			
	potentials, infinite	CSO 5.3: To analyse particle in one			
	potential well, finite	dimension finite potential well. (A)			
	potential well,	CSO 5.4: To discuss Linear Harmonic			
	linear harmonic	Oscillator. (U)			
	oscillator:	CSO 5.5: To derive Linear Harmonic			
	Schrodinger's	Oscillator using Schrodinger and			
	method and	Operator method. (A)			
	Operator method.				

- 1. P.M.Mathews and K.Venkatesan, A Text book of Quantum Mechanics, 2nd Ed., McGraw Hill, 2010.
- 2. Leonard I. Schiff, *Quantum Mechanics*, 3rd Edn., Tata McGraw Hill, 2010.
- 3. Bruce Cameron Reed, *Quantum Mechanics*, Jones and Bartlett Learning, 2008.
- 4. Arno Bohm, Quantum Mechanics: Foundations & Applications, 3rd Edn., Springer, 1993.
- 5. D.A.B. Miller, Quantum Mechanics for Scientists & Engineers, Cambridge University Press, 2008.
- 6. Eugen Merzbacher, Quantum Mechanics, John Wiley and Sons, Inc., 2004.
- 7. D.J. Griffith, Introduction to Quantum Mechanics, 2nd Ed., Pearson Education, 2005.
- 8. Walter Greiner, Quantum Mechanics, 4th Edn., Springer, 2001.
- 9. Nourendine Zettili, *Quantum Mechanics concepts and applications*, 2nd Edition, Wiley, 2009.

Semester	V
Paper Code	PHC 5.1(P)
Paper Title	Quantum Mechanics-I
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

With the exposure in computer programming and computational techniques, the student will be in a position to perform numerical simulations for solving the problems based on Quantum Mechanics.

Use C/C⁺⁺/Scilab for solving the following problems based on Quantum Mechanics like

 Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:

$$\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} [V(r) - E]$$
 where $V(r) = -\frac{s^2}{r}$

Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \approx -13.6 eV. Take e = 3.795 (eVÅ)^{1/2}, hc = 1973 (eVÅ) and m = 0.511x10⁶ eV/c².

2. Solve the s-wave radial Schrodinger equation for an atom:

$$\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} [V(r) - E]$$

where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

$$V(r) = -\frac{e^2}{r}e^{-r/a}$$

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take e = 3.795 (eVÅ)^{1/2}, $m = 0.511 \times 10^6$ eV/c², and a = 3 Å, 5 Å, 7 Å. In these units hc = 1973 (eVÅ). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass m:

$$\frac{d^2y}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2} \left[V(r) - E\right]$$

For the anharmonic oscillator potential

$$V(r) = \frac{1}{2}kr^2 + \frac{1}{3}br^3$$

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose $m = 940 \text{ MeV/c}^2$, k = 100

Laboratory based experiments:

- 4. StudyofElectronspinresonance-determinemagneticfieldasafunctionoftheresonance frequency
- 5. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
- 6. To show the tunneling effect in tunnel diode using I-V characteristics.
- 7. Quantum efficiency of CCDs

SUGGESTED READINGS:

- 1. J.Hubbard, Schaum's outline of Programming with C++, McGraw HillPublication, 2000.
- 2. W.H.Pressetal., *Numerical RecipesinC:The Art of Scientific Computing*,3rd Edn.,Cambridge University Press, 2007.
- 3. T.Pang, An introduction to computational Physics, 2ndEdn., CambridgeUniv.Press, 2006.
- 4. A.Vande Wouwer, P.Saucez, C.V.Fernández, Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications, Springer, 2014.
- 5. H.Ramchandran, A.S.Nair, Scilab(A Free Software to Matlab), S.Chand&Co, 2011.
- 6. L.M.Surhone, ScilabImage Processing, Beta script Publishing ISBN:978-6133459274, 2010.

Semester	V
Paper Code	PHC 5.2
Paper Title	Classical Dynamics
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Classical Dynamics**:

CO 1:	To understand the Newtonian, the Lagrangian and the Hamiltonian formulation of
	classical mechanics and their applications in appropriate physical problems.
CO 2:	To understand the Hamiltonian formalism.
CO 3:	To understand the small oscillation problems.
CO 4:	To understand the fundamental concepts of special theory of relativity and their physical
	consequences.
CO 5:	To understand the basics of fluid dynamics.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Review of Newtonian	CSO 1.1: To define classical	13	20	Not to
Classical	Mechanics;	mechanics.(K)			be
Mechanics	Application to the	CSO 1.2: To revise the knowledge			filled-
Lagrangian	motion of a charge	of the Newtonian and learn its			in
formalism	particle in external	application to electric and magnetic			
	electric and magnetic	fields.(A)			
	fields- motion in	CSO 1.3: To study the motion of a			
	uniform electric field,	charged particle in crossed electric			
	magnetic field-	and magnetic fields. (U)			
	gyroradius and	CSO 1.4: To define constraints and			

	gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates and ve- locities, Hamilton's principle, Lagrangian and the Euler- Lagrange equations, one-dimensional Simple Harmonic Oscillations and falling body in uniform gravity	learn the different types of constraints.(K) CSO 1.5: To understand the fundamental concepts of analytical mechanics such as generalized coordinates and velocities.(U) CSO 1.6: To define and explain the Hamilton's principle.(K&U) CSO 1.7: To derive the Hamilton's principle from D'Alembert's principle.(A) CSO 1.8: To derive the Lagrange's equation from Hamilton's principle.(A) CSO 1.9: To explain the Euler- Lagrange equation.(U)			
UNIT 2 Hamiltonian Formalism	Canonical momenta & Hamiltonian. Hamilton's equations of motion. Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton's equation for Simple Harmonic Oscillations; particle in a central force field- conservation of angular momen-tum and energy.	 CSO 2.1: To define generalised momentum and find the expression for it.(K) CSO 2.2: To define cyclic coordinates. (K) CSO 2.3: To Obtain the Hamiltonian (H) value.(U) CSO 2.4: To derive the Hamilton's equation of motion.(A) CSO 2.5: To define harmonic oscillator.(K) CSO 2.6: To derive the Hamiltonian for a harmonic oscillator. (A) CSO 2.7: To find the Hamilton's equation of motion for a particle under central forces.(A) CSO 2.8: To find the Hamilton's equation of motion in polar cylindrical coordinates. (A) CSO 2.9: To derive the Hamilton's equation of a simple pendulum.(A) CSO 2.11: To find the Hamilton's equation of motion in spherical cylindrical coordinates. (A) 	11	20	Not to be filled- in
UNIT 3 Small Amplitude Oscillations	Minima of potential energy and points of stable equilibrium, expansion of the potential energy around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses	CSO 3.1: To explain small amplitude oscillations in brief.(K) CSO 3.2: To define equilibrium and its types.(K) CSO 3.3: To explain stability analysis. (U) CSO 3.4: To explain the stability of a simple pendulum(one dimensional oscillator).(U) CSO 3.5: To explain general problems of small oscillations.(U) CSO 3.6: To explain eigen	12	20	Not to be filled- in

UNIT 4 Special Theory of Relativity	connected in a linear fashion to (N -1) - identical springs. Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time -dilation, length contraction and twin paradox. Four- vectors: space-like, time-like and light- like. Four velocity	frequencies and eigen vectors.(U) CSO 3.7: To show that the eigen vectors are orthogonal.(U) CSO 3.8: To explain normal coordinates.(U) CSO 3.9: To derive the energy value using the concept of normal coordinates.(A) CSO 4.1: To state the postulates of special theory of relativity. (K) CSO 4.2: To define Lorentz transformations and derive its equations.(K&A) CSO 4.3: To understand what Minkowski space is.(U) CSO 4.4: To explain space time interval and prove that it is invariant under a Lorentz transformation.(U) CSO 4.5: To explain the classification of space time interval.(U) CSO 4.6: To explain time dilation and length contraction and solve	15	23	Not to be filled- in
	like. Four-velocity and acceleration. Four-momentum and energy-momentum relation.	and length contraction and solve numerical problems based on both.(U&A) CSO 4.7: To derive the equation for the momentum four vector.(A) CSO 4.8: To deduce the velocity four vector.(A) CSO 4.9: To deduce the acceleration four vector.(A) CSO 4.10: To derive the energy- momentum relation.(A)			
UNIT 5 Fluid Dynamics	Density p and pressure P in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, stream- lined motion, laminar flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number.	CSO 5.1: To define fluid and learn the characteristics of fluid.(K) CSO 5.2: To define density and pressure and learn the relationship between them.(K) CSO 5.3: To learn the different types of fluid flow.(U) CSO 5.4: To derive the continuity equation.(A) CSO 5.5: To derive the Navier Stokes equation of motion.(A) CSO 5.6: To define and explain Reynolds' number .(K&A) CSO 5.7: To solve numerical problems using Reynolds' number(A) CSO 5.8: To state the assumptions and derive the Poiseuille's equation of motion.(A)	9	17	Not to be filled- in

	CSO 5.9: To give the qualitative		
	description of turbulence. (U)		

- 1. H.Goldstein, C.P. Poole, J.L. Safko, *Classical Mechanics*, 3rd Edn., Pearson Education, 2002.
- 2. L. D. Landau and E. M. Lifshitz, *Mechanics*, Pergamon, 1976.
- 3. J.D. Jackson, Classical Electrodynamics, 3rd Edn., Wiley, 1998.
- 4. L.D Landau, E.M Lifshitz, *The Classical Theory of Fields*, 4th Edn., Elsevier, 2003.
- 5. D.J. Griffiths, Introduction to Electrodynamics, Pearson Education, 2012.
- 6. R. Douglas Gregory, Classical Mechanics, Cambridge University Press, 2015.
- 7. Dieter Strauch, Classical Mechanics: An introduction, Springer, 2009.
- 8. O.L. Delange and J. Pierrus, Solved Problems in classical Mechanics, Oxford Press, 2010.

Semester	V
Paper Code	PHC 5.3
Paper Title	Solid State Physics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Solid state physics:

CO 1:	To make the students understand the basic concept of the crystal structure.
CO 2:	To aid the students in the understanding of Elementary Lattice Dynamics.
CO 3:	To create an understanding among the students about different magnetic materials and their
	properties.
CO 4:	To inculcate and create interest among students in the understanding of Dielectric properties of
	materials and Ferroelectric Properties of Materials
CO 5:	To assist the students in the understanding of Elementary band theory and superconductors

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Solids: Amorphous	CSO 1.1: To identify Amorphous	9	20	Not
Crystal Structure	and Crystalline	and Crystalline Materials. (K)			to be
	Materials. Lattice	CSO 1.2: To describe lattice			filled-
	Translation Vectors.	translations vectors. (K)			in
	Lattice with a Basis.	CSO 1.3: To define basis and unit			
	Unit Cell. Miller	cell (K).			
	Indices. Reciprocal	CSO 1.4: To discuss Miller			
	Lattice. Types of	indices. (U)			
	Lattices. Brillouin	CSO 1.5: To discuss the concept			
	Zones. Diffraction of	of reciprocal lattice. (U)			
	X-rays by Crystals.	CSO 1.6: To classify different			

UNIT 2	Bragg's Law.	types of lattices. (U) CSO 1.7: To define the Brillouin zones and discuss its derivations. (K) CSO 1.8: To derive the diffraction of x-rays of crystals. (A) CSO 1.9: To define Bragg's law. (K) CSO 1.10: To construct the reciprocal lattice for simple cubic, face centered cubic and body centered cubic structure. (A) CSO 1.11: To differentiate between simple cubic, face centered cubic and body centered cubic structure CSO 1.12: To derive Bragg's equation. (A) CSO 2.1: To discuss the concept	8	19	Not
Elementary Lattice Dynamics	and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T ³ law	of lattice vibrations and phonons. CSO 2.2: To construct the lattice vibrational mode for monoatomic crystal. (A) CSO 2.3: To construct the lattice vibrational mode for diaoatomic crystal. (A) CSO 2.4: To define acoustical and optical phonons. (K) CSO 2.5: To discuss the description of the phonon spectrum in solids. (U) CSO 2.6: To state Dulong and Petit's Law. (K) CSO 2.7: To describe Einstein and Debye theories of specific heat of solids. (K) CSO 2.8: To derive the Dulong and Petit's law. (A) CSO 2.9: To construct Einstein theory of specific heat of solid. (A) CSO 2.10: To construct Debye theory of specific heat of solid. (A) CSO 2.11: To define T ³ law. (K) CSO 2.12: To derive the T ³ Law			to be filled- in
UNIT 3 Magnetic	Dia-, Para-, Ferri- and Ferromagnetic	CSO 3.1: To define Dia, Para, Ferri and Ferromagnetic materials.	8	19	Not to be
properties of	Materials. Classical	(K)			filled-
matter	Langevin Theory of	CSO 3.2: To derive the classical			in
	dia– and	Langevin theory of Dia- and			
	Paramagnetic	paramagnetic magnetism. (A)			
	Domains. Quantum	CSO 3.3: To analyse the quantum			
	Mechanical	mechanical treatment of			

	Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve.	 paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetism and Ferromagnetic domains. (A) CSO 3.6: To illustrate the B-H curve of ferromagnetic material. (A) CSO 3.7: To differentiate between Dia-, Para-, Ferri- and Ferromagnetic materials. (U) CSO 3.8: To define domains. (K) 			
UNIT 4 Dielectric properties of materials and Ferroelectric Properties of Materials	DielectricProperties ofMaterials:Polarization. LocalElectric Field at anAtom. DepolarizationField. ElectricSusceptibility.Polarizability.ClausiusMosottiEquation. ClassicalTheory of ElectricPolarizability.Normal andAnomalousDispersion. Cauchyand Sellmeirrelations. Langevin-Debye equation.Optical Phenomena.Application: PlasmaOscillations, PlasmaFrequency,Plasmons.FerroelectricProperties ofMaterials: Structuralphase transition,Classification ofcrystals, Piezoelectriceffect, Ferroelectriceffect, Serroelectriceffect, Ferroelectriceffect, Serroelectriceffect, Serroelectriceffect, Serroelectriceffect, Serroelectriceffect, Serroelectriceffect, Serroelectriceffect, Serroelectriceffect,	CSO 4.1: To define polarization. (K) CSO 4.2: To explain local electric field of an atom. (U) CSO 4.3: To define depolarization field. (k) CSO 4.4: To define electric susceptibility. (K) CSO 4.5: To define polarizability. (K) CSO 4.6: To derive and explain Clausius Mosotti equation. (A) CSO 4.6: To derive and explain Clausius Mosotti equation. (A) CSO 4.7: To explain classical theory of electric polarizability. (U) CSO 4.8: To define and discuss normal and anomalous dispersion. (U) CSO 4.9: To construct Cauchy and Sellmeir relations. (A) CSO 4.10: To derive Langevin- Debye equation. (A) CSO 4.11: To discuss optical phenomena. (U) CSO 4.12: To describe plasma oscillations, plasma frequency, plasmons. (K) CSO 4.13: To define and explain ferroelectric properties of materials. (U)	11	22	Not to be filled- in

UNIT 5	Elementary band	CSO 5.1: To define and explain	9	20	Not
Elementary band	theory: Kronig	the elementary band theory. (K)			to be
theory and	Penny model. Band	CSO 5.2: To construct Kronig			filled-
superconductivity.	Gap. Conductor,	Penny model. (A)			in
	Semiconductor and	CSO 5.3: To explain band gap.			
	insulator.	(U)			
	Conductivity of	CSO 5.4: To define conductor,			
	Semiconductor,	semiconductor and insulator. (K)			
	mobility, Hall Effect	CSO 5.5: To explain the			
	and Hall coefficient.	conductivity of semiconductor,			
	Superconductivity:	mobility, hall effect and hall			
	Critical Temperature.	coefficient. (U)			
	Critical magnetic	CSO 5.6: To define			
	field. Meissner	superconductivity. (A)			
	effect. Type I and	CSO 5.7: To discuss critical			
	type II	temperature and critical magnetic			
	Superconductors,	field. (U)			
	London's Equation.	CSO 5.8: To discuss Meissner			
	Isotope effect.	effect. (U)			
		CSO 5.9: To derive London's			
		equation. (A)			
		CSO 5.10: To determine the			
		Isotope effect of superconductors.			
		(U)			

- 1. Charles Kittel, Introduction to Solid State Physics, 8th Edition, Wiley India Pvt. Ltd, 2004.
- 2. J.P. Srivastava, *Elements of Solid State Physics*, 4th Edition, Prentice-Hall of India, 2015.
- 3. Leonid V. Azaroff, Introduction to Solids, Tata Mc-Graw Hill, 2004.
- 4. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Cengage Learning, 1976.
- 5. H. Ibach and H. Luth, Solid-state Physics, Rita John, Springer Solid State Physics, McGraw Hill 2009, 2014.
- 6. 1/e M. Ali Omar, Elementary Solid State Physics, Pearson India, 1999.
- 7. M.A. Wahab, Solid State Physics, Narosa Publications, 2011.

Semester	V
Paper Code	PHC 5.3 (P)
Paper Title	Solid State Physics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The aim and objective of the lab course is to introduce the students to the formal structure of solid state physics so that they can use these as per their requirement.

1. Measurement of susceptibility of paramagnetic solution by (Quinck's Tube Method)/suitable method.

- 2. To measure the Magnetic susceptibility of Solids.
- 3. To measure the Dielectric Constant of a dielectric Material by suitable method.
- 4. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 5. To draw the BH curve of Fe using Solenoid/transformer & determine energy loss from Hysteresis.
- 6. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to $150 \text{ }^{\circ}\text{C}$) and to determine its band gap.
- 7. To determine the Hall coefficient of a semiconductor sample.

1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971.

2. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, Heinemann Educational Publishers, 1985.

3. I. Prakash& Ramakrishna, A Text Book of Practical Physics, 11th Ed., Kitab Mahal, 2011.

4. J.P. Srivastava, *Elements of Solid State Physics*, 2nd Ed., Prentice-Hall of India, 2006.

Semester-VI

Semester	VI
Paper Code	PHC 6.1
Paper Title	Quantum Mechanics II
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Quantum Mechanics II**:

CO 1:	To make the students aware of the uncertainty relations and exactly solvable problems in
	three dimensions
CO 2:	To aid the students in the understanding of symmetry in quantum mechanics and the
	excited states of helium atom
CO 3:	To create an understanding among the students about the time independent perturbation
	and the variational method.
CO 4:	To inculcate and create interest among students in the understanding of time dependent
	perturbation and how it affects the absorption and emission of radiation.
CO 5:	To assist the students in the understanding of WKB approximation.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 Uncertainty relation and exactly solvable problems in three dimensions	Uncertainty relations: Stern-Gerlach experiment and the concept of spin, Pauli-spin matrices, Addition of angular momentum: Clebsch- Gordan coefficients for two particles. Exactly solvable problems in three dimensions: Separation of Schrodinger equation in Cartesian coordinates, Simple harmonic oscillator in 3- dimensions, Free particle in 3-d box – Effects of the exclusion principle on non- interacting fermions in a box, central potential, Schrodinger equation in Spherical coordinates- separation of variables r, Φ , Θ . The hydrogen atom – radial equation; energy spectrum; degeneracy of the spectrum; radial wave functions and probability density P(r) for finding the electron at a distance from the centre; evaluation of expectation values of r ⁿ .	CSO 1.1: To discuss the Stern- Gerlach experiment and the concept of spin(U) CSO 1.2: To describe the Pauli Spin matrices. (K) CSO 1.3: To determine Clebsch- Gordon coefficients for two particles(A) CSO 1.4: To separate Schrodinger equation in cartesian coordinates. (A) CSO 1.5: To elaborate simple harmonic oscillator in 3 D. (U) CSO 1.6: To construct the effects of the exclusion principle on non- interacting fermions in a box. CSO 1.7: To discuss central potential. (U) CSO 1.8: To derive Schrodinger equation in spherical coordinates and separation of variables r, Φ , Θ . (A) CSO 1.9: To evaluate the radial equation. (A) CSO 1.10: To outline the energy spectrum. (K) CSO 1.11: To determine radial wave functions and probability density P(r) for finding the electron at a distance from the centre. (A) CSO 1.12: To evaluate expectation values of r ⁿ . (A)	15	25	Not to be filled- in
UNIT 2 Symmetry in quantum mechanics	Symmetry transformation, Spatial transition - conservation of linear momentum, Translation in time, Conservation of energy. Rotation in space- conservation of angular momentum. Discrete symmetries: parity and time reversal, Permutation symmetry: symmetric and anti-symmetric wave functions for two identical particles, slater	CSO 2.1: To describe symmetry transformation. (K) CSO 2.2: To describe spatial transition- conservation of linear momentum. (K) CSO 2.3: To describe spatial transition translation in time. (K) CSO 2.4: To describe spatial transition- conservation of energy. (K) CSO 2.5: To describe rotation in space- conservation of angular momentum. (K) CSO 2.6: To discuss discrete	12	22	Not to be filled- in

	determinant and Pauli exclusion principle, Exited states of helium atom: ortho and para helium atom.	symmetries: parity and time reversal. (U) CSO 2.7: To examine Permutation symmetry: symmetric and anti- symmetric wave functions for two identical particles. (A) CSO 2.8: To explore slater determinant and Pauli exclusion principle. (A) CSO 2.9: To analyse the rate of convergence for Newton's method. (A) CSO 2.10: To derive and examine excited states of Helium atom- Ortho and para helium atom. (A)			
UNIT 3 Time independent perturbation and the variational method	Time independent perturbation: Perturbation theory for non-degenerate states, Applications. linear and quadratic stark effects in hydrogen atom, validity of time independent perturbation theory, Degenerate perturbation theory, examples: linear stark effect, Normal Zeeman effect. The variational method: Variation principle, application of variational approach to ground states of (i) Hydrogen atom and (ii) Helium atom.	CSO 3.1: To construct perturbation theory of non-degenerate states. (A) CSO 3.2: To apply linear and quadratic stark effects in hydrogen atom. (A) CSO 3.3: To discuss validity of time independent perturbation theory. (U) CSO 3.4: To construct degenerate perturbation theory. (A) CSO 3.5: To apply Gauss Jordon method to solve some system of linear algebraic equations. (A) CSO 3.6: To explain Gauss Jacobi method and its derivative. (U) CSO 3.7: To investigate linear stark effect. (A) CSO 3.8: To explain normal Zeeman effect. (U) CSO 3.9: To explore variation principle. (A) CSO 3.10: To apply variational approach to ground states of hydrogen atom. (A) CSO 3.11: To apply variational approach to ground states of Helium atom. (A)	13	23	Not to be filled- in
UNIT 4 Time dependent perturbation theory	Time dependent perturbation series- transition probability, transition to the Continuum-Fermi golden rule, Harmonic perturbation, absorption and emission of radiation, Einstein's A and B coefficient, selection rules.	CSO 4.1: To derive time dependent perturbation series- transition probability. (A) CSO 4.2: To discuss transition to the continuum- Fermi golden rule. (U) CSO 4.3: To describe harmonic perturbation. (K) CSO 4.4: To analyse absorption and emission of radiation. (A) CSO 4.5: To examine Einstein's A and B coefficient.	10	15	Not to be filled- in

		CSO 4.6: To outline the selection rules. (K)			
UNIT 5 WKB Approximation	WKB method, the connection formulas, validity of WKB method, barrier penetration, Alpha emission, bound states in a potential well.	CSO 5.1: To describe WKB method. (K) CSO 5.2: To derive the connection formulas. (A) CSO 5.3: To discuss the validity of WKB method. (U) CSO 5.4: To explain barrier penetration. (U) CSO 5.5: To analyse alpha emission. (A) CSO 5.6: To discuss bound states in a potential well. (U)	10	15	Not to be filled- in

- 1. B.H. Bransden and Joachain, *Quantum mechanics*, 2 nd Edition Pearson Education, 2004.
- 2. NouredineZettili, Quantum mechanics: concepts and applications, 2nd Edition, Wiley, 2018.
- 3. David J. Griffiths, Introduction to Quantum mechanics, 2nd Edition, Parson Education 2005.
- 4. J.J. Sakurai, *Modern Quantum mechanics*, Pearson Education, 2000.
- 5. V.KThankappan, Quantum mechanics, 2 nd Edition Pri, 2004.
- 6. E. Merzbacher, Quantum Mechanics, 3rd edition, John Wiley, 1994.
- 7. R. Shankar, *Principles of Quantum mechanics*, 2 nd Edition, Premium press, NY, 1994.
- 8. J.D. Bjorken and S.D. Drell, *Relativistic Quantum mechanics and Relativistic Quantum fields*, Mc. Grawhill,New York, 1968.
- 9. L.I.Schiff Quantum mechanics, Mc. Graw-hill, 1955.
- 10. C.Cohen-Tannoudji, B.Diu, F.Laloe, Quantum Mechanics (2 vol. set), Wiley Interscience, 1996.

Semester	VI
Paper Code	PHC 6.2
Paper Title	Nuclear and Particle Physics
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Nuclear and Particle Physics:

CO 1:	To understand the basic properties of the nucleus.
CO 2:	To analyse different nuclear models.
CO 3:	To make the students understand the concept of radioactivity and nuclear reactions.
CO 4:	To understand the working of nuclear detectors and counters.
CO 5:	To make the students understand the different types of particles and the conservation laws
	related to them.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 General Properties of Nuclei	Constituents of nucleus and their Intrinsic properties, quantitative facts about size, mass, charge density (matter energy), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states, concept of nuclear force.	 CSO 1.2: To understand the constituents that made up a nucleus.(U) CSO 1.3: To learn the different intrinsic properties of the nucleus .(U) CSO 1.4: To define binding energy and explain its variation with mass number.(K&A) 	11	18	Not to be filled- in
UNIT 2 Nuclear Models	Liquid drop model approach, Fermi gas model, semi empirical mass formula and significance of various terms, condition of nuclear stability, evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model.	 model.(U) CSO 2.2: To explain the Fermi Gas model.(U) CSO 2.3: To explain the semi empirical mass formula and the significance of the various terms in the formula. (U) CSO 2.4: To explain the condition of nuclear stability.(U) CSO 2.5: To explain the evidence of nuclear shell structure. (U) 	13	22	Not to be filled- in
UNIT 3 Radioactivity	 (a) Alpha decay: basics of α-decay processes, qualitative idea of alpha emission theory, Geiger Nuttall law, (b) Beta- decay: energy kinematics for beta- decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, 	CSO 3.1: To define radioactivity .(K) CSO 3.2: To define radioactivity decay.(K) CSO 3.3: To define alpha, beta and gamma rays.(K) CSO 3.4: To define alpha decay.(K) CSO 3.5: To discuss the basics of alpha decay processes.(U) CSO 3.6: To discuss the qualitative idea of alpha emission theory.(U) CSO 3.7: To explain the Geiger Nuttal law.(U) CSO 3.8: To define beta decay.(K) CSO 3.9: To derive the energy kinematics	14	24	Not to be filled- in

	internal conversion. Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate.	for different types of beta decay.(A) CSO 3.10: To explain the neutrino hypothesis.(U) CSO 3.11: To define gamma decay.(K) CSO 3.12: To explain the different types of gamma decay processes.(U) CSO 3.13: To define nuclear reactions.(K) CSO 3.14: To define the different types of nuclear reactions.(K) CSO 3.15: To discuss the conservation laws related to nuclear reactions.(U) CSO 3.16: To derive the Q-Value of nuclear reactions.(A)			
UNIT 4 Detector for Nuclear Radiations	Ionization chamber, proportional counter and GM Counter. Basic principle of Scintillation Detectors and construction of Photo- Multiplier Tube (PMT). Particle Accelerators: Van-de Graaff generator, Linear accelerator, Cyclotron	CSO 4.1: To define detector.(U) CSO 4.2: To explain the Ionization Chamber.(U) CSO 4.3: To explain the Proportional Counter.(U) CSO 4.4: To explain the GM Counter.(U) CSO 4.5: To explain Scintillation Detector.(U) CSO 4.6: To explain Photo Multiplier tube. (U) CSO 4.7: To define accelerators. (K) CSO 4.8: To explain Vande-Graff generator. (U) CSO 4.9: To explain Linear Accelerator. (U) CSO 4.10: To define Cyclotron. (K) CSO 4.11: To explain the Cyclotron. (U)	12	20	Not to be filled- in
UNIT 5 Particle physics	Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model.	CSO 5.1: To define particle Physics. (K) CSO 5.2: To define elementary particles. (K) CSO 5.3: To explain the classification of elementary particles. (U) CSO 5.4: To discuss the fundamental interactions associated with the elementary particles. (A) CSO 5.5: To explain the intrinsic quantum numbers associated with elementary particles. (U) CSO 5.6: To explain the conservation laws associated with the elementary particles. (U) CSO 5.7: To explain the symmetries related to conservation laws. (U) CSO 5.8: To define quark.(K) CSO 5.9: To explain the quark model. (U)	10	16	Not to be filled- in

- 1. Kenneth S. Krane , Introductory nuclear Physics , Wiley India Pvt. Ltd., 2008.
- 2. Bernard L. Cohen , Concepts of nuclear physics, Tata Mc graw Hill, 1998.
- 3. R.A. Dunlap, Introduction to the physics of nuclei & particles, Thomson Asia, 2004.
- 4. K. Heyde, *Basic ideas and concepts in Nuclear Physics An Introductory Approach*, IOP- Institute of Physics Publishing, 2004.
- 5. G.F. Knoll, *Radiation detection and measurement*, John Wiley & Sons, 2000.
- 6. J.M. Blatt &V.F.Weisskopf, Theoretical Nuclear Physics, Dover Pub.Inc., 1991.

Semester	VI
Paper Code	PHC 6.3
Paper Title	Electromagnetic Theory
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Electromagnetic theory**:

CO 1:	To make the students enabling them to analyse and solve complex problem relating to
	electromagnetic fields and their interaction and deep understanding of the theoretical concepts
	and the ability to apply them in practical situation.
CO 2:	To understand the electromagnetic wave propagation in different media, from vacuum and
	dielectric materials to conducting media and dilute plasma.
CO 3:	To create an understanding the law of governing the reflection and refraction of electromagnetic
	waves at dielectric interfaces and applying Fresnel's law and other relevant concept to solve ad
	analyse problems related to different interfaces between different media.
CO 4:	To create comprehensive understanding of polarization and propagation of electromagnetic waves
	in anisotropic media and solve problem related to various polarization phenomena and their
	applications in optics.
CO 5:	To make the student well-versed in the principles and analysis of planar optical waveguides and
	possess skills to design and analyse waveguide structures, understand the behaviour and evaluate
	the transmission of the system, understand their practical application in the field of optical
	waveguide technology.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Review of Maxwell's	CSO 1.1: To understand and	10	21	Not to
Maxwell	equations. Displacement	ability to state Maxwell's			be
Equations	Current. Vector and	equations in integral and			filled-
	Scalar Potentials. Gauge	differential forms.(U)			in
	Transformations:	CSO 1.2: To apply Maxwell's			
	Lorentz and Coulomb	equations to analyse			
	Gauge. Boundary	electromagnetic phenomena.(A)			
	Conditions at Interface	CSO 1.3: To describe the concept			
	between Different	of displacement current and its			
	Media. Wave	role in modifying Ampere's law.			
	Equations. Plane Waves	(K)			
	in Dielectric Media.	CSO 1.4: To express			
	Poynting Theorem and	electromagnetic fields in terms of			
	Poynting Vector.	vector and scalar potentials.(A)			
	Electromagnetic (EM)	CSO 1.5: To understand the			
	Energy Density.	advantages and application of			
	Physical Concept of	using potentials in problem			
	Electromagnetic Field	solving.(U)			
	Energy Density,	CSO 1.6: To identify the use of			
	Momentum Density and	Lorentz Coulomb gauge			

UNIT 2 Plane EM waves Inition induction (A) UNIT 2 Plane EM waves CSO 1.37: To understand the ability to choose appropriate gauge transformation based on specific problem requirements.(U) CSO 1.37: To understand the application of Maxwell's equation to derive boundary conditions.(U) CSO 1.9: To apply in solving problems involving interfaces between different electromagnetic media.(A) CSO 1.10: To derive and solve wave equation for electromagnetic fields.(A) CSO 1.12: To understand the behaviour of plane waves. in different media.(A) CSO 1.12: To calculate and analyse the properties of electromagnetic waves in different media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.13: To calculate poynting vector and its application.(A) CSO 1.13: To calculate poynting vector and its application.(A) CSO 1.13: To understand the physical interpretation of electromagnetic fields.(U) CSO 1.13: To calculate and analyse through vacuum and its significance.(U) CSO 1.13: To understand the physical interpretation of electromagnetic energy density and angular momentum	Angular Momentum	transformations (V)			
UNIT 2 Plane EM waves FM Waves, refractive index and interpretation of energy density, momentum density, and its significance of CSO 1.18: To understand the application of Maxwell's equation to derive boundary conditions.(U) CSO 1.9: To apply in solving problems involving interpretation of of electromagnetic fields.(A) CSO 1.10: To derive and solve wave equation for electromagnetic media.(A) CSO 1.10: To derive and solve wave equation of electromagnetic media.(A) CSO 1.10: To derive and solve wave equation for electromagnetic media.(A) CSO 1.12: To understand the behaviour of plane waves.(A) CSO 1.12: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.14: To understand CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.14: To understand the behaviour of plane waves in different media.(A) CSO 1.13: To calculate Poynting vector and its application.(A) CSO 1.14: To understand the physical interpretation of electromagnetic field energy density and its significance.(U) CSO 1.18: To explain electromagnetic energy density and its significance.(U) CSO 1.18: To explain electromagnetic field energy density and angular momentum density. Media Plane EM waves CSO 2.1: To understand the physical interpretation of electromagnetic waves in angular momentum density and angular momentum density and angular momentum density. 8 21 Not to be be compared the through vacuum and isotropic dielectric constant, wave impedance.	Angular Momentum	transformations.(K)			
UNIT 2 Plane EM waves For apply in column to application of of electromagnetic energy density application of of electromagnetic fields (U) CS0 1.8: To understand the applications.(U) UNIT 2 Plane EM waves through vacuum and isoropic dielectric media. (A) CS0 1.18: To apply in solving problems involving interfaces between different electromagnetic media.(A) CS0 1.11: To analyse propagation of electromagnetic waves.(A) CS0 1.11: To analyse propagation of electromagnetic waves.(A) CS0 1.12: To understand the behaviour of plane waves in different media.(A) CS0 1.13: To calculate and analyse the properties of electromagnetic waves.(D) CS0 1.12: To understand the behaviour of plane waves in different media.(A) CS0 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CS0 1.12: To calculate and analyse the properties of electromagnetic fields.(U) CS0 1.16: To explain electromagnetic fields.(U) CS0 1.15: To calculate and analyse the properties of electromagnetic fields.(U) CS0 1.16: To explain electromagnetic field energy for electromagnetic fields.(U) CS0 1.15: To calculate and and is application.(A) CS0 1.11: To explain electromagnetic energy density and angular momentum density. CS0 1.12: To understand the physical interpretation of electromagnetic waves in waves, refractive index and discorpic dielectric media.(A) S2 21 Not to be comparison from pane EM CS0 2.2: To analyse the behaviour of electromagnetic waves in istoropic dielectric constant, wave impedance. </th <th>Density.</th> <th></th> <th></th> <th></th> <th></th>	Density.				
UNIT 2 Plane EM waves CSO 1.18: To understand the application of Maxwell's equation to derive boundary conditions.(U) CSO 1.28: To apply in solving problems involving interfaces between different cleatromagnetic media.(A) CSO 1.10: To derive and solve wave equation for electromagnetic media.(A) CSO 1.10: To derive and solve wave equation of electromagnetic waves.(A) CSO 1.11: To analyse propagation of electromagnetic waves.(A) CSO 1.12: To understand the behaviour of plane waves in different media.(A) CSO 1.14: To understand CSO 1.14: To understand CSO 1.14: To understand Poyning theorem as a statement of conservation of energy for electromagnetic energy for electromagnetic energy density and its significance.(I)) CSO 1.16: To culatestand the physical interpretic energy density and its significance.(I) CSO 1.16: To understand the physical interpretic energy density and its significance.(I) CSO 1.16: To cusplain electromagnetic fields.(U) CSO 1.17: To explain electromagnetic energy density and its significance.(I) CSO 1.18: To understand the physical interpretian of electromagnetic energy density and its application of electromagnetic energy density and is significance.(I) CSO 2.17: To explain Electromagnetic energy density and angular momentum density. Media Propagation interpretic econstand the physical interpretation of electromagnetic media.(A) CSO 2.2: To analyse the behaviour of electromagnetic waves in and waves in pasing through isotropic dielectric					
UNIT2 Plane EM waves CSO 1.18: To understand the application of Maxwell's equation to derive boundary conditions.(U) CSO 1.19: To apply in solving problems involving interpretaces between different electromagnetic media.(A) CSO 1.10: To derive and solve wave equation for electromagnetic media.(A) CSO 1.11: To understand the behaviour of plane waves in different media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.14: To understand the behaviour of plane waves in different media.(L) CSO 1.14: To understand Poynting vector and its application.(A) CSO 1.15: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.15: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.16: To explain electromagnetic fields.(U) CSO 1.15: To calculate and poynting vector and its application.(A) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy density and its significance of plane electromagnetic media.(A) CSO 2.1: To understand the propersion of electromagnetic media.(A) CSO 2.2: To analyse the behaviour of electromagnetic waves in vacuum.(U) CSO 2.2: To analyse the behaviour of electromagnetic waves in trane of plane EM waves, refractive index and dielectric constant, wave impedance. SO 2.2: To analyse the behaviour of electromagnetic waves in vacuum.(U) Not to be of filted-vice constand, wave imediance. <th></th> <th>-</th> <th></th> <th></th> <th></th>		-			
UNIT 2 Plane EM waves CSO 1.12: To understand the physical interpretation of celectromagnetic media.(A) CSO 1.14: To analyse propagation of electromagnetic fields.(A) UNIT 2 Plane EM waves CSO 1.12: To understand the physical interpretation of electromagnetic media.(A) CSO 1.12: To understand the properties of electromagnetic media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic media.(A) CSO 1.14: To understand CSO 1.14: To understand the behaviour of plane waves in different media.(A) CSO 1.14: To understand Poyntig theorem as a statement of conservation of energy for electromagnetic media.(A) CSO 1.14: To understand Poyntig theorem as a statement of celectromagnetic nergy density and its significance.(U) CSO 1.14: To understand the physical interpretation of electromagnetic energy density and its significance.(U) CSO 1.14: To understand the physical interpretation of electromagnetic energy density and its significance.(U) CSO 1.14: To understand the physical interpretation of electromagnetic energy density and angular momentum density. 8 21 Not to be fundamental properties of plane electromagnetic mergy density more plane EM waves, nergy density more plane EM waves, nergy density. Nomentum density and angular momentum density. 8 21 Not to be fundamental properties of plane electromagnetic mergy density. Media waves, refractive index and dielectric constant, wave impedance. Propagation through CSO 2.1: To understand the ph					
UNIT 2 Plane EM waves CSO 1.9: To apply in solving interfaces 8 21 Not to For Mark Propagation of certormagnetic media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic neergy for electromagnetic neergy density and its significance.(U) CSO 1.16: To understand the physical interpretation of electromagnetic neergy density and its significance.(U) CSO 1.16: To understand the physical interpretation of electromagnetic neergy density and its significance.(U) CSO 1.16: To understand the physical interpretation of electromagnetic neergy density and its significance.(U) CSO 1.16: To understand the physical interpretation of electromagnetic neergy density and its significance.(U) CSO 2.1: To understand the physical interpretation of electromagnetic waves in dimensity and angular momentum density. 8 21 Not to be electromagnetic solving.(U) CSO 2.2: To analyse the bava or of plane EM waves in through vacuum and sortopic dielectric media.(A) CSO 2.3: To calculate and calculate and and interpret changes in wave 1 1					
UNIT 2 Plane EM waves CSO 1.9: To apply in solving problems involving interfaces 8 21 Not to be physical interpretation of electromagnetic media.(A) UNIT 2 Plane EM waves CSO 1.11: To analyse propagation of electromagnetic media.(A) CSO 1.12: To understand the behaviour of plane waves in different electromagnetic waves.(A) CSO 1.12: To understand the behaviour of plane waves in different media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic waves in different media.(A) CSO 1.14: To understand Poyning theorem as a statement of conservation of energy for electromagnetic energy density and its significance.(U) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.18: To understand the physical interpretation of electromagnetic energy density and its significance.(U) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.18: To understand the physical interpretation of electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy density in problem solving.(U) CSO 1.17: To explain electromagnetic energy density and its significance.(U) CSO 2.17: To understand the physical interpretation of electromagnetic energy density in group the solving.(U) 8 21 Not to be fundamental properties of plane electromagnetic waves in through vacuum and sortopic dielectric media.(A) SOS 2.2: To analyse the beaviour of electromagnetic waves in through vacuum, the sortopic dielectric media.(A) SOS 2.3: To cal					
UNIT 2 Plane EM waves CSO 1.10: To derive and solve wave equation for electromagnetic media.(A) CSO 1.10: To derive and solve wave equation for electromagnetic waves.(A) CSO 1.11: To analyse propagation of electromagnetic waves.(A) CSO 1.12: To understand the behaviour of plane waves. In different media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic waves in different media.(A) CSO 1.13: To calculate and analyse the properties of electromagnetic waves in different media.(A) CSO 1.13: To calculate and analyse the properties of fields.(U) CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic energy density and its significance.(U) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic energy density. momentum density and angular momentum density. 8 21 Not to be fundemental properties of plane electromagnetic waves in electromagnetic waves in electromagnetic waves in electromagnetic waves in through vacuum and is storipic dielectric media.(A) EM Wave Propagation in Unbunded Media Plane EM waves CSO 2.1: To understand the physical interpretation of electromagnetic waves in electromagnetic waves in electromagnetic waves in electromagnetic waves in through vacuum and isotropic dielectric constant. 8 21 Not to be findemental properties of plane Media Plane EM waves </th <th></th> <th>5</th> <th></th> <th></th> <th></th>		5			
UNIT 2 Plane EM waves EXSO 1.13: To analyse the basing of the electromagnetic energy density momentum density and angular momentum density and angular momentum density. 8 21 Not to be haviour of plane eM waves in different media.(A) UNIT 2 Plane EM waves CSO 1.13: To calculate and the physical interpretation of electromagnetic fields.(J) CSO 1.14: To understand the physical interpretation of electromagnetic waves in different media.(A) CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.17: To explain electromagnetic fields.(U) CSO 1.17: To explain electromagnetic energy density and angular momentum density and angular momentum density and angular momentum density. Media Plane EM waves CSO 2.1: To understand the physical interpretation of electromagnetic field energy density momentum density and angular momentum density. 8 21 Not to be fulled- mergy density and angular momentum density. Media Propagation in vaces CSO 2.3: To analyse the behaviour of electromagnetic waves in vaces were were were were modiac waves when passing through interpret changes in wave 8 <th></th> <th></th> <th></th> <th></th> <th></th>					
UNIT 2 EM MediaPlane EM waves through vacuum and isotropic dielectric media.(A)media.(A) CSO 1.10: To derive and solve wave equation for electromagnetic fields.(A) CSO 1.11: To analyse propagation of electromagnetic waves (A) CSO 1.12: To understand the behaviour of plane waves in dielectric media.(U) CSO 1.13: To calculate and analyse the properties of electromagnetic waves in different media.(A) CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic chergy density and its significance.(U) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.16: To explain electromagnetic fields.(U) CSO 1.17: To explain electromagnetic field energy density and angular momentum density.821Not to be filled- inUNIT 2 EM Wave MediaPlane EM waves media.(C) CSO 2.1: To understand the physical interpretation of electromagnetic field energy density, momentum density, and is significance.(U) CSO 2.1: To understand the physical interpretation of electromagnetic field energy density, momentum density, momentum density.821Not to be field energy density and angular momentum density.UNIT 2 EM Wave Propagation through conducting media.Plane EM waves mediance. Propagation through conducting media.CSO 2.1: To understand the behaviour of electromagnetic waves when passing through isotropic dielectric waves when passing through isotropic dielectric constant, wave impedance. Propagation through conducting media.821Not to be filled- in					
UNIT 2 Plane EM waves CSO 1.10: To derive and solve wave equation for electromagnetic fields.(A) CSO 1.11: To analyse propagation of electromagnetic media.(A) UNIT 2 CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.16: To explain electromagnetic fields.(U) CSO 1.13: To calculate and analyse the properties of electromagnetic fields.(U) CSO 1.16: To calculate Poynting to conservation of energy for electromagnetic fields.(U) CSO 1.16: To calculate Poynting to extra and its significance.(U) CSO 1.17: To explain electromagnetic field energy density, momentum density and its significance.(U) CSO 1.17: To explain electromagnetic field energy density, momentum density and angular momentum density and angular momentum density. To understand the physical interpretation of electromagnetic field energy density, momentum density. 8 21 Not to be heaviour of plane electromagnetic waves in through vacuum and isotropic dielectric media.(A) RM Wave propagation in ubmonded Media Plane EM waves CSO 2.1: To understand the physical interpretiation of plane electromagnetic waves in through vacuum and isotropic dielectric media.(A) 8 21 Not to be heaviour of electromagnetic waves in wave waves, when passing through wave waves when passing through wave waves when passing through wave waves when passing through isotropic dielectric constant, waves, were metacheavious of electromagnetic waves wing the behaviour of electromagnetic waves were media.(A)		e			
UNIT 2 Plane EM waves CSO 1.13: To acludate and analyse the propention of electromagnetic waves in different media.(A) Image: CSO 1.13: To acludate and analyse the propenties of electromagnetic waves in different media.(A) CSO 1.13: To calculate and analyse the propenties of electromagnetic waves in different media.(A) CSO 1.14: To understand CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic energy density and its significance.(U) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.17: To explain electromagnetic field energy density and its significance.(U) CSO 1.17: To explain electromagnetic field energy density and its significance.(U) VINIT 2 Plane EM waves CSO 2.1: To understand the physical interpretation of electromagnetic field energy density, momentum density. Wave, propagation in Unbounded Media CSO 2.1: To understand the physical interpretation of electromagnetic of plane electromagnetic media.(A) CSO 2.1: To understand the physical interpretation of electromagnetic waves in waves, refractive index and dielectric constant, waves when passing through waves mere factive index and dielectric constant, waves when passing through waves in through vacuum and isotropic dielectric media.(A) Propagation through conducting media. CSO 2.2: To calculate and isotropic dielectric electromagnetic waves in electromagnetic media.(A) Propagation through conducting media. CSO 2.3: To calculate and isotropic dielectric media.(A) Propagation thro					
UNIT 2 EM Mave Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric electromagnetic waves in dielectric media.(A)821Not to be be be be be cSO 1.13: To calculate and analyse the properties of electromagnetic statement of conservation of energy for electromagnetic fields.(U)821Not to be be be be conducting media,UNIT 2 EM MediaPlane EM waves through resultCSO 2.1: To understand the physical interpretation of electromagnetic energy density and its significance.(U)821Not to be be be in litered to the physical interpretation of electromagnetic waves in disoropic dielectric medium, transverse and disectric constant, wave swhen passing through waves when passing through isotropic dielectric interpretic media.(A)821Not to be be be in through result to the physical interpretion of electromagnetic waves in isotropic dielectric medium, transverse and dielectric constant, wave swhen passing through isotropic dielectric media.(A)21Not to be be through to any set the waves when passing through isotropic dielectric media.(A)					
UNIT 2 Plane EM waves CSO 1.13: To understand the behaviour of plane waves in dielectric media.(U) CSO 1.13: To calculate and analyse the properties of electromagnetic waves in different media.(A) UNIT 2 Plane EM waves CSO 1.14: To understand the polyning theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.14: To understand Poyning theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic field energy density and its significance.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density and its significance.(U) SO 1.16: To explain electromagnetic energy density and angular momentum density and angular momentum density. 8 21 Media Plane EM waves trough vacuum and isotropic dielectric media.(A) CSO 2.1: To understand the physical interpretation of electromagnetic field energy density and angular momentum density and angular momentup density and angular momentum density a					
UNIT 2 Plane EM waves EM Wave Propagation in Unbounded Media Plane EM waves INIT 2 Plane EM waves EM Waves, refractive index and ielectric constant, wave impedance. Propagation in Unbounded Media Plane EM waves Image: Section 100 propagation isotropic dielectric medium, transverse and dielectric constant, wave impedance. Propagation through conducting media, Soc 2.3: To analyse the propagation through isotropic dielectric media.(A) Image: Section 100 propagation through conducting media, Image: Section 100 propagation through isotropic dielectric media.(A)					
UNIT 2 Fropagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric media,rassverse media, rassverse media, rassvers		• • • •			
UNIT 2 Plane EM waves cSO 1.13: To calculate and analyse the properties of electromagnetic waves in different media.(A) CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.17: To explain electromagnetic energy density and its significance.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density and angular momentum density. Propagation in Unbounded Media Plane EM waves Media Plane EM waves and idelectric constant, waves, refractive index and dielectric constant, waves incorpic dielectric media.(A) CSO 2.1: To analyse the behaviour of electromagnetic media.(A) Wave, Propagation in Unbounded Media		E (
UNIT 2 Plane EM waves cSO 1.13: To calculate and analyse the properties of electromagnetic waves in different media.(A) CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.16: To calculate Poynting vector and its application.(A) CSO 1.17: To explain electromagnetic energy density and its significance.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density and angular momentum density. Propagation in Unbounded Media Plane EM waves Media Plane EM waves and idelectric constant, waves, refractive index and dielectric constant, waves incorpic dielectric media.(A) CSO 2.1: To analyse the behaviour of electromagnetic media.(A) Wave, Propagation in Unbounded Media		behaviour of plane waves in			
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric media.(A)analyse the properties of electromagnetic waves in different media.(A) CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density and angular momentum density.821Not to be filled- inUNIT 2 EM Wave Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric wave impedance. Propagation through conducting media,CSO 2.3: To calculate and increase in wave821Not to be filled- in					
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric media, (A)CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.16: To explain electromagnetic field energy density, momentum density.Image: Constant of the constant, waves, refractive index and dielectric constant, wave impedance.CSO 2.1: To understand the fundamental properties of plane electromagnetic waves in transverse and dielectric constant, waves when passing through isotropic dielectric media.(A)21Not to to to to to to to to to to to to to conducting media,CSO 2.1: To understand the fundamental properties of plane electromagnetic waves in to conducting media,821Not to<		CSO 1.13: To calculate and			
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric media, CSO 1.16: To calculate and conducting media, cSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density.821Not to be filled- inUNIT 2 EM MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,CSO 2.1: To understand the fundamental properties of plane electromagnetic waves when passing through isotropic dielectric media.(A)SOS 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)CSO 2.3: To calculate and interpret changes in waveII					
UNIT 2 EM MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 1.14: To understand Poynting theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density.821Not to be filled- inUNIT 2 EM MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave821Not to		-			
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,Poynting theorem as a statement of conservation of energy for electromagnetic fields.(U) CSO 1.15: To calculate Poynting vector and its application.(A) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U)Image: Complex of the state of t					
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM wave impedance. Propagation through conducting media,Plane EM waves em CSO 1.17: To understand the physical interpret changes in wave821Not to filled- isotropic dielectric isotropic dielectric mature of plane EM wave impedance.CSO 2.3: To calculate and interpret changes in wave821Not to					
UNIT 2 EM MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM MediaPlane EM mayes through conducting media,CSO 2.1: To analyse the behaviour of electromagnetic to calculate and conducting media,Not to to the conducting media, conducting media,UNIT 2 Propagation in Unbounded MediaPlane EM waves through conducting media, conducting media,CSO 2.1: To calculate and time problem solving.(U) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density and angular momentum density and angular momentum density and through conducting media, interpret changes in wave821Not to be motion (A)					
UNIT 2 EM Wave Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through CSO 2.2: To analyse the behaviour of electromagnetic electromagnetic media, croclectric media, croclectric media,Plane EM waves through vacuum and isotropic dielectric medium, transverse through vacuum and isotropic dielectric medium, transverse there there there the through vacuum and isotropic dielectric medium, transverse there there		•••			
UNIT 2 EM Propagation in UnboundedPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,Plane EM conducting media,Vector and its application.(Å) CSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density.821Not to be filled- inUNIT 2 EM Propagation in UnboundedPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves in electromagnetic waves in vacuum.(U)821Not to be filled- inCSO 2.2: To analyse the behaviour of electromagnetic wave impedance. Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave1in		e (
UNIT 2 EM Propagation in UnboundedPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive indexCSO 1.16: To explain electromagnetic energy density and its significance.(U) CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density.821Not to be filled- inUNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave821Not to		, e			
UNIT 2 Fropagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM waves, refractive index in United and dielectric constant, wave impedance.CSO 1.17: To explain electromagnetic energy density interpretation of electromagnetic field energy density, momentum density and angular momentum density.821Not to be filled- inUNIT 2 Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EMCSO 2.1: To understand the fundamental properties of plane electromagnetic waves in vacuum.(U)821Not to be filled- inCSO 2.2: To analyse the waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave11					
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,Plane EM waves through vacuum and isotropic dielectric through vacuum and through vacuum and th		-			
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM vacuum.(U)CSO 1.17: To explain electromagnetic energy densityin problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density.821Not to be filled- inUNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)Image: CSO 2.3: To calculate and interpret changes in wave					
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM vacuum. (U)CSO 2.1: To understand the physical interpretation of electromagnetic field energy density, momentum density.821Not to be filled- inUNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric mature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)1Not to be filled- inPropagation through conducting media,CSO 2.3: To calculate and interpret changes in wave111					
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.Problem solving.(U) CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density.821Not to be filled- inUNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)1ICSO 2.3: To calculate and interpret changes in waveCSO 2.3: To calculate and interpret changes in waveII		1			
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 1.18: To understand the physical interpretation of electromagnetic field energy density, momentum density and angular momentum density.821Not to be filled- in0UNIT 2 EM Wave Propagation isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)01111CSO 2.3: To calculate and interpret changes in waveCSO 2.3: To calculate and interpret changes in wave1111		• • • •			
UNIT 2 EM Propagation in Unbounded MediaPlane EM waves through vacuum and isotropic dielectric nature of plane EM vacuum.(U)CSO 2.1: To understand the fundamental properties of plane electromagnetic waves in vacuum.(U)821Not to be filled- inMediaPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media,CSO 2.3: To calculate and isotropic dielectric media.(A)111CSO 2.3: To calculate and interpret changes in waveCSO 2.3: To calculate and interpret changes in wave111					
UNIT 2 EM Propagation in UnboundedPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.1: To understand the fundamental properties of plane electromagnetic waves in vacuum.(U)821Not to be filled- inMediaPlane EM uses, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)1Not to be filled- inPropagation through conducting media,CSO 2.3: To calculate and interpret changes in wave111		physical interpretation of			
UNIT 2 EM Propagation in UnboundedPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.1: To understand the fundamental properties of plane electromagnetic waves in vacuum.(U)821Not to be filled- inMediaPlane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic isotropic dielectric media.(A)Image: CSO 2.3: To calculate and interpret changes in waveImage: CSO 2.3: To calculate and interpret changes in waveImage: CSO 2.3: To calculate and interpret changes in wave		electromagnetic field energy			
UNIT 2 EMPlane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.1: To understand the fundamental properties of plane electromagnetic waves in vacuum.(U)821Not to be filled- inMediaPlane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)821Not to be filled- inVacuum.(U) wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic isotropic dielectric media.(A)111Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave111		density, momentum density and			
EMWave Propagation in Unbounded Mediathrough vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.fundamental properties of plane electromagnetic waves in vacuum.(U)be filled- inMediaCSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)be filled- inPropagation through conducting media,CSO 2.3: To calculate and interpret changes in wavebe filled- filled- in					
Propagation in Unbounded Mediaisotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.electromagnetic waves in vacuum.(U)filled- inMediaisotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)filled- inPropagation through conducting media,CSO 2.3: To calculate and interpret changes in wavefilled- in			8	21	
in Unbounded Mediamedium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.vacuum.(U) CSO 2.2: To analyse the behaviour of electromagnetic waves when passing through isotropic dielectric media.(A)inPropagation through conducting media,CSO 2.3: To calculate and interpret changes in wavein	0				
Media International matrix (and verse) Vacuality (b) nature of plane EM CSO 2.2: To analyse the waves, refractive index behaviour of electromagnetic and dielectric constant, waves when passing through wave impedance. isotropic dielectric media.(A) Propagation through CSO 2.3: To calculate and conducting media, interpret changes in wave	-	0			
Inature of plane ENVCSO 2.2. To analyse thewaves, refractive indexbehaviour of electromagneticand dielectric constant,waves when passing throughwave impedance.isotropic dielectric media.(A)Propagation throughCSO 2.3: To calculate andconducting media,interpret changes in wave	,				111
and dielectric constant, wave impedance.waves when passing through isotropic dielectric media.(A)Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave	1	-			
wave impedance.isotropic dielectric media.(A)Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave		0			
Propagation through conducting media,CSO 2.3: To calculate and interpret changes in wave		1 0 0			
conducting media, interpret changes in wave	-				
	-				

		 1	
depth. Wave	CSO 2.4: To explain the		
propagation through	transverse nature of		
dilute plasma, electrical	electromagnetic waves.(U)		
conductivity of ionized	CSO 2.5: To apply transverse		
gases, plasma	waves properties in analysing		
frequency, refractive	polarization and related		
index, skin depth,	phenomena.(A)		
application to	CSO 2.6: To understand the		
propagation through	concept of refractive index and		
ionosphere.	dielectric constant in the context		
F	of electromagnetic wave		
	propagation.(U)		
	CSO 2.7: To calculate and		
	interpret refractive indices and		
	dielectric constants for different		
	materials(A)		
	CSO 2.8: To calculate and		
	understand wave impedance.(A)		
	CSO 2.9: To applywave		
	impedance concepts in analysing		
	the interaction of electromagnetic		
	waves with different medium.(A)		
	CSO 2.10: To understand the		
	challenges and characteristics of		
	electromagnetic wave propagation		
	through conducting media.(U)		
	CSO 2.11: To analyse electrical		
	conductivity, relaxation time and		
	skin depth in conducting		
	media.(A)		
	CSO 2.12: To calculate relaxation		
	time and skin depth.(A)		
	CSO 2.13: To apply the concept		
	in understanding the attenuation of		
	electromagnetic waves in		
	conducting media.(A)		
	CSO 2.14: To understand the		
	unique properties of		
	electromagnetic wave propagation		
	through dilute plasma.(U)		
	CSO 2.15: To explain the		
	electrical conductivity in ionized		
	gases. (U)		
	CSO 2.16: To apply conductivity		
	concept in understanding the		
	behaviour of electromagnetic		
	waves in ionized gases.(A)		
	CSO 2.17: To calculate and		
	understand the role of plasma		
	frequency in determining the		
	behaviour of electromagnetic		
	waves in plasma. (A)		

			1		
		CSO 2.18: To apply the concept			
		to analyse the propagation of			
		electromagnetic waves through the			
		ionosphere. (A) CSO 2.18: To understand the			
		practical implication of wave			
		propagation in the earths			
UNIT 3	Deres la marca d'idiana at	ionosphere.(U)	9	20	Not to
EM Wave in	Boundary conditions at	CSO 3.1: To apply Maxwell's	9	20	
Bounded	a plane interface between two media.	equations to derive boundary conditions at interfaces (A)			be filled-
Media	Reflection & Refraction	CSO 3.2: To calculate problems			in
	of plane waves at plane	relating to the interaction of			111
	interface between two	electromagnetic waves at a plane			
	dielectric media-Laws	interface between two media.(A)			
	of Reflection &	CSO 3.3: To understand the			
	Refraction. Fresnel's	fundamental principles governing			
	Formulae for	the reflection and refraction of			
	perpendicular & parallel	plane waves.(U)			
	polarization cases,	CSO 3.4: To apply the principles			
	Brewster's law.	to analyse the behaviour of			
	Reflection &	electromagnetic waves at			
	Transmission	interfaces between dielectric			
	coefficients. Total	media.(A)			
	internal re-flection,	CSO 3.5: To state and apply the			
	evanescent waves.	law of reflection and refraction for			
	Metallic reflection	plane waves at a dielectric			
	(normal Incidence).	interface.(K)			
		CSO 3.6: To derive the incident,			
		reflected and transmitted angles in			
		terms of wave vectors.(A)			
		CSO 3.7: To understand the			
		Fresnel's formula and calculate for			
		both perpendicular and parallel			
		polarization(U)			
		CSO 3.8: To understand			
		Brewster's law and its significance			
		of reflection and refraction and			
		determine the angle of incidence for which reflection is			
		minimized.(U) CSO 3.9: To calculate reflection			
		and transmission coefficients for			
		plane waves at dielectric interface			
		and interpret in terms of waves			
		amplitude and intensity.(A)			
		CSO 3.10: To understand the			
		conditions and consequences of			
		total internal reflection and			
		application of critical concepts in			
		the context of total internal			
		reflection.(U)			
L	L		1	1	 Page 7

UNIT 4 Polarization of Polarization Presnel's Herory Specific Polari						
UNIT 4 Polarization of Refraction. Polarization PolarizationDescription of Linear, Circular and Elliptical Polarization. Polarization Polarization PolarizationCSO 4.1: To describe and analyse interant cellectonagnetic waves when incident on a metallic suttation (U)1125Not to be filled- inUNIT 4 Polarization of Polarization Polarization PolarizationDescription of Linear, Circular and Elliptical polarization of E.M. Waves: Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction, Nicol Prism. Ordinary & extraordinary effectuation Plates: Quarter-Wave and Haff- Wave for anisotropic media.(A) CSO 4.3: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interfacte behaviour of eleatorin coefficient at the interfactive fight CSO 4.3: To apply Fresnel's formula to acalculare reflection and transmission coefficient at the interfactive fight. CSO 4.3: To apply Fresnel's formula to acalculare reflection and transmission coefficient at the interfactive fight. CSO 4.3: To apply Fresnel's formula to anisotropic media.(A) CSO 4.3: To apply Fresnel's formula in anisotropic media.(A) CSO 4.3: To coefficient at the interfactive fide and characteristics of unaxial any able of rotation. Refraction. Fresnel's light propagation in these crystals.(K) CSO 4.3: To cette behaviour of light propagation in uniaxial crystals. (K) CSO 4.3: To cette behaviour of light propagation in uniaxial crystals. (K) CSO 4.3: To cette behaviour of light propagation in uniaxial crystals. (K) CSO 4.3: To cette behaviour of light propagation in uniaxial cr			CSO 3.11: To explain evanescent			
UNIT 4 Polarization dDescription of Linear, Crucular and Elliptical Polarization. Polarization. Polarization. Polarization. Polarization. Polarization Media. Symmetric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Duble Refraction. Polarization. by Duble Refraction. Polarization. Refraction. Polarization by Duble Refraction. Production & detection of Plane. Circulary and Elliptically Polarization by Duble Refraction. Production & detection of Plane. Circulary and Elliptically Polarization by Duble Refraction. Production & detection of Plane. Circulary and Elliptically Polarization. CSO 4.3: To explain the behaviour of electromagnetic waves in anisotropic mathematics (L1) CSO 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic matrials.(L1) CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A) CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light (ID) CSO 4.1: To cexplain plane. (CSO 4.1: To cexplain plane. (CSO 4.1: To cexplain plane. (CSO 4.1: To cexplain plane. (CSO 4.1: To cexplain and ability to analyse the behaviour of light (ID) CSO 4.1: To cexplain and ad plarization fresnel's for cette concept such are of plane. Corenes/such and polarization by double refractive and the properise and application of plane. <b< th=""><th></th><th></th><th></th><th></th><th></th><th></th></b<>						
UNIT 4 PolarizationDescription of Linear, Circular and Elliptical polarizationCSO 4.1: To describe and analyse inear, circular and elliptical polarization of light.(K)1125Not to be filled- filled- filled- filled- inPolarization of elsevers Rotatory PolarizationDescription of Linear, circular and Elliptical polarization of light.(K) CSO 4.1: To describe and analyse polarization of light.(K) CSO 4.2: To understand the type of polarization of light.(K) CSO 4.3: To understand the type of polarization. (L) constraints of each type of polarization. Propagation in Uniaxial Crystals. Light Propagation in Uniaxial Crystals. CU25Not to be heritor to delectron and to delectric tensor and its symmetric nature in anisotropic materials.(U)1125Not to be filled- filled- filled- filled- to delectric tensor and its symmetric nature in anisotropic materials.(U)CSO 4.5: To apply Fresnel's formula to calculate reflection and erifaction Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization. Polarization of Plates: Cytoid Rotaton. Birts Laws for Rotatory Polarization of Fresnel's Theory of optical rotation. Experimental werification of Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental werification of Fresnel's Theory of optical rotation. Laurent's half- shade polarimeter.CSO 4.1: To understand the proparization devices such as Nicol prism.(U) CSO			internal reflection and apply the			
UNIT 4 Polarization of elsectromagnetic surface at normal incident on a metallic surface at normal incidence and apply the concept in practical situation. (U)1125Not to be polarizationPolarization of elsectromagnetic tic Waves; Nature of Dielectric Polarization Polarization in Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Nicol Prism. Ordinary Refraction. Polarization of Plane. Circulary and effraction. Polarization of Plane. Circulary and effraction. Polarization of Plane. Circulary and effraction. Prosenel's formula to calculater effection and refractive indices. Production & detection of Plane. Circulary and Eliptically Polarization. Of Plane. Circulary and Eliptically Polarized to Plane. Circulary and Eliptically Polarized Counter-Wave and Half- Wave and Half- Wave and Half- Wave for Anizer Statistics of unavisition plate: Compensator and its Uses. Analysis of Polarized tight Polarized to Plane. Circulariy and Eliptically Polarized Congensator and its Uses. Analysis of Polarized torion. Fresenel's formula in anisotropic media.(A) CSO 4.1: To understand the properties and characteristics of unavial and biaxial crystals. Cily transission coefficient at the interface between different compensator and its typer optical and biaxial crystals. (B) CSO 4.1: To understand the properties and characteristics of unavial and biaxial crystals. (A) CSO 4.1: To understand the phenomena of doubte refraction and polarized tight rostals.(U) CSO 4.1: To explain and as ordinary and extraordinary refractive indices.(K) CSO 4.1: To understand the phenomena of doubte refraction and polarized tight rostals. (Liptic t			concept in specific scenario.(U)			
UNIT 4Description of Linear, strutace at normal incidence and apply the concept in practical situation.(U)1125Not to be filled- inPolarization of Electromager tic Waves; Rotatory PolarizationDescription of Linear, circular and Elliptical polarization of light.(K) CSO 4.1: To understand the physical characteristics of each type of polarization.(U)1125Not to be filled- inPolarization tic Waves; Rotatory PolarizationPropagation of E.M. CSO 4.2: To understand the physical characteristics of each type of polarization.(U)1125Not to be to the be to understand the physical characteristics of each type of polarization.(U)Status PolarizationCSO 4.3: To explain the bechaviour of electromagnetic waves in anisotropic materials.(U)SO 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic materials.(U)SO 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic materials.(U)SO 4.6: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between differen unatial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)SO 4.9: To circular and the properties and characteristics of unaxial and biaxial crystals. (K) CSO 4.1: To explain and and polarization by double refraction in uniaxial crystals. (K) CSO 4.1: To explain and a ordinary and extraordinary refraction in uniaxial crystals. (K) CSO 4.1: To explain and and polarization by double refraction in uniaxial crystals. (K) CSO 4.1: To explain and familiarize with p			CSO 3.12: To understand the			
UNIT 4 Polarization of Electromager tic Waves; Rotatory PolarizationDescription of Linear, CSC0 4.1: To explain and polarization of liptical polarization.1125Not to be filled- filled- filled- inPolarization of Edwaves; Rotatory PolarizationDescription of Limear, circular and Elliptical polarization of light, (K) CSO 4.1: To explain and behaviour of lectromagnetic waves in anisotropic mate of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Compensator and its waves in anisotropic media.(A) CSO 4.5: To apply Fresnel's formula to calculate reflection and interface between different interface between different media.(A)So 4.6: To apply Fresnel's formula to analyse the behaviour of ability to analyse the behaviour of and polarization by double erstals.(U)So 4.8: To describe the poperties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of and polarization by double refraction in uniaxial crystals. (K) CSO 4.10: To explain and as ordinary und extraordinary refraction in uniaxial crystals. (K) CSO 4.11: To explain and and polarization in devices such as Nicol prism.(U) CSO 4.11: To explain and the principle and application of phaseNot tor polarization the principle and application of phase			behaviour of electromagnetic			
UNIT 4 Polarization of Electromagne it Waves; Rotatory PolarizationDescription of Linear, CSO 4.1: To describe and analyse (CSO 4.2: To understand the polarization of light, (K) (SO 4.2: To understand the physical characteristics of each type of polarization.(U)1125Not to be filled- inPolarization PolarizationPropagation of E.M. Waves; Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Disxial Crystals. Light Propagation in Uniaxial Crystals. Club Crystals. Club Crystals. Club CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different motain. Calculation of applic propagation in these crystals.(U)CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.6: To apply Fresnel's frectroin in uniaxial crystals. (K) CSO 4.1: To understand the proparization frage of rotation Experim						
UNIT 4 Polarization of Electromagne it Waves; Rotatory PolarizationDescription of Linear, CSO 4.1: To describe and analyse (CSO 4.2: To understand the polarization of light, (K) (SO 4.2: To understand the physical characteristics of each type of polarization.(U)1125Not to be filled- inPolarization PolarizationPropagation of E.M. Waves; Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Disxial Crystals. Light Propagation in Uniaxial Crystals. Club Crystals. Club Crystals. Club CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different motain. Calculation of applic propagation in these crystals.(U)CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.6: To apply Fresnel's frectroin in uniaxial crystals. (K) CSO 4.1: To understand the proparization frage of rotation Experim			surface at normal incidence and			
UNIT 4 Polarization of Electromagnet te Waves; Rotatory Polarization of Electro- Rotatory Polarization Description of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane. Circularly and elliptical propagation in Uniaxial Crystal. Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane. Circularly and elliptical Polarization. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane. Circularly and Elliptically Polarization. Formula to calculate reflection and elliptically Polarization. Eliptically Polarization. Forduction ad Haff Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization. Fresnel's fromalia to allouble effraction in uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals. U)1125Not to be filled- inCSO 4.5: To apply Fresnel's formula in anisotropic media.(U) CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)CSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K) CSO 4.11: To explain and familiarize with polarization double refractive indices.(K) CSO 4.11: To explain and familiarize with polarization double refraction of Fresnel's the			apply the concept in practical			
UNIT 4 Polarization of It waves: Notatory PolarizationDescription of Linear, Circular and Elliptical polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refraction Plates: Dyducion & detection of Plane. Circulary and Elliptically Polarized Light. Phase Restandator Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uess. Analysis of Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Francel's rotation. Laurent's half- shade polarimeter.CSO 4.1: To describe and analyse in an isotropic modia. (L) CSO 4.2: To understand the robe of lane. (A)1125Not to be he filled- in10Polarization. Formula. Uniaxial and Biaxial Crystals. Light Phase Retaraction. Polarization by Double Refraction. Optical Rotation Biot's Darized Light. Phase Retaration Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization for rotation. Calculation of angle of rotation. Experimental verification of Francel's rotation. Laurent's half- shade polarimeter.CSO 4.1: To describe the phenomena of double refraction and polarization by double refractive indices. (K) CSO 4.1: To oceplain plane, circularly and elliptically polarized light.(U) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.11: To explain and familiarize with polarization double refraction of prase.1111<						
PolarizationCircular and Elliptical polarizationlinear, circular and elliptical polarization of light.(K)be filled- filled- inPolarizationPropagation of E.M. Waves in Anisotropic Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Dubble Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circulary and Elliptically Polarization of Plane, Circulary and Elliptically Polarization of Plane, Circulary and Elliptically Polarization of Plane, Cattorn Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization. Rotatory Polarization. Biot's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Presnel's Theory. Specific rotation. Laurent's half- shade polarimeter.linear, circular and elliptical polarization of Plane, Circulary and tight propagiton in thes crystals. Light roportical rotation. Calculation of angle of rotation. Experimental verification of Presnel's Theory. Specific rotation. Laurent's half- shade polarimeter.linear, circular and elliptical polarization to softical rotation. CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)biasial crystals. (G)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.11: To explain and familiarize with polarization devices such as	UNIT 4	Description of Linear.		11	25	Not to
of Electromagne ic Waves; Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization Nicol Prism. Ordinary & extraordinary effaction. Polarization of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Haff- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization. Calculation Polarization. Calculation Polarizationpolarization of light.(K) CSO 4.2: To understand the role of the dielectric tensor and its symmetric nature in anisotropic materials.(U)filled- inCSO 4.3: To explain the behaviour of electromagnetic waves in anisotropic media.(U) CSO 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic metraislo.(U)CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.6: To apply Fresnel's formula in anisotropic media.(A)CSO 4.6: To apply Fresnel's formula in anisotropic media.(A)CSO 4.8: To describe the Optical Rotation. Bioty Polarization. Fresnel's Laws for Rotatory Polarization. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.1: To explain and familiarize with polarization for the concept such as ordinary and extraordinary refractive indices.(K) CSO 4.1: To explain plane, circularly and elliptically polarized light.(U)CSO 4.1: To explain and familiarize with polarization feractive indices.(K)CSO 4.1: To explain plane, cir						
Electromagne tic Waves; Rotatory Polarization Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Eliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization. Rotation. Biot's Laws for Rotatory Polarized Light CSO 4.2: To understand the mole cost 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic materials.(U) in CSO 4.4: To understand the role of Plane, Circularly and Eliptically Polarized Light. Phase CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A) CSO 4.6: To apply Fresnel's formula to anisotropic media.(A) CSO 4.7: To understand the poparized Light CSO 4.3: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K) CSO 4.8: To describe the phenomena of double refraction in uniaxial crystals. (K) CSO 4.11: To explain plane, circularly and eliptically polarized light.(U) CSO 4.11: To explain plane, circularly and eliptically polarized light.(U) CSO 4.11: To explain plane, circularly and eliptically polarized light.(U)		-	-			
it Waves; Rotatory Polarization Waves in Anisotopic Waves in Anisotopic Media. Symmetric Nature of Dielectric mathematical representation and physical characteristics of each type of polarization. (U) Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. CSO 4.3: To explain the behaviour of electromagnetic waves in anisotropic media.(U) Nicol Prism. Ordinary & extraordinary & extraordinary & extraordinary & extraordinary CSO 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic materials.(U) CSO 4.5: To apply Fresnel's formula to calculate reflection and Elliptically Polarized Light. Phase Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Usses. Analysis of Polarized Light CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) Rotatory Polarization. Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter. CSO 4.10: To explain plane, circularly and elliptically polarized light.(U) CSO 4.11: To explain and familiarize with polarization and polarization plates: theory. Specific rotation. Laurent's half- shade polarimeter. CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U)	Electromagne					
Kotatory PolarizationMedia. Symmetric in the of Delectricphysical characteristics of each type of polarization.(U)Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystal. SLight Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary effection & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization. Fresnel's formula to anisotropic media.(A)CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized LightCSO 4.5: To apply Fresnel's formula in anisotropic media.(A)Rotatory Polarized no. Ceso 4.6: To apply Sensel's formula in anisotropic media.(A)CSO 4.6: To apply Fresnel's formula in anisotropic media.(A)Rotatory Polarized Light rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific theory. Specific theory. SpecificCSO 4.11: To explain and familiarize with polarization fourtal cularts half- shade polarimeter.CSO 4.11: To explain and familiarize with polarization principle and application of phaseCSO 4.12: To nuderstand the principle and application of phase		1 0				
Polarization Nature of Dielectric Tensor. Fresnel's type of polarization.(U) CSO 4.3: To explain the behaviour of electromagnetic waves in anisotropic media.(U) Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. CSO 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic materials.(U) Nicol Prism. Ordinary & extraordinary refractive indices. CSO 4.5: To apply Fresnel's de extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Quarter-Wave and Half- Wave Plates. Babinet Compensator and its uses. Analysis of Polarized Light CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) Rotatory Polarization. Poptarized Light CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) Rotatory Polarized Light CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) Rotatory Polarization. Optical Rotation. Biot's Laws for Rotatory Polarization. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter. CSO 4.11: To explain plane, circularly and elliptically polarized light.(U) CSO 4.12: To understand the principle and application of phase CSO 4.12: To understand the principle and application of phase	Rotatory	1	1			
Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half Wave Plates. Babinet Compensator and its Uses. Analysis of Polarization. Fresnel's Theory of optical rotation. Laurent's half. Schot A: To understand the rotation. Laurent's half. shade polarimeter.CSO 4.3: To explain the behaviour of electromagnetic waves in anisotropic media. (U) CSO 4.4: To understand the role of the dielectric tensor and its uses. Analysis of Polarization. Fresnel's Theory of optical rotation. Laurent's half- shade polarimeter.CSO 4.3: To explain the behaviour of electromagnetic waves in anisotropic media. (A) CSO 4.5: To apply Fresnel's formula in anisotropic media. (A) CSO 4.6: To apply Fresnel's formula in anisotropic media. (A) CSO 4.7: To understand the properties and characteristics of unaxial and biaxial crystals and adploarization by double refactive indices. (K) CSO 4.12: To describe the phenomena of double refraction and polarization by double refactive indices. (K) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase	Polarization		1 5			
Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Dolarized Light Rotatory Polarization. Fortuction. Calculation of Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)Rotatory Polarization. Optical Rotation. Retardation of Fresnel's Polarized LightCSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)Rotatory Polarization: Optical Rotation. Totation. Calculation of rotation. Laurent's half- shade polarimeter.CSO 4.9: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these represtics. (K) CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase						
Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary & extraordina						
Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Rotatory Polarization. Eoptical Rotation. Ecsperimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.4: To understand the role of the dielectric tensor and its symmetric nature in anisotropic materials.(U)CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)CSO 4.6: To apply Fresnel's formula in anisotropic media.(A)CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)CSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K) CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase			e			
Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Rotatory Polarization. Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation tration. Calculation CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		• •	-			
Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Rotatory Polarization . Fressel's Theory of optical Rotation. Calculation of angle of rotation. Experimental verification of Fressel's theory. Specific rotation. Laurent's half- shade polarimeter.symmetric nature in anisotropic materials.(U) CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)Rotatory Polarization Optical Rotation. Totation. Calculation of angle of rotation.CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)CSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K) CSO 4.10: To explain plane, circularly and eltiptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase						
by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Laurent's half- shade polarimeter. by Double Refraction. Nicol Prism. Ordinary materials.(U) CSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A) CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U) CSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K) CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K) CSO 4.10: To explain plane, circularly and elliptically polarized light.(U) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase						
Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. PhaseCSO 4.5: To apply Fresnel's formula to calculate reflection and transmission coefficient at the interface between different media.(A)Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.5: To apply Fresnel's formula in anisotropic media.(A) CSO 4.5: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.10: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase			•			
& extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.formula to calculate reflection and transmission coefficient at the interface between different media.(A) CSO 4.6: To apply Fresnel's 		-				
refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter. Handia (A) CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U) CSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K) CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K) CSO 4.10: To explain plane, circularly and elliptically polarized light.(U) CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		2				
Production & detection of Plane, Circularly and Elliptically Polarized Light. Phaseinterface between different media.(A)Elliptically Polarized Light. PhaseCSO 4.6: To apply Fresnel's formula in anisotropic media.(A)Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized LightCSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization. Dotical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		•				
of Plane, Circularly and Elliptically Polarized Light. Phasemedia.(A)Retardation Plates: Quarter-Wave and Half Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized LightCSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.media.(A)CSO 4.12: To understand the principle and application of phaseCSO 4.6: To apply Fresnel's formula in anisotropic media.(A)CSO 4.12: To understand the principle and application of phaseCSO 4.12: To understand the principle and application of phase						
Elliptically Polarized Light. PhaseCSO 4.6: To apply Fresnel's formula in anisotropic media.(A)Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized LightCSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.6: To apply Fresnel's formula in anisotropic media.(A) CSO 4.7: To understand the propagation in these crystals and ability to analyse the behaviour of light propagation in these crystals.(U)CSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K)CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U)CSO 4.12: To understand the principle and application of phase						
Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Lightformula in anisotropic media.(A) CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.formula in anisotropic media.(A) CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.formula in anisotropic media.(A) CSO 4.12: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)CSO 4.10: CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase						
Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light Optical Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.7: To understand the properties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental Verification of Fresnel's theory. Specific theory. SpecificCSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K) CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		1 5				
Quarter-Wave and Half- Wave Plates. Babinetproperties and characteristics of uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Biot's Laws for RotatoryCSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K)Polarization. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific theory. SpecificCSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)CSO 4.11: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		-	-			
Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Lightuniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.uniaxial and biaxial crystals and ability to analyse the behaviour of light propagation in these crystals.(U)Wave Plates. Analysis of Polarized Lightuniaxial and biaxial crystals restriction by double refraction in uniaxial crystals. (K)Rotatory Polarization. Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.uniaxial and biaxial crystals and ability to analyse the behaviour of light.(U)CSO 4.12: To understand the principle and application of phaseCSO 4.12: To understand the principle and application of phase						
Compensator and its Uses. Analysis of Polarized Lightability to analyse the behaviour of light propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Biot's Laws for RotatoryCSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K)Polarized Light RotatoryCSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		-				
Uses. Analysis of Polarized Lightlight propagation in these crystals.(U)Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification Laurent's half- shade polarimeter.light propagation in these crystals.(U)Uses. Analysis of Polarized Light Rotatory Polarization: Polarization. Fresnel's rotation. Calculation of angle of rotation.light propagation in these crystals.(U)CSO 4.8: To describe the phenomena of double refraction and polarization by double refraction in uniaxial crystals. (K)CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase			-			
Polarized Lightcrystals.(U)Rotatory Polarization:Crystals.(U)Optical Rotation. Biot'sCSO 4.8: To describe theLaws for Rotatoryphenomena of double refractionPolarization. Fresnel'srefraction in uniaxial crystals. (K)Theory of opticalcSO 4.9: To cite the concept suchrotation. Calculation ofas ordinary and extraordinaryrefractive indices.(K)CSO 4.10: To explain plane,verification of Fresnel'scircularly and elliptically polarizedtheory. SpecificcSO 4.11: To explain andshade polarimeter.CSO 4.12: To understand the principle and application of phase		1				
Rotatory Polarization: Optical Rotation. Biot's Laws for RotatoryCSO 4.8: To describe the phenomena of double refraction and polarization by doublePolarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation.cSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase						
Optical Rotation. Biot's Laws for Rotatoryphenomena of double refraction and polarization by doublePolarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation.phenomena of double refraction and polarization by doubleExperimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		e				
Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation.and polarization by double refraction in uniaxial crystals. (K)CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)as ordinary and extraordinary refractive indices.(K)Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U)CSO 4.12: To understand the principle and application of phase		-				
Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation.refraction in uniaxial crystals. (K) CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		-	1			
Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.9: To cite the concept such as ordinary and extraordinary refractive indices.(K)CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U)CSO 4.12: To understand the principle and application of phase						
rotation. Calculation of angle of rotation.as ordinary and extraordinary refractive indices.(K)Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase			-			
angle of rotation.refractive indices.(K)ExperimentalCSO 4.10: To explain plane,verification of Fresnel'scircularly and elliptically polarizedtheory. Specificlight.(U)rotation. Laurent's half-CSO 4.11: To explain andshade polarimeter.familiarize with polarizationdevices such as Nicol prism.(U)CSO 4.12: To understand theprinciple and application of phaserefractive indices.(K)		• •	-			
Experimental verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.CSO 4.10: To explain plane, circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase						
verification of Fresnel's theory. Specific rotation. Laurent's half- shade polarimeter.circularly and elliptically polarized light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		-				
theory. Specific rotation. Laurent's half- shade polarimeter.light.(U)CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		-				
rotation. Laurent's half- shade polarimeter. CSO 4.11: To explain and familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase						
shade polarimeter. familiarize with polarization devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase		• •				
devices such as Nicol prism.(U) CSO 4.12: To understand the principle and application of phase			1			
CSO 4.12: To understand the principle and application of phase		shade polarimeter.	-			
principle and application of phase			– • • •			
			principle and application of phase			Page 7

		retardation plates.(U) CSO 4.13: To calculate and apply the properties of quarter-wave and half-wave plates.(A) CSO 4.14: To understand the Babinet compensator and its application in optical systems and solve problem. (U) CSO 4.15: To analyse the properties of polarized light. (A) CSO 4.16: To apply Fresnel theory in calculating the angle of rotation and specific rotation. (A) CSO 4.17: To design and conduct experiment to verify Fresnel's theory of optical rotation. And familiarize with experimental setups, including Laurent's half- shade polarimeter. (A)			
UNIT 5 Wave Guides	Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigen value equations. Phase and group velocity of guided waves. Field energy and Power transmission.	CSO 5.1: To understand the fundamental principles and components of planar optical waveguides.(U) CSO 5.2: To describe the structure and operation of planar waveguide system.(K) CSO 5.3: To analyse the behaviour of electromagnetic waves in planar dielectric waveguide.(A) CSO 5.4: To apply dielectric properties in the design and analysis of planar waveguide.(A) CSO 5.5: To understand the importance of boundary condition in waveguide design(U) CSO 5.6: To discuss the phase shift that occur during total internal reflection in waveguides and application of phase shift concept in waveguide analysis and design.(U) CSO 5.7: To derive and solve eigenvalue equation for guided modes in planar waveguide.(A) CSO 5.8: To understand the concept of phase and group velocity for guided waves in planar waveguides and application of velocity concept in analysing waveguide characteristics.(U) CSO 5.9: To calculate and	7	16	Not to be filled- in

understand the field energy associated with waves and application of field energy concept in waveguide analysis.(A) CSO 5.10: To calculate power transmission characteristics in planar waveguides and proficiency in analysing power distribution and losses in waveguide	
systems.(A)	

- 1. D.J. Griffiths, Introduction to Electrodynamics, 3rd Ed., Benjamin Cummings, 1998.
- 2. M.N.O. Sadiku, *Elements of Electromagnetics*, Oxford University Press ,2001.
- 3. T.L. Chow, Introduction to Electromagnetic Theory, Jones & Bartlett Learning, 2006.
- 4. M.A.W. Miah, *Fundamentals of Electromagnetics*, Tata McGraw Hill ,1982.
- 5. R.S. Kshetrimayun, *Electromagnetic field Theory*, Cengage Learning, 2012.
- 6. Willian H. Hayt, *Engineering Electromagnetic*, 8th Edition, McGraw Hill, 2012.
- 7. G. Lehner, *Electromagnetic Field Theory for Engineers & Physicists*, Springer ,2010.

Semester	VI
Paper Code	PHC 6.3(P)
Paper Title	Electromagnetic Theory
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory objective:

Establishes the basic principle of electrical and electronic circuits.

- 1. To verify the law of Malus for plane polarized light.
- 2. To determine the specific rotation of sugar solution using Polarimeter.
- 3. To analyze elliptically polarized Light by suitable method (using a Babinet's compensator).

4. To study the polarization of light by reflection and determine the polarizing angle and hence determine the refractive index of the material.

- 5. To verify the Stefan's law of radiation and to determine Stefan's constant.
- 6. To determine the Boltzmann constant using V-I characteristics of PN junction Diode

- 1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971.
- 2. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, Heinemann Educational Publishers ,reprinted 1985.
- 3. I.Prakash& Ramakrishna , A Text Book of Practical Physics , 11th Ed., Kitab Mahal ,2011.
- 4. G. Lehner, *Electromagnetic Field Theory for Engineers & Physicists*, Springer, 2010.

Semester	VI
Paper Code	PHC 6.4
Paper Title	Statistical Mechanics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs) The following are the Course Objectives (COs) for the paper Statistical Mechanics:

CO 1:	To make the students aware of the importance of Classical statistics.
CO 2:	To make the students aware in using Classical theory to explain radiation and the drawbacks involved in Classical theory of radiation.
CO 3:	To create an understanding among the students about the need for quantum theory of radiation.
CO 4:	To introduce students in the importance of Bose Einstein statistics.
CO 5:	To assist the students in the understanding of Fermi- Dirac statistics

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1	Macrostate &	CSO 1.1: To explain the concept of	13	24	Not to
Classical	Microstate,	Macrostate and Microstate. (U)			be
Statistics	Elementary Concept				filled-
	of Ensemble, Phase				in
	Space, Entropy and	(K)			
	Thermodynamic	CSO 1.3: To explain phase space			
	Probability, Maxwell-	(U)			
	Boltzmann	CSO 1.4: To discuss entropy and			
	Distribution Law,	thermodynamic probability. (U)			
	Partition Function,	CSO 1.5: To derive the Maxwell-			
	Thermodynamic	Boltzmann distribution law. (A)			
	Functions of an Ideal	CSO 1.6: To derive the partition			
	Gas, Classical				
	Entropy Expression,				
	Gibbs Paradox,	5			
	Sackur Tetrode				
	equation, Law of				
	Equipartition of				
	Energy (with proof) –				
	11	Paradox. (K)			
	Specific Heat and its				
	Limitations,	Tetrode equation. (A)			
	Thermodynamic	CSO 1.11: To explain law of			
	Functions of a Two-				
	Energy Levels	11 5			
	System, Negative				
	Temperature.	heat. (A)			

UNIT 2 Classical Theory of Radiation	Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe.	thermal radiation. (K) CSO 2.2: To explain Blackbody radiation. (U) CSO 2.3: To explain pure temperature dependence. (U) CSO 2.4: To describe Kirchoff's law. (K) CSO 2.5: To explain Stefan- Boltzmann law. (U) CSO 2.6: To derive the	8	19	Not to be filled- in
UNIT 3 Quantum Theory of Radiation	Spectral Distribution of Black Body Radiation. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh- Jeans Law, (3) Stefan- Boltzmann Law, (4) Wien's Displacement law from Planck's law.	CSO 3.1: To explain the spectral distribution of Black Body radiation. (U) CSO 3.2: To explain Plank's	10	23	Not to be filled- in

		CSO 3.8: To explain Gauss Seidel			
		method and its derivative. (U)			
UNIT 4	B-E distribution law,	CSO 4.1: To derive Boltzmann-	7	17	Not to
Bose-Einstein	Thermodynamic	Einstein statistics. (A)			be
Statistics	functions of a strongly	CSO 4.2: To examine			filled-
	Degenerate Bose Gas,	thermodynamic functions of a			in
	Bose Einstein	strongly degenerate Bose Gas. (A)			
	condensation,	CSO 4.3: To explain Bose Einstein			
	properties of liquid He	Condensation. (U)			
	(qualitative	CSO 4.4: To list properties of			
	description),	liquid Helium. (K)			
	Radiation as a photon	CSO 4.5: To discuss radiation as			
	gas and	photon gas. (U)			
	Thermodynamic	CSO 4.6: To explain			
	functions of photon	thermodynamic functions of photon			
	gas. Bose derivation	gas. (U)			
	of Planck's law.	CSO 4.7: To examine Bose			
		derivation of Plank's law. (A)			
UNIT 5	Fermi-Dirac	CSO 5.1: To derive Fermi Dirac	7	17	Not to
Fermi-Dirac	Distribution Law,	× /			be
Statistics	Thermodynamic	CSO 5.2: To examine the			filled-
	functions of a				in
	Completely and				
	strongly Degenerate				
	Fermi Gas, Fermi	85			
	Energy, Electron gas	(A)			
	in a Metal, Specific	CSO 5.4: To explain electron gas			
	Heat of Metals,	in a metal. (U)			
	Relativistic Fermi gas,	CSO 5.5: To elaborate on			
	White Dwarf Stars,	e v			
	Chandrasekhar Mass	CSO 5.6: To describe white dwarf			
	Limit.	stars. (K)			
		CSO 5.7: To describe			
		Chandrashekhar mass limit. (K)			

- 1. R.K. Pathria, Butterworth Heinemann , Statistical Mechanics, 2nd Ed., Oxford University Press ,1996.
- 2. F. Reif, Statistical Physics, Berkeley Physics Course, Tata McGraw-Hill ,2008.
- 3. S. Lokanathan and R.S. Gambhir, Statistical and Thermal Physics, Prentice Hall ,1991.
- 4. Francis W. Sears and Gerhard L. Salinger, *Thermodynamics, Kinetic Theory and Statistical Thermodynamics*, Narosa, 1986.
- 5. Carl S. Helrich, Modern Thermodynamics with Statistical Mechanics, Springer, 2009,
- 6. R.H. Swendsen, An Introduction to Statistical Mechanics & Thermodynamics, Oxford Univ. Press ,2012.

Semester	VI
Paper Code	PHC 6.4(P)
Paper Title	Statistical Mechanics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

With the exposure in computer programming and computational techniques, the student will be in a position to perform numerical simulations for solving the problems based on Statistical Mechanics.

Use C/C++/Scilab for solving the problems based on Statistical Mechanics like

- 1. Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.
- 2. Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases
- 3. Plot Maxwell-Boltzmann distribution function versus temperature.
- 4. Plot Fermi-Dirac distribution function versus temperature.
- 5. Plot Bose-Einstein distribution function versus temperature.

- 1. K.E.Atkinson, *Elementary Numerical Analysis*, 3rd Edn., Wiley India Edition, 2007.
- 2. R.K. Pathria, Butterworth Heinemann, Statistical Mechanics, 2nd Ed., 1996, Oxford University Press.
- 3. Thermodynamics, *Kinetic Theory and Statistical Thermodynamics*, Narosa ,1986,.
- 4. Francis W. Sears and Gerhard L. Salinger, *Modern Thermodynamics with Statistical Mechanics*, Carl S. Helrich, Springer, 2009.
- **5.** M. Affouf, *Scilab by example*: ISBN: 978-1479203444 , 2012.
- 6. L.M.Surhone, Scilab Image Processing, Beta script Pub., ISBN: 978- 6133459274,2010.

_____ _ _ _ _ _ _ _ _ _ _ _ _ _

Semester-VII

Semester	VII
Paper Code	PHC 7.1
Paper Title	Astronomy and Astrophysics
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Astronomy and Astrophysics:

CO 1:	To create an awareness among the students on Astronomical Scales and the Basic
	concepts of positional astronomy
CO 2:	To instill the idea of Astronomical techniques and Physical principles relating to astronomy
CO 3:	To let the students understand the concepts of The sun, The solar family and the Stellar spectra and it classifications
CO 4:	To make the students aware about the galaxy The milky way and its structure
CO 5:	To assist the students in understanding Large scale structure & the expanding universe

Unit &	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Astronomical Scales:	CSO 1.1: To define various	14	23	Not
Astronomi	Astronomical Distance, Mass	astronomical scales like			to be
cal Scales	and Time, Scales, Brightness,	distance, mass, time,			filled
and Basic	Radiant Flux and Luminosity, Measurement of	brightness, radiant flux,			-in
concepts	Astronomical Quantities	luminosity, etc. (K)			
of	Astronomical Distances,	CSO 1.2: To explain on			
positional	Stellar Radii, Masses of	radiant flux and luminosity			
astronomy	Stars, Stellar Temperature.	and derive its relationship			
	Basic concepts of positional				
	astronomy: Celestial Sphere,	CSO 1.3: To discuss on the			
	Geometry of a Sphere,	various astronomical			
	SphericalTriangle,AstronomicalCoordinate	quantities like radii, mass,			
	Systems, Geographical	temperature, etc. (K+U)			
	Coordinate Systems, Horizon	CSO 1.4: To define and			
	System, Equatorial System,	explain on the idea of celestial			
	Diurnal Motion of the Stars,	sphere and its relevance in			
	Conversion of Coordinates.	astronomy (K+U)			
	Measurement of Time,	CSO 1.5: To explain on the			
	Sidereal Time, Apparent	idea of geometry of sphere			
	Solar Time, Mean Solar Time, Equation of Time,	and Spherical triangle(K+U)			
	Calendar. Basic Parameters	CSO 1.6: To explain on the			
	of Stars: Determination of	coordinate systems (A+U)			
	Distance by Parallax Method;	CSO 1.7: To define Diurnal			
	Brightness, Radiant Flux and	motion of stars (K)			
	Luminosity, Apparent and	CSO 1.8: To explain in detail			
	Absolute magnitude scale,	about diurnal motion and its			
	Distance Modulus;	applications (A+U)			
	Determination of				
	Temperature and Radius of a	conversion of coordinate			

UNIT 2 Astronomi cal	star. star. Astronomical techniques: Basic Optical Definitions for	systems in astronomy (U+A) CSO 1.10: To discuss on the measurement of time in astronomy (K+U+A) CSO 1.11: To discuss and explain on the determination of distance in astronomy using methods like parallex method, radiant and luminosity etc (U+A) CSO 1.12: To explain on measurement of distance using distance modulus method, temperature and radius of stellar objects. (U+A) CSO 2.1: To define the various optical terms in astronomy (K)	11	19	Not to be filled
cal techniques and Physical principles	Astronomy(Magnification Light Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space Telescopes, Detectors and Their Use with Telescopes(Types of Detectors, detection Limits with Telescopes). Physical principles: Gravitation in Astrophysics (Virial Theorem, Newton versus Einstein), Systems in Thermodynamic Equilibrium.	 CSO 2.2: To define telescope (K) CSO 2.3: To explain on the types of telescopes (U) CSO 2.4: To discuss on the various uses and importance of telescope in astronomy (U+A) CSO 2.5: To define telescope mounting (K) CSO 2.6: To explain on the different types of mounting and its advantages (U+A) CSO 2.7: To define detectors (K) CSO 2.8: To explain on the advantage of using detectors with telescope (K+U) CSO 2.9: To understand the gravitation using Virial theorem, Newton and Einstein development (U+A) CSO 2.10: To introduce the idea of Systemsin Thermodynamic Equilibrium. 			-in
UNIT 3 The sun, Stellar spectra and classificati on Structure	Thesun:SolarParameters,SolarPhotosphere,SolarAtmosphere,Chromosphere.Chromosphere.Corona,SolarAdageto-hydrodynamics.Helioseismology.The solar family:SolarSolar	(U) CSO 3.1: To define Sun(K) CSO 3.2: To explain on the structure of the sun(U) CSO 3.3: To discuss of the atmosphere of the sun (U) CSO 3.4: To discuss on the various activity and the magneto-hydrodynamics of the sun (K+U)	11	19	Not to be filled -in

	Figures, Origin of the Solar System: The Nebular Model, Tidal Forces and Planetary Rings. Stellar spectra and classification Structure :Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram.	CSO 3.5: To Discuss on the facts and figures of the solar system (K+U) CSO 3.6: To discuss on the origin of the solar system Using various models (U+K) CSO 3.7: To explain on solar spectra and classification structure using various methods and parameters CSO 3.8: To explain HR- diagram and its importance			
UNIT 4 The milky way	The milky way: Galaxy Morphology, Hubble's Classification of Galaxies Basic Structure and Properties of the Milky Way, Nature of Rotation of the Milky Way(Differential Rotation of the Galaxy and Oort Constant, Rotation Curve of the Galaxy and the Dark Matter, Nature of the Spiral Arms),Stars and Star Clusters of the Milky Way, Properties of and around the Galactic Nucleus.	CSO 4.1: To define milky way and get acquainted to facts and figures of the galaxy(K) CSO 4.2: To discuss the morphology of milky way galaxy in detail(U) CSO 4.3: To study the different types of galaxy using Hubble's classification (K+U) CSO 4.4: To discuss the structure and properties of milky way galaxy and its rotation. (K+U) CSO 4.5: To define and explain on star clusters of the milky way galaxy(U) CSO 4.6: To discuss on the property around the galactic nucleus (U)	13	21	Not to be filled -in
UNIT 5 Large scale structure & expanding universe:	Large scale structure &expanding universe: Cosmic Distance Ladder (An Example from Terrestrial Physics, Distance Measurement using Cepheid Variables), Hubble's Law (Distance- Velocity Relation), Clusters of Galaxies (Virial theorem and Dark Matter).	CSO 5.1: To introduce on the large scale structures of the universe(K) CSO 5.2: To explain on the cosmic distance ladder (U) CSO 5.3: To explain on the expanding universe with the help of Hubble's law (K+U) CSO 5.4: To study on the clusters of galaxies in the universe and its properties(K+U) CSO 5.5: To discuss on the idea of dark matter and dark energy(U)	11	18	Not to be filled -in

- 1. M. Zeilik and S.A. Gregory ,*Introductory Astronomy and Astrophysics*, 4th Edition, Saunders College Publishing.
- 2. H. Karttunen *Fundamental of Astronomy* (Fourth Edition), et al. Springer.

- 3. K.S. Krishnasamy, 'AstroPhysics a modern perspective,' Reprint, New Age International (p) Ltd, New Delhi,2002.
- 4. Baidyanath Basu, 'An introduction to Astro physics', Second printing, Prentice Hall of India Private limited, New Delhi,2001.

Semester	VII
Paper Code	PHC 7.2
Paper Title	Material Science and Nano Technology
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Material Science and Nano Technology:

CO 1:	To Introduce the concept and structure of materials and their properties.
CO 2:	To instill the idea of film deposition techniques among the students.
CO 3:	To let the students understand the concept of applications of coatings as finishes for various substrates.
CO 4:	To Introduce to the concept of Nanomaterials and its properties.
CO 5:	To assist the students in understanding Carbon based Nanomaterials.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1 Introduction and structure of materials and study of properties of materials	Structure of atoms- Quantum states-Atomic bonding in solids- binding energy- interatomic spacing - variation in bonding characteristics - Single crystals — polycrystalline- Non crystalline solids- Imperfection in solids- Schmidt's law -Surface imperfection- grain size distribution	CSO 1.1: To discuss about the basic structure of atoms. (U) CSO 1.2: To illustrate on Atomic quantum state, atomic bonding.(U+A)	Hours 14	23	Not to be fille d-in
UNIT 2 Film deposition techniques	Physical method of film deposition, Sputter deposition of thin films and coatings by RF, MF, DC, Magnetron, Pulsed laser, Ion beam, Ion implantation;	CSO 2.1: To define and discuss on deposition. (K+U) CSO 2.2: To illustrate on the physical methods of film deposition by using the methods mentioned.	14	23	Not to be fille d-in

				1	<u>г</u>
	film deposition- electroplating, electro less plating, electro polishing, electroforming, chemical vapour deposition(CVD) and plasma enhanced CVD; Other techniques- Langmuir Blodgett,	deposition. (K+U) CSO 2.4: To explain on the chemical deposition method by using the techniques mentioned .(U+A) CSO 2.5: To discuss about some other techniques like Langmuir Blodgett, Spin coating ,etc. (A) CSO 2.6: To discuss on the various techniques that brought transformation in thin films .(U+A) CSO 2.7: To compare and			
		contrast the various			
UNIT 3 Applications of coatings as finishes for various substrates	UV resistant, Atomic oxygen resistant and antistatic coating; Optical coatings for thermal control application-thermal barrier and thermal protective coating; Self- healing coating, Testing and evaluation of coatings	UV resistant coatings and its advantages. (A) CSO 3.3: To explain on Atomic oxygen resistant coating and its advantages and disadvantages .(U+A) CSO 3.4: To illustrate on antistatic coating and it merits and demerits. (U+A) CSO 3.5: To discuss on thermal barrier and thermal protective coating and its merits and demerits .(U+A) CSO 3.6: To explain Self- healing coating a its merits and demerits. (U+A) CSO 3.7: To discuss on the various and evaluate its efficiency. (A)	12	17	Not to be fille d-in
UNIT 4	Brief history and	CSO 4.1: To define	12	20	Not
Introduction to Nanomaterials and properties	overview of nano materials; Synthesis techniques: Top down and Bottom up approaches (High energy ball milling, Sol-gel process, Chemical bath deposition, Plasma Arc discharge, Chemical	nanomaterials. (K) CSO 4.2: To discuss about nanomaterials and its properties.(U) CSO 4.3: To discuss on the synthesis techniques of nanomaterials using the mentioned approaches. (A) CSO 4.4: To discuss on the characterization tools			to be fille d-in

	Sputtering, LaserPulsed deposition, MolecularMolecularbeam epitaxy).Characterization of Nanomaterials.	CSO 4.5: To compare and contrast the various techniques and evaluate its efficiency. (U+A)			
UNIT 5 Carbon based Nano materials	Nature of carbon bond, Carbon structures, Small carbon clusters; Introduction to Synthesis and Applications of Fullerenes, Graphene and Carbon nanotubes.	CSO 5.1: To define carbon based nanomaterials. (K) CSO 5.2: To discuss on how carbon based nano material is different from normal nanomaterial. (U) CSO 5.3: To discuss on the nature of carbon bond. (U+A) CSO 5.4: To study the structure of carbon and its importance. (U+A) CSO 5.5: To discuss on clusters of carbon. (U) CSO 5.6: To discuss on this synthesis of fullerene, graphene and carbon nanotube .(K+U+A) CSO 5.7: To explain about the application of fullerene, graphene and carbon nanotubes. (A)	8	17	Not to be fille d-in

- 1. W.D.Callister, *Materials Science and Engineering*: An Introduction ,John Wiley & Sons, 2007.
- 2. C.Kittel, Introduction to Solid State Physics, Wiley Eastern Ltd, 2005.
- 3. V.Raghavan, Materials Science and Engineering: A First Course, Prentice Hall, 2006.
- 4. K.L.Chopra, *Thin Film Phenomena*, Mc Graw Hill, 1979.
- 5. M.H.Francombe,S.M.Rossnagel,A.Ulman,*Frontiers* of *Thin Film Technology*,Vol.28,Academic press,2001.
- 6. R.F.Bunshah, *Deposition Technologies for Films and Coatings*, Noyes Publications, New Jersey, 1982.
- 7. F.A.Lowenheim, *Electro plating*, Mc Graw Hill, NewYork, 1978.

Semester	VII
Paper Code	RM
Paper Title	Research Methodology
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Research Methodology**:

CO 1:	To make the students aware of the process of scientific research.
CO 2:	To aid the students in the understanding of the ethical aspects of the research.
CO 3:	To guide the students on how to formulate research problems.
CO 4:	To inculcate and create interest among students in the importance of data analysis.
CO 5:	To assist the students in developing communication technique in the field of research.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 The process of scientific research	 The student will Refer to journals, conferences, books, magazines and any relevant papers related to their area of research. Understand and identify the bias, theoretical position and evidence produced, compare ideas and concepts. write a summary and answer to questions related with the epistemology of science and the scientific methods in Physics. It will be assessed on the ability to synthesize, the accuracy in the answers and the presentation and discussion in class. 	CSO 1.1: To explain to students on the importance of referring to journals, conferences, books, magazines and relevant papers related to their area of research. (U) CSO 1.2: To breakdown the reading materials and thus help the students identify the bias, theoretical position and evidences provided. As a result, they realise how to compare ideas and concepts related to their research. (A) CSO 1.3: To outline the important points in the reading materials and help the student elaborate the answer related to the questions. (K)	10	17	Not to be filled- in
UNIT 2 Ethical aspects of the research	 The student will Analyse a scientific fraud and discuss its key points. Maintain personal and 	CSO 2.1: To clarify to students about the pitfall in plagiarising someone else's	10	17	Not to be filled- in

		1 1 1 1			[
	internal code of conduct. It will be assessed on the ability to maintain the ethics in a research work.	work and how it will affect the credibility of our research. To make the students aware of scientific fraud and its key points. (U) CSO 2.2: To aware the students in maintaining personal and internal code of conduct. (A)			
UNIT 3 Formulation of research problems	 The student will have to Define and formulate the research problem - Selecting the problem, necessity of defining the problem Importance of literature review in defining a problem-Critical literature review, Identifying gap areas from literature review Develop a working hypothesis It will be assessed on the basis of how accurately the problem and research gap has been identified. 	conduct. (A)CSO3.1:Toassessthestudentsindefiningandformulatingtheresearchproblems-selectingtheproblem. (A)CSOCSO3.2:Toexplaintostudentsaboutthe importance ofliteraturereviewindefiningaproblem-criticalliteraturereview,identifyinggapareasfromliteraturereview.(U)CSO3.3:CSO3.3:Todevelopaworkinghypothesis. (A)	12	20	Not to be filled- in
UNIT 4 Data Analysis	 The student will have to Execute the research Observe and collect data Specify methods used to collect data Extrapolate/scale data for validation Editing and coding of data, tabulation, graphic presentation of data, cross tabulation, testing of hypothesis 	CSO 4.1: To support the students in executing the research. (A) CSO 4.2: To demonstrate to students to observe and collect data. (A) CSO 4.3: To enumerate the methods used to collect data. (K)	14	23	Not to be filled- in

	It will be assessed on the relevance	СЅО 4.4: То		[
	and suitability of the calls made to	verify the			
	tackle the problems identified	extrapolated/scale			
	tackie the problems identified	-			
		data. (A) CSO 4.5: To			
		explain editing			
		and coding of			
		data, tabulation,			
		graphic			
		presentation of			
		data, cross			
		tabulation, testing			
		of hypothesis.			
		(U)			
UNIT 5	The students will have to	CSO 5.1: To	14	23	Not
Communication	• Produce a research paper in	arrange a			to be
techniques	the format appropriate for a	research paper in			filled-
	research work.	the format			in
	• Typed using latex software.	appropriate for a			
		research work.			
	It will be assessed on	(A)			
	• The design and preparation of				
	the paper according to the	introduce to			
	requirements of the research	students' latex			
	work.	software to type			
	• The clarity in the exposition	the research			
	of ideas and the correctness	paper. (K)			
	in the use of the English				
	language.				
	• The abstract and the				
	conclusions.				
	• The use of adequate				
	bibliographic references.				
	• The use of relevant figures				
	and / or tables.				
	This work will have to be defended				
	in public with the help of a				
	PowerPoint type presentation.				
	It will be assessed on				
	• The order and clarity of the				
	presentation.				
	P				

Semester-VIII

Semester	VIII
Paper Code	PHC 8.1
Paper Title	Photonics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Photonics**:

CO 1:	To make the students aware of the basic principles of lasers.
CO 2:	To aid the students in the understanding of laser system and help them to understand its applications.
CO 3:	To create an understanding among the students, the non-linear optics basic principles.
CO 4:	To inculcate and create interest among students in the understanding of fibre optics and its applications.
CO 5:	To assist the students in the understanding of Fibre Optic Components and Sensors.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1 Basic principles of lasers.	Spontaneous and stimulated emission – Coherence - Population inversion - Einstein coefficients – Pumping schemes – Threshold condition for laser oscillation – Losses and Q-factor –Principles and working mechanisms of Ruby, Nd:YAG, Ar ion, CO2 and semiconducting lasers – Applications	Objective (CSOs) CSO 1.1: To define and explain spontaneous and stimulated emission. (K) CSO 1.2: To explain coherence of laser light.(U) CSO 1.3: To explain the mechanism behind population inversion. (U) CSO 1.5: To explore Einstein coefficient and explain its practical applications. (A) CSO 1.6: To discuss pumping scheme. (U) CSO 1.7: To understand the threshold condition for laser oscillation. (U) CSO 1.8: To examine the concept of losses and Q- factor of lasers. (A) CSO 1.9: To explain the principles and determine the working mechanisms of Ruby lasers, Nd:YAG,	9	20	Not to be filled-in

	- 1	1	
Ar ion, CO2 and			
semiconducting lasers. (U)		
and (A)			
UNIT 2 General description, CSO 2.1: To outline		20	Not to be
LASER Laser structure, Single general description o	f		filled-in
systems and mode laser theory, lasers systems. (K)			
Applications Excitation mechanism CSO 2.2: To explain	n		
andworking of: CO2, Laser structure. (U)			
Nitrogen, Argon ion, CSO 2.3: To explain	n		
Excimer, X-ray, Free- single mode laser theory	<i>'</i> .		
electron, Dye, (U)			
Nd:YAG,Alexanderite CSO 2.4: To explain	n		
and Ti:sapphire lasers, Excitation mechanism and			
Diode pumped solid working of different type	s		
state laser, Optical of lasers: CO2, Nitrogen			
parametricoscillator Argon ion, Excimer, X			
(OPO) lasers. Optical ray, Free-electron, Dye			
amplifiers- Nd:YAG, Alexanderit			
Semiconductor optical and Ti:sapphire lasers			
amplifiers, Erbium Diode pumped solid state			
dopedwaveguide laser, Optical parametric			
optical amplifiers, oscillator (OPO) lasers			
Raman amplifiers, CSO 2.5: To define	e		
Fiber Lasers. Laser optical amplifiers. (K)			
applications-Lasers CSO 2.6: To explain	n		
inIsotope separation, different types of optical			
Laser interferometry amplifier: Semiconducto			
and speckle optical amplifiers, Erbium			
metrology, Velocity doped wave guide optica	1		
measurements, Laser amplifiers, Raman	n		
induced fusion in amplifiers. (U) and (A)			
reactor, Laser cooling CSO 2.7: To define and	b		
and trapping. explain fiber laser. (K)			
CSO 2.8: To examine the	e		
uses of lasers: Lasers in	n		
Isotope separation, Lase	r		
interferometry and speckle			
metrology, Velocity			
measurements, Lase	r		
induced fusion in reactor	.,		
Laser cooling and	d		
trapping. (A)			
CSO 2.9: To describ	e		
different types of lasers	•		
CO2, Nitrogen, Argon	n		
ion, Excimer, X-ray, Free	-		
electron, Dye, Nd:YAG	,		
Alexanderite and	d		
Ti:sapphire lasers, Diode	e		
pumped solid state laser	,		
Optical parametri	c		
oscillator (OPO) lasers			
(K)			
UNIT 3 Origin of optical CSO 3.1: To define and			
Non-linear nonlinearity - explain the origin o	d 9	20	Not to be filled-in

	TT •				
Optics Basic	-	optical nonlinearity. (K)			
Principles	– Second harmonic	CSO 3.2: To define			
	generation – Phase	harmonic generation. (K)			
	matching condition -	CSO 3.3: To explain			
	Third harmonic	second harmonic			
	generation – Optical	generation. (U)			
	mixing – Parametric	CSO 3.4: To explain			
	generation of light –	phase matching			
	Parametric light	condition.(U)			
	oscillator – Frequency				
	upconversion – Self				
	focusing of light –	CSO 3.6: To explain the			
	Phase conjugate	principle of optical mixing			
	optics-Guided wave	and analyse its			
	optics - Nonlinear	application. (A)			
	optical materials.	CSO 3.7: To explain the			
	optical materials.	principle of parametric			
		generation of light and its			
		•			
		application. (A) and (U)			
		CSO 3.8: To explain			
		parametric light oscillator.			
		CSO 3.9: To discuss the			
		principle of frequency up			
		conversion. (U)			
		CSO 3.10: To understand			
		the principle of self-			
		focusing of light. (K)			
		CSO 3.11: To explore			
		Phase conjugate optics-			
		Guided wave optics. (A)			
		CSO 12: To describe and			
		explain non linear optical			
		materials. (K)			
UNIT 4	Total internal	CSO 4.1: To define and	9	20	Not to be
Fiber Optics :	reflection - Optical	explain total internal			filled-in
•	fiber modes and	reflection. (K)			
	configuration – Single				
	mode fibers – Graded	explain optical fiber			
	index fiber structure –	modes and its			
	Fiber materials and				
	fabrication –	CSO 4.3: To describe			
	Mechanical properties	single mode fiber. (U)			
	of fibers – Fiber optic	CSO 4.4: To explain			
	cables – Attenuation –	graded index fiber			
	Signal distortion on	structure. (U)			
	optical wave guides-	CSO 4.5: To state and			
	Erbium doped fiber	explain different fiber			
	amplifiers – Solitons	materials and fabrication			
	in optical fibers -	process. (K)			
		-			
	Block diagram of				
	fiber optic	mechanical properties of			
	communication	fibers. (U)			
	system - Applications	CSO 4.7: To define and			
	of optical fibers in	explain fiber optic cables.			

	• .• •				1
	communication and	(U) CCO 4.0 T 1			
	medicine.	CSO 4.8: To analyse			
		attenuation on fibre optics.			
		$\begin{pmatrix} (A) \\ CSO & AO \\ \end{array}$			
		CSO 4.9: To analyse			
		signal distortion on optical			
		wave guides. (A) CSO 4.10: To describe			
		the Erbium doped fiber			
		amplifiers. (K) CSO 4.11: To discuss the			
		concept of solitons in			
		optical fiber. (U)			
		CSO 4.12: To			
		demonstrate Block			
		diagram of fiber optic			
		communication system.			
		(A)			
		CSO 4.13: To explore the			
		applications of optical			
		fibers in communication			
		and medicine.(A)			
UNIT 5	Connector principles,	CSO 5.1: To state and	9	20	Not to be
Fibre Optic	Fibre end preparation,	explain the connector	-	_~	filled-in
Components	Splices, Connectors,	principles. (K)			
and Sensors :	Source coupling,	CSO 5.2: To examine			
	distribution networks,	fibre end preparation. (A)			
	Directional couplers,	CSO 5.3: To explain the			
	Star couplers,	concept of splices. (U)			
	Switches, Fiber	CSO 5.4: To describe the			
	optical	concept of connectors. (K)			
	isolator,Wavelength	CSO 5.5: To define and			
	division multiplexing,	explain source coupling.			
	Time division	(K)			
	multiplexing, Fiber	CSO 5.6: To discuss the			
	Bragg	distribution networks. (U)			
	gratings.Advantage of				
	fiber optic sensors,	explain directional			
	Intensity modulated	couplers. (K)			
	sensors,Mach-	CSO 5.8: To describe star			
	Zehnder	couplers. (K)			
	interferometer	CSO 5.9: To explain the			
	sensors, Current	1			
	sensors, Chemical	1			
	sensors –Fiber optic	-			
	rotation sensors.	CSO 5.11: To discuss the			
	Optical biosensors:	concept of wavelength			
	Fluorescence and	divison multiplexing and			
	energy transfer	time division			
	sensing, molecular	multiplexing. (U) CSO 5.12: To describe			
	beacons and optical geometries of bio-	Fiber Bragg gratings. (K)			
	sensing, Bio-imaging,	CSO 5.13: To identify the			
	Bio sensing.	advantages of fiber optic			
	Dio sensilig.				
	1	sensors, intensity			

modulated concorry Mach	
modulated sensors, Mach-	
Zehnder interferometer	
sensors, Current sensors,	
Chemical sensors –Fiber	
optic rotation sensors. (A)	
CSO 5.14: To define	
optical biosensors. (K)	
CSO 5.15: To examine	
the concept of	
fluorescence and energy	
transfer sensing,	
molecular beacons and	
optical geometries of bio-	
sensing, bio- imaging, bio	
sensing. (A)	

- 1. D.J. Griffiths, Introduction to Electrodynamics, 4 th Edition, Prentice-Hall of India, ND, 2013.
- 2. G.R. Fowels, Modern Optics, 1989.
- 3. M.J. Beesly, Laser and their Applications, Taylor and Francis, 1976.
- 4. B.B. Laud, Lasers and Non-Linear Optics, 3rd Edition, New Age International Publishers Ltd, 2011.
- 5. Optics, E. Hecht, Addison Wiley, 1974. 9. Optical Fiber Communications, Gerel Keiser, McGraw Hill Book, 2000.
- 6. J. Wilson and J.F.B. Hawkes, Lasers, principles and applicationsprentice, Hall of India, New Delhi, 1996.
- 7. Joseph C. Palais, Fibre Optic Communication, Pearson Education Asia, India, 2001.
- 8. A.Ghatak And K.Thyagarajan, Introduction To Fibre Optics, Cambridge UniversityPress,New Delhi, 1999.

Semester	VIII
Paper Code	PHC 8.1(P)
Paper Title	Photonics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The objective of this lab is to become familiar with the fundamental properties of light and explore, illustrate the applications of photonic principles..

Course Content:

- 1. Verification of Gaussian nature of the given laser beam
- 2. Evaluation of divergence angle of the laser beam
- 3. Determined the beam divergence and spot size of a given laser
- 4. Determination of wavelength of a He-Ne laser beam using Mach-Zender Interferometer
- 5. Measurement of refractive index of the air using Mach-Zender Interferometer
- 6. Measurement of refractive index of the transparent materials using Mach-Zender Interferometer
- 7. Study the characteristics of the diode current versus optical output powers
- 8. Study the characteristics of the temperature dependence of the threshold current for laser emission
- 9. Construct the Diffraction Grating by using Holography technique
- 10. Measurement of propagation loss using optical power meter.
- 11. Study the Electro-Optic effect in LiNbO3 Crystal and calculate the half-wave voltage

Semester	VIII
Paper Code	PHC 8.2
Paper Title	Biophysics
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs) The following are the Course Objectives (COs) for the paper **Bio Physics**:

CO 1:	To make the students understand the building blocks and structure of living state as well
	as living state interactions.
CO 2:	To guide the students in the understanding of heat transfer mechanism in biomaterials
	and thermodynamics involved in living state.
CO 3:	To assist the students in learning about open systems. Chemical thermodynamics and
	diffusion and transport mechanisms.
CO 4:	To create an interest among students in the understanding Fluids.
CO 5:	To aid the students in the understanding of Bioenergetics and Molecular motors.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Building Blocks &	CSO 1.1: To define	15	23	Not to be
Building Blocks	Structure of Living	atoms and ions. (K)			filled-in
& Structure of	State: Atoms and	CSO 1.2: To describe			
Living State and	ions, molecules	molecules essential for			
Living State	essential for life,	life. (K)			
Interactions	what is life.	CSO 1.3: To discuss			
	Living State	what is life. (U)			
	Interactions: Forces	CSO 1.4: To describe			
	and molecular bonds,	forces and molecular			
	electric & thermal	bonds. (K)			
	interactions, electric	CSO 1.5: To explain			
	dipoles, Casimir	electric and thermal			
	interactions, domains	interactions. (U)			
	of physics in biology.	CSO 1.6: To evaluate			
		electric dipoles. (A)			
		CSO 1.7: To discuss			
		Casimir interactions. (U)			
		CSO 1.8: To discuss the			
		domains of physics in			
		biology. (U)			
UNIT 2	Heat Transfer in	CSO 2.1: To explain	17	25	Not to be
Heat Transfer in	biomaterials: Heat	heat transfer			filled-in
biomaterials and	Transfer Mechanism,	mechanism. (U)			
Living State	The Heat equation,	CSO 2.2: To derive the			
Thermodynamics	Joule heating of	heat equation. (A)			
	tissue.	CSO 2.3: To discuss			
	Living State	Joule heating of tissue.			
	Thermodynamics:	(U) CSO 24. To describe			
	Thermodynamic	CSO 2.4: To describe			
	equilibrium, first law of thermodynamics	thermodynamic equilibrium. (K)			
	and conservation of	CSO 2.5: To state and			
	and conservation of	USU 2.5: 10 state and			

	_				
		define the first law of			
	second law of				
	thermodynamics,	CSO 2.6: To discuss the			
	Physics of many	conservation of energy.			
	particle systems, two	(U)			
	state systems,	CSO 2.7: To explain			
	continuous energy	entropy and the second			
	distribution, Casimir	law of thermodynamics.			
	contribution of free	(U)			
	energy	CSO 2.8: To determine			
		the physics of many			
		particles system. (A)			
		CSO 2.9: To discuss			
		two state systems. (U)			
		CSO 2.10: To explain			
		continuous energy			
		distribution. (U)			
		CSO 2.11: To examine			
		Casimir contribution of			
		free energy. (A)			
UNIT 3	Open systems and	CSO 3.1: To define	15	23	Not to be
Open systems,	chemical	enthalpy. (K)			filled-in
chemical	thermodynamics:	CSO 3.2: To define			
thermodynamics,	Enthalpy, Gibbs Free	Gibbs free energy. (K)			
Diffusion and	Energy and chemical	CSO 3.3: To define			
transport	potential, activation	chemical potential. (K)			
	energy and rate	CSO 3.4: To describe			
	constants, enzymatic	activation energy and			
	reactions, ATP	rate constants. (K)			
	hydrolysis&	CSO 3.5: To explain			
	• •	enzymatic reactions. (U)			
		CSO 3.6: To explain			
	canonical ensemble,	ATP hydrolysis and			
	Haemoglobin.	synthesis. (U)			
	Diffusion and	CSO 3.7: To discuss			
	transport: Maxwell-	entropy of mixing. (U)			
	Boltzmann statistics,	1.			
	Fick's law of	the grand canonical			
	diffusion,	ensemble. (K)			
	sedimentation of Cell	CSO 3.9: To define and			
	Cultures, diffusion in	describe haemoglobin.			
	a centrifuge, diffusion	(K)			
	in an electric field,	CSO 3.10: To deduce			
	Lateral diffusion in	the Maxwell Boltzmann			
	membranes, Navier	statistics. (A)			
	stokes equation	CSO 3.11: To explain			
		Fick's law of diffusion.			
		(U)			
		CSO 12: To discuss			
		sedimentation of cell			
		cultures. (U)			
		CSO 3.13: To examine			
		diffusion in a centrifuge.			
		(A)			
		CSO 3.14: To examine			
			•		•

UNIT 4	Laminar and	diffusion in an electric field. (A) CSO 3.15: To examine diffusion in membranes. (A) CSO 3.16: To derive the Navier stokes equation. (A) CSO 4.1: To define and	8	14	Not to be
Fluids	Lamnar and turbulent fluid flow, Bernoulli's equation, equation of continuity, venture effect, Fluid dynamics of circulatory systems, capillary action.	describe laminar and turbulent fluid flow. (K) CSO 4.2: To derive Bernoulli's equation.	8	14	filled-in
UNIT 5 Bioenergetics and Molecular motors		Kinesins. (K) CSO 5.2: To describe Dyneins. (K) CSO 5.3: To describe microtubule dynamics.		15	Not to be filled-in

1. J. Claycomb, *Introductory Biophysics*, JQP Tran, Jones & Bartelett Publishers.

- 2. Hughe S W, Aspects of Biophysics, John Willy and Sons.
- 3. P Narayanan , Essentials of Biophysics , New Age International.

Semester	VIII
Paper Code	PHC 8.3
Paper Title	Atmospheric Physics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs) The following are the Course Objectives (COs) for the paper **Atmospheric Physics**:

CO 1:	To make the students understand the elements of earth's atmosphere that can be observed, measured, and recorded to make predictions and determine simple weather patterns.
CO 2:	To aid the students in the understanding of earth's circulation.
CO 3:	To make the students understand different kind of atmospheric waves and the propagation of atmospheric waves.
CO 4:	To understand the working principle atmospheric radar and lidar.
CO 5:	To assist the students in understanding the importance of aerosols and disadvantages of aerosols.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Thermal structure of	CSO 1.1: To define	9	20	Not to be
General	the Earth's	Earth's atmosphere. (K)			filled-in
features of	Atmosphere,	CSO 1.2: To discuss the			
Earth's	Ionosphere,	thermal structure of			
atmosphere	composition of	Earth's atmosphere. (U)			
	atmosphere,	CSO 1.3: To define			
	Hydrostatic equation,	ionosphere. (K)			
	Atmospheric	CSO 1.4: To explain the			
	thermodynamics,	composition of Earth's			
	Greenhouse effect and	atmosphere. (U)			
	effective temperature	CSO 1.5: To derive			
	of Earth, Local winds,	hydrostatic equation. (A)			
	monsoons, fogs,	CSO 1.6: To explain			
	clouds, precipitation,	atmospheric			
	Atmosphere boundary	thermodynamics. (U)			
	layer, sea breeze and	CSO 1.7: To describe			
	land breeze.	green house effect and			
	Instrument for	effective temperature of			
	meteorological	earth. (K)			
	observations,	CSO 1.8: To describe			
	meteorological	local winds, monsoon,			
	processes and	fogs, clouds, precipitation,			
	different systems,	sea breeze and land breeze			
	fronts, Cyclones and	(K)			
	anticyclones,	CSO 1.9: To discuss the			
	thunderstorms.	different instruments for			
		meteorological			
		observation. (U)			
		CSO 1.10: To discuss the			
		different meteorological			
		processes. (U)			

		000 111 5			
		CSO 1.11: To			
		demonstrate cyclones, anti			
		cyclones and			
		thunderstorm. (A)	0	•	
UNIT 2	Scale analysis,	CSO 2.1: To describe	9	20	Not to be
Atmospheric	Fundamental forces,	atmospheric dynamics.			filled-in
dynamics	Basic conservation	(K)			
	laws, The Vectorial	CSO 2.2: To discuss the			
	form of the	fundamental forces of			
	momentum equation	atmosphere. (U)			
	in rotating coordinate	CSO 2.3: To state			
	system, Applications	conservation laws of			
	of the basic equations,	nature. (K)			
	Circulations and	CSO 2.4: To derive the			
	velocity, Atmospheric	vectorial form of			
	oscillations,	momentum equation in			
	Mesoscale	term of rotating coordinate			
	circulations, the	system. (A)			
	general circulations,	CSO 2.5: To discuss the			
	Tropical dynamics.	circulation of earth. (U)			
		CSO 2.6: To describe the			
		velocity of earth's			
		rotation. (K)			
		CSO 2.7: To demonstrate			
		the earth circulation in			
		term of atmospheric			
		circulation, mesoscale			
		oscillation and tropical			
		dynamics. (A)			
		CSO 2.8: To examine the			
		general circulation of the			
		earth. (A)	-		
UNIT 3	Surface water waves,	CSO 3.1: To describe	9	20	Not to be
Atmospheric	wave dispersion,	atmospheric waves. (K)			filled-in
waves	acoustic waves,	CSO 3.2: To define			
	buoyancy waves,	acoustic waves, lamb			
	propagation of	wave, buoyancy wave and			
	atmospheric gravity	rossby wave (K)			
	waves (AGWs) in a	CSO 3.3: To describe			
	nonhomogeneous	wave dispersion. (K)			
	medium, Lamb wave,	CSO 3.4: To discuss the			
	Rossby waves and its	propagation of surface			
	propagation in three	water waves, acoustic			
	dimensions and in	waves, buoyancy waves,			
	sheared flow, wave	lamb waves. (U)			
	absorption, non-linear	CSO 3.5: To construct the			
	consideration.	propagation of			
		atmospheric gravitational			
		waves in a non			
		homogeneous medium.			
		$\begin{pmatrix} (A) \\ C C C \\ $			
		CSO 3.6: To examine the			
		propagation of rossby			
		wave in a three			
		dimensional coordinate.			

		(A)			
		CSO 3.7: To discuss wave			
UNIT 4 Atmospheric Radar and Lidar	Radar equation and return signal, Signal processing and detection, Various type of atmospheric radars, Application of radars to study atmospheric phenomena, Lidar and its applications, Application of Lidar to study atmospheric phenomenon.	CSO 3.7: To discuss wave absorption. (U) CSO 4.1: To define atmospheric radar. (K) CSO 4.2: To define atmospheric lidar. (K) CSO 4.3: To differentiate between atmospheric radar and atmospheric lidar. (U) CSO 4.4: To derive radar equation. (A) CSO 4.5: To discuss the working of Radar. (U) CSO 4.6: To demonstrate the signal processing and detection in a radar. (A) CSO 4.7: To identify various kind of atmospheric radar. (K) CSO 4.8: To apply application of radar in different atmospheric phenomena. (A) CSO 4.9: To discuss atmospheric lidar and its different applications. (U) CSO 4.10: Todemosstrate the use of lidar in studying	9	20	Not to be filled-in
UNIT 5 Atmospheric Aerosols	Spectral distribution of the solar radiation, Classification and properties of aerosols, Production and removal mechanisms, Concentrations and size distribution, Radiative and health effects, Observational techniques of aerosols, Absorption and scattering of solar radiation, Rayleigh scattering, Bouguert- Lambert Law.	atmospheric phenomenas. (A) CSO 5.1: To define atmospheric aerosols. (K) CSO 5.2: To define solar radiation. (K) CSO 5.3: To discuss the spectral distribution of the solar radiation. (U) CSO 5.4: To distinguish the classification of aerosols. (A) CSO 5.5: To discuss the properties of aerosols. (U) CSO 5.6: To demonstrate the production and removal of aerosols in atmosphere. (A) CSO 5.7: To compare the size distribution of aerosols. (A) CSO 5.8: To identify the concentration in an aerosols. (K) CSO 5.9: To explain the	9	20	Not to be filled-in

radiative and health of aerosols. (U) CSO 5.10: To demonstrate the observational techniques of aerosols. (A) CSO 5.11: To examine the absorption of solar radiation and the scattering of solar radiation. (A) CSO 5.12: To describe Rayleigh scattering. (K) CSO 5.13: To explain mie scattering. (U) CSO 5.14: To differentiate between Rayleigh and mei scattering. (U) CSO 5.15: To state
Rayleigh and mei scattering. (U)
Bouguert-Lambert law. (K) CSO 5.16: To derive
Bouguert-Lambert theorem. (A)

- 1. Murry L Salby, Fundamentals of Atmospheric Physics, Academic Press, Vol 61, 1996.
- 2. John T. Houghton, The Physics of Atmosphere, Cambridge University press, 3 rdedn. 2002.
- 3. James R Holton, An Introduction to dynamic meterology, Academic press, 2004.
- 4. S Fukao and K Hamazu, Radar for meteorological and atmospheric observations, Springer Japan, 2014.

.INTERDISCIPLINARY MINOR (IDM)

Semester-I

Semester	Ι
Paper Code	PHM 1
Paper Title	Mechanics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper mechanics:

The follow	ting are the course objectives (cos) for the paper incentances.
CO 1:	To make the students to understand the concept of vector algebra, scalar and vector
	product and solve the problem relating it with different parameters.
CO 2:	To understand the essential principles in classical mechanics providing a foundation for

	understanding the simple physical system of motion, force and energy from Newton's
	law of motion.
CO 3:	To create a key concept relating to gravitational physics, celestial mechanics and
	application of these principles in satellite technology and navigation systems.
CO 4:	To create comprehensive understanding of simple harmonic motion including its
	mathematical description, energy consideration and behaviour in damped systems
CO 5:	To understand mechanical properties of material under tension, compression and torsion
	and experimental application.

Unit &	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
Title			Hours		
UNIT 1 Vectors	Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients	 CSO 1.1: To understand the concept of vector algebra and solve the problem relating to it.(U) CSO 1.2: To derive the scalar and vector product.(U) CSO 1.3: To apply scalar and vector product in solving numerical. (A) CSO 1.4: To derive the vector with respect to parameter.(U) CSO 1.5:To explain ordinary differential equations.(U) CSO 1.6: To analyse 1st and 2nd order homogeneous equation from ordinary differential equations.(A) CSO 1.7: To apply differential equations.(A) CSO 1.7: To apply differential equation.(A) 	9	20	Not to be fille d-in
UNIT 2 Laws of Motion	Frames of reference. Newton's Laws of motion. Centre of Mass. Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum.	 CSO 2.2: To explain Newton's law of motion governing the motion of objects.(U) CSO 2.3: To understand the concept of the point for centre of mass and calculate the purpose of involving the motion. (U) CSO 2.4: To understand the conservation of energy.(U) CSO 2.5: To explain work and 	9	20	Not to be fille d-in

UNIT 3 Gravitation	Newton's Law of Gravitation. Motion of a particle in a central force field (motion is n a plane, angular nomentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).	CSO 3.1:To state and understand the Newton law of gravitation.(K) CSO 3.2: To explain the motion of a particle under the influence of a central force field. (U) CSO 3.3:To discuss the concept including motion in a plane, angular momentum is conserved, areal velocities constant.(U) CSO 3.4:To state Kepler's law.(K) CSO 3.5:To understand the principles and work involve behind the Geosynchronous orbits.(U) CSO 3.6:To understand the basic idea of global positioning system (GPS).(U) CSO 3.7:To understand the concept of weightlessness in free- fall motion and explaining the experience of weightlessness in certain scenario.(U)	9	20	Not to be fille d-in
UNIT 4 Oscillation	Simple harmonic motion, differential equation of SHM and its solutions. Kinetic and potential Energy, total energy and their time averages. Damped oscillations	CSO 4.1:To understand the characteristics and behaviour of simple harmonic motion.(U) CSO 4.2:To understand the time period and frequency of SHM which are related inversely.(U) CSO 4.3:To understand the differential equation that governs SHM and method for solving it.(U) CSO 4.4:To explain the energy aspects of SHM including kinetic energy, potential energy and total energy also time averages.(u) CSO 4.5: To calculate time average of kinetic and potential energy over one cycle of oscillation. (A) CSO 4.6:To understand the role of damping coefficient in determining the rate of decay oscillation.(U) CSO 4.7:To explain different damping regimes and their effect on the behaviour of oscillatory system. (U)	9	20	Not to be fille d-in
UNIT 5 Elasticity	Hooke's law - Stress- strain diagram - Elastic moduli- Relation between elastic constants - Poisson's Ratio- Expression for Poisson's ratio in terms of elastic	CSO 5.1: To understand the fundamental principle that the force	9	20	Not to be fille d-in

graphical representation showing	
the relation between stress and	
strain for a material.(U)	
CSO 5.4:To understand different	
measures of a materials resistance	
to deformation under stress about	
Young modulus, shear modulus and	
bulk modulus.(U)	
CSO 5.5: To explain the relation	
between elastic constant.(U)	
CSO 5.6: To state and derive the	
Poisson's ratio and express in terms	
-	
1	
-	
	the relation between stress and strain for a material.(U) CSO 5.4: To understand different measures of a materials resistance to deformation under stress about Young modulus, shear modulus and bulk modulus.(U) CSO 5.5: To explain the relation between elastic constant.(U) CSO 5.6: To state and derive the Poisson's ratio and express in terms of elastic constant.(K) CSO 5.7: To understand the expression for the work done in stretching and twisting a wire.(U)

- 1. D. Kleppner, R.J. Kolenkow, An introduction to mechanics, McGraw-Hill, 1973.
- 2. C.Kittel, W.Knight, *Mechanics*, Berkeley Physics, vol.1, et.al. Tata McGraw-Hill, 2007.
- 3. Resnick, Halliday and Walker, Physics, 8/e. Wiley, 2008.
- 4. G.R. Fowles and G.L. Cassiday, Analytical Mechanics, Cengage Learning ,2005.
- 5. R.P.Feynman, R.B.Leighton, M.Sands , Feynman Lectures, Vol. I, Pearson Education, 2008 .
- 6. Ronald Lane Reese, University Physics, Thomson Brooks/Cole, 2003.

Semester	Ι
Paper Code	PHM 1(P)
Paper Title	Mechanics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

Students would perform basic experiments related to mechanics and also get familiar with various measuring instruments, would learn the importance of accuracy of measurements.

- 1. To determine the Moment of Inertia of a regular body by Torsional pendulum.
- 2. To determine the Young's Modulus of a Wire .
- 3. To determine the Modulus of Rigidity of a Wire .
- 4. To determine g by Compound Pendulum.
- 5. To determine g by Kater's Pendulum.
- 6. To determine g and velocity for a freely falling body using Digital Timing Technique
- 7. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g
- 8. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 9. Measurements of length (or diameter) using Vernier Calliper, screw gauge and travelling microscope.

- 1. B.L. Flint and H.T. Worsnop , Advanced Practical Physics for students, Asia Publishing House, 1971.
- 2. I. Prakash & Ramakrishna, A Text Book of Practical Physics, 11th Ed., Kitab Mahal 2011.
- 3. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practical*, 4th Edition, reprinted ,Heinemann Educational Publishers ,1985.
- 4. D.P.Khandelwal, ALaboratory Manual of Physics for undergraduate classes, Vani Pub. 1985.

Semester-II

Semester	П
Paper Code	PHM 2
Paper Title	Electricity and Magnetism
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Electricity and Magnetism**:

CO 1:	To let the students understand the concept of Vector Analysis:
CO 2:	To instill the idea of Electrostatics
CO 3:	To create an awareness among the students about Magnetism/ Magnetostatics.
CO 4:	To inculcate and create interest among students in Magnetic properties of materials and
	Electromagnetic Induction
CO 5:	To assist the students in understanding Maxwell's equations and wave propagation

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Scalar and Vector	CSO 1.1:To define scalar and	9	20	Not to
	product, gradient,	vector product (K)			be
Vector Analysis	divergence, Curl and	CSO 1.2:To discuss about scalar			filled-
	their significance,	and vector product with examples			in
	Vector Integration,	and problems (U+A)			
	Line, surface and	CSO 1.3:To define and discuss on			
	volume integrals of	del operator and its properties			
	Vector fields, Gauss	(K+U)			
	divergence theorem	CSO 1.4:To define and discuss on			
	and Stoke's theorem	gradient, divergence and curl and			
	of vectors	their significance. (K+U)			
		CSO 1.5:To work out problems			
		based on gradient, divergence and			
		curl (A)			
		CSO 1.6:To discuss on vector			
		integration and its types (U)			

		CSO 1.7:To define line, surface,			[]
		and volume integrals and work out			
		problems based on each integrals			
		(K+U+A)			
		CSO 1.8: To define and discuss on			
		Gauss's divergence theorem and			
		Stokes theorem. (K+U)			
		CSO 1.9: To work out problems			
		based on the above mentioned			
		theorems (A)			
UNIT 2	Electrostatic Field,	CSO 2.1: To define electrostatics	9	20	Not to
Electrostatics	electric flux, Gauss's	(K)	,	20	be
	theorem of				filled-
	electrostatics.	field and flux in electrostatics			in
	Applications of				
	Gauss theorem-				
	Electric field due to				
	point charge, infinite				
	line of charge,	-			
	uniformly charged				
	spherical shell and				
	solid sphere, plane	11			
	charged sheet,	1			
	charged conductor.	potential and calculate potential for			
	Electric potential as				
	line integral of				
	electric field,				
	potential due to a				
	point charge, electric				
	dipole.				
UNIT 3	Canacitance of an	CSO 3.1: To define capacitor and	9	20	Not to
Capacitance	-	capacitance (K)	,	20	be
and	-	CSO 3.2: To derive capacitance of			filled-
Magnetism:	plate, spherical and	-			in
Magnetostatics	cylindrical	plate, spherical and cylindrical			
mugnetostuties	condenser. Energy	condenser (A)			
	per unit volume in				
	electrostatic field.	-			
	Dielectric medium,	CSO 3.4: To calculate energy			
	Polarisation,	perm unit volume in a given field			
	Displacement vector.	(A)			
	Magnetism:	CSO 3.5:To define dielectric and			
	Magnetostatics:	its effect in capacitance(K+U)			
	Biot-Savart's law &	1			
	its applications-	on dielectric medium (A)			
	straight conductor,				
	circular coil, solenoid				
	carrying current.	vector (K+U)			
	Divergence and curl	_			
	of magnetic field.	Biot-Savart's law (K+U)			
	Magnetic vector				
			1	1	
	potential. Ampere's	application of Biot-Savart's law			
	potential. Ampere's circuital law.	different shapes of conductors (A) CSO 3.10:To work out problems			

		1 1 1 1 24 24 2			I
		based on the application (A)			
		CSO 3.11: To illustrate on			
		divergence and curl of magnetic			
		field (U+A)			
		CSO 3.12: To derive magnetic			
		vector from the divergence and $\frac{1}{2}$			
		curl of the field (A)			
		CSO 3.13: To define and discuss			
		Ampere's Circuital Law (K+U)			
		CSO 3.14: To illustrate on the			
	Magnatia intersity	application of Circuital law (A)	0	20	Not to
UNIT 4	Magnetic intensity,	CSO 4.1: To define the various	9	20	Not to
Magnetic magnetics of	magnetic induction,	magnetic properties like intensity,			be filled
properties of materials and	permeability,	induction, permeability,			filled-
	magnetic	susceptibility (K)			in
Electromagnetic Induction	susceptibility. Brief introduction of dia-,	-			
	para-and ferro-	relationship between the magnetic properties mentioned (U+A)			
	magnetic materials.	CSO 4.3: To define dia, para and			
	Electromagnetic	ferromagnetic materials (K)			
	Induction: Faraday's	CSO 4.4: To compare the various			
	laws of	magnetic material (U+A)			
	electromagnetic	CSO 4.5: To define			
	induction, Lenz's	electromagnetic induction (K)			
	law, self and mutual	6			
	inductance, L of				
	single coil, M of two	induction(K+U)			
	coils. Energy stored				
	in magnetic Field.	5			
	Transformer, Auto	•			
	Transformer,	CSO 4.8: To define and derive self			
	different losses of	and mutual inductance (K+A)			
	transformer.	CSO 4.9:To compare and contrast			
		self and mutual inductance (U+A)			
		CSO 4.10:To illustrate on Self-			
		inductance in single coil and			
		mutual inductance on two coil (A)			
		CSO 4.11:To workout problems			
		based on self and mutual			
		inductance (A)			
		CSO 4.12: To define Transformers			
		and discuss on it construction and			
		working principle (K+U+A)			
		CSO 4.13:To discuss on types of			
		transformer (U)			
		CSO 414: To discuss on the			
		losses of transformer (K+U)			
UNIT 5	Equation of	CSO 5.1: To discuss on the various	9	20	Not to
Maxwell`s	continuity of current,	Maxwell's equation (K+U)			be
equations and	Displacement	CSO 5.2:To define and derive the			filled-
Electromagnetic	current, Maxwell's	equation of continuity of current			in
wave	equations, Poynting	(K+A)			
propagation	vector, energy	CSO 5.3: To illustrate on			
	density in	Maxwell's equations and modify it			
	electromagnetic field,	using the continuity equation (A)			

electromagnetic wave	CSO 5.4: To define Poynting	
Ũ	vector and discuss it significance	
vacuum.	(K+U)	
	CSO 5.5:To discuss on energy	
	density in electromagnetic field	
	(U+A)	
	CSO 5.6: To explain and derive the	
	equation of electromagnetic wave	
	propagation through vacuum	
	(U+A)	

- 1. S. Mahajan and Choudhury, *Electricity, Magnetism & Electromagnetic Theory*, Tata McGraw, 2012.
- 2. Edward M. Purcell, *Electricity and Magnetism*, McGraw-Hill Education, 1986.
- 3. D.J. Griffiths, Introduction to Electrodynamics, 3rd Edn., Benjamin Cummings, 1998.
- 4. R.P.Feynman, R.B.Leighton, M. Sands, Feynman Lectures Vol.2, Pearson Education 2008.
- 5. M.N.O. Sadiku, *Elements of Electromagnetics*, Oxford University Press ,2010.
- 6. J.H.Fewkes&J.Yarwood , *Electricity and Magnetism*, Vol. I, Oxford Univ. Press 1991.

Semester	II
Paper Code	PHM 2(P)
Paper Title	Electricity and Magnetism
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

Demonstration and practical laboratory experiments on electrical circuits and devices and uses of different electrical devices is the objective of the course. Moreover, raining on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors is also an aim of the course.

- 1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
- 2. To determine the specific resistance by metre bridge.
- 3. To determine the strength of the magnetic field produced at the centre of the tangent galvanometer coil due to a current flowing in it and hence to determine horizontal component of earth's magnetic field.
- 1. To determine the self induction of a coil and its internal resistance in an L-R circuit
- 2. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor
- 3. To determine the resistance of a galvanometer by half deflection method.
- 4. To determine a resistance per unit length of metre bridge wire by Carey Foster's method.
- 5. To verify the Thevenin and Norton theorem.
- 6. To verify series and parallel laws of resistance by Post office Box.
- 7. To compare the emf of two cells by potentiometer.

- 1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971.
- 2. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, Heinemann Educational Publishers, reprinted, 1985.
- 3. S. Panigrahi and B. Mallick, *Engineering Practical Physics*, Cengage Learning, 2015.
- 4. D. P. Khandelwal, A Laboratory Manual of Physics for undergraduate classes, Vani Pub, 1985.

Semester-III

Semester	III
Paper Code	PHM 3
Paper Title	Thermal Physics and Statistical Mechanics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Thermal Physics and Statistical Mechanics:

CO 1:	To study the laws of thermodynamics.
CO 2:	To learn the thermodynamic potentials.
CO 3:	To study the kinetic theory of gases.
CO 4:	To understand the theory of radiation.
CO 5:	To learn the basics of statistical mechanics.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Thermodynamic	CSO 1.1: To define	11	24	Not to be
Laws of	Description of	thermodynamics.(K)			filled-in
Thermodynamics	system: Zeroth Law	CSO 1.2: To explain the			
	of thermodynamics	Zeroth law of			
	and temperature.	thermodynamics.(U)			
	First law and internal	CSO 1.3: To define			
	energy, conversion	temperature.(K)			
	of heat into work,	CSO 1.4: To explain the			
	Various Thermo	first law of			
	dynamical Processes,	thermodynamics.(U)			
	Applications of First	CSO 1.5: To define			
	Law: General	internal energy.(K)			
	Relation between CP	CSO 1.6: To define heat			
	& CV, Work Done	and work and explain its			
	during Isothermal	conversion.(K&U)			
	and Adiabatic	CSO 1.7: To study the			
	Processes,	various thermodynamical			

	1		1		
	Compressibility &	processes.(U)			
	Expansion	CSO 1.8: To study the			
	Coefficient,	application of first law to			
	Reversible &	thermodynamical			
	irreversible	processes.(A)			
	processes, Second	CSO 1.9: To define			
	law & Entropy,	specific heat at constant			
	Carnot's cycle &	pressure and volume and			
	theorem, Entropy	derive the relation			
	changes in reversible	between them. (K&U)			
	& irreversible	CSO 1.10: To derive the			
		formula for work done			
	processes, Entropy-				
	temperature	during isothermal and			
	diagrams, Third law	adiabatic process.			
	of thermodynamics.	CSO 1.11: To define			
		compressibility and			
		expansion coefficient.(K)			
		CSO 1.12:To define			
		reversible & irreversible			
		processes.(K)			
		CSO 1.13: To explain			
		second law of			
		thermodynamics. (U)			
		CSO 1.14:To define			
		entropy .(K)			
		CSO 1.15:To explain			
		Carnot's cycle &			
		theorem.(U)			
		CSO 1.16: To			
		understand the entropy			
		changes in reversible &			
		irreversible processes.(U)			
		CSO 1.17: To explain			
		entropy-temperature			
		diagrams. (U)			
		CSO 1.18:To learn the			
		third law of			
		thermodynamics.(U)			
UNIT 2	Enthalpy, Gibbs,	CSO 2.1: To define the	9	20	Not to be
Thermodynamic	Helmholtz and	thermodynamic			filled-in
Potentials	Internal Energy	potentials(Enthalpy,			
	functions, Maxwell's	Gibbs, Helmholtz and			
	relations &	Internal Energy			
	applications - Joule-	functions).(K)			
	Thompson Effect,	CSO 2.2: To derive			
	Clausius-Clapeyron	Maxwell's relations.(A)			
	Equation, Expression	CSO 2.3: To learn the			
	for $(CP - CV)$,	application of Maxwell's			
	CP/CV, TdS	relations to Joule-			
	equations.	Thompson effect and			
	- 1	Clausius-Clapeyron			
		equation.(A)			
		CSO 2.4: To derive the			
		expression for (CP –	1		
		-			
		CV).(U)			
		-			

		CSO 2.6: To derive TdS			
UNIT 3 Kinetic Theory of Gases	Derivation of Maxwell's law of distribution of speeds and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases: mono-atomic	equations. (A) CSO 3.1: To derive Maxwell's law of distribution of speeds and explain its experimental verification. CSO 3.2: To explain mean free path.(U) CSO 3.3: To define Transport Phenomena.(K) CSO 3.4: To derive the Transport Phenomena formula for Viscosity, Conduction and Diffusion (for vertical case).(A) CSO 3.5: To derive the law of equipartition of energy.(A) CSO 3.6: To study the	9	20	Not to be filled-in
UNIT 4	gases; mono-atomic and diatomic gases. Blackbody radiation,	application of law of equipartition of energy to specific heat of gases.(A) CSO 4.1: To define	8	18	Not to be
Theory of Radiation	Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.	 CSO 4.1: To define radiation.(K) CSO 4.2:To define Blackbody radiation.(K) CSO 4.3: To explain Spectral distribution.(U) CSO 4.4:To explain the Concept of Energy Density.(U) CSO 4.5: To derive Planck's law, Wien's distribution law, Rayleigh-Jeans Law.(A) CSO 4.6:To derive Stefan Boltzmann Law and Wien's displacement law from Planck's law.(A) 	0	10	filled-in
UNIT 5 Statistical Mechanics	Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi- Dirac distribution law, Bose-Einstein distribution law	CSO 5.1: To define statistical mechanics.(K) CSO 5.2: To define macrostate and microstate with examples. (K&A) CSO 5.3: To explain entropy and thermodynamic probability.(U) CSO 5.4: To derive Maxwell-Boltzmann law - distribution of velocity.(A) CSO 5.5:To explain the difference between Quantum statistics and	8	18	Not to be filled-in

Fermi-Dirac statistics.(U) CSO 5.6: To derive the Fermi-Dirac distribution
law.(A) CSO 5.7: To derive the
Fermi-Dirac distribution law.

- 1. M.W. Zemansky, Richard Dittman, Heat and Thermodynamics, McGraw-Hill, 1981.
- 2. MeghnadSaha, and B.N.Srivastava, A Treatise on Heat, Indian Press, 1958.
- 3. S. Garg, R. Bansal and Ghosh, *Thermal Physics*, 2nd Edition, Tata McGraw-Hill, 1993.
- 4. Carl S. Helrich, Modern Thermodynamics with Statistical Mechanics, Springer, 2009.
- 5. Sears & Salinger, Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Narosa, 1988.
- 6. S.J. Blundell and K.M. Blundell, *Concepts in Thermal Physics*, 2nd Ed., Oxford University Press, 2012.
- 7. A. Kumar and S.P. Taneja, *Thermal Physics*, R. Chand Publications, 2014.

Semester	III
Paper Code	PHM 3 (P)
Paper Title	Thermal Physics and Statistical Mechanics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The objective of this lab coursework is to observe certain laws that have been learnt in theory classes.

- 1. To determine Mechanical Equivalent of Heat, J, by Joule's method.
- 2. To determine the specific heat of a liquid by the method of cooling.
- 3. To verify Stefan's law by electrical method.
- 4. To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.
- 5. To determine the coefficient of linear expansion by suitable method.
- 6. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
- 7. To study the variation of thermoemf across two junctions of a thermocouple with temperature.

- 1. B. L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971
- 2. I.Prakash& Ramakrishna, A Text Book of Practical Physics, 11th Ed., Kitab Mahal, 2011.
- 3. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, reprinted 1985, Heinemann Educational Publishers, 2011.
- 4. D.P. Khandelwal, A Laboratory Manual of Physics for undergraduate classes, Vani Pub, 1985.

Semester-IV

SemesterIVPaper CodePHM 4Paper TitleElements of Modern
PhysicsNumber of teaching hours per week03Total number of teaching hours per semester45Number of credits03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Elements of modern physics**:

11	le lono wing	g are the course objectives (cos) for the paper Elements of modern physics.
	CO 1:	To make the students understand historical development of quantum theory , from Planck's
		quantum hypothesis to Bohr's model of the atom and explaining the limitations of classical
		models and appreciate the quantum concepts of the behaviour at the atomic scale.
	CO 2:	To understand the foundational principles of quantum mechanics, including the challenges
		associated with the position measurement, wave particle duality and limitation imposed by
		the Heisenberg uncertainty principle.
	CO 3:	To create an understanding among the students about the principle quantum mechanics,
		including wave particle duality, interference and interpret various phenomena at the
		quantum level using Schrodinger equation and probability concept.
	CO 4:	To create comprehensive understanding of quantum mechanical phenomena in confined
		system, scattering and tunnelling and should be familiar with the nuclear forces, the liquid
		drop model, and the nuclear shell model, providing insight into the structure and stability of
		atomic nuclei.
	CO 5:	To aid the student in understanding the principle underlying radioactivity, nuclear reactions
		and energy generation through fusion and fission and appreciate the implication for energy
		production and nuclear technologies.
-		

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Planck's quantum,	CSO 1.1: To understand	9	18	Not to
Introduction	Planck's constant and	Planck's quantum hypothesis.(U)			be
to quantum	light as a collection of	CSO 1.2: To define Planck's			filled-
mechanics	photons; Photo-electric	constant and its significance.(K)			in
through	effect and Compton	CSO 1.3: To determine light as a			
Planck's	scattering. De Broglie	collection of photons.(A)			
equation	wavelength and matter	CSO 1.4: To understand the			
_	waves; Davisson-	photoelectric effect and its			
	Germer experiment.	experiment.(U)			
	Problems with	CSO 1.5: To understand how			
	Rutherford model-	photoelectric effect support the			
	instability of atoms and	particle nature of light. (U)			
	observation of discrete	CSO 1.6: To understand			
	atomic spectra; Bohr's	Compton scattering and its			
	quantization rule and	implication for the particle like			
	atomic stability;	behaviour of photons.(U)			
	calculation of energy	CSO 1.7: To define and			

	levels for hydrogen like atoms and their spectra	•			
UNIT 2 Position measurement and Heisenberg uncertainty principle	Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy- time uncertainty principle.	explain their spectra.(A) CSO 2.1: To understand the challenges and limitation associated with the precisely measuring the position of particles.(U) CSO 2.2: To analyse the gamma ray microscope thought experiment and its position measurement.(A) CSO 2.3: To explain the concept of wave-particle duality. (U) CSO 2.4: To understand the particles exhibit both wave-like and particle-like characteristics.(U) CSO 2.5: To derive the Heisenberg uncertainty principle.(A) CSO 2.6: To discuss the impossibility of determining both the position and momentum of a	9	20	Not to be filled- in

		particle simultaneously.(U) CSO 2.7: To apply the uncertainty principle to estimate the minimum energy of a confined particles.(A) CSO 2.8: To understand the connection between position uncertainties and energy uncertainties.(U) CSO 2.9: To derive the energy- time uncertainty principles.(A) CSO 2.10: To discuss the energy-time uncertainty principle for the energy and time measurement in quantum mechanics. (U)			
UNIT 3 Schrodinger equation for non- relativistic particles; probabilities and normalization	-	CSO 3.1:To understand the basic concept of two-slit interference experiment.(U) CSO 3.2:To explore how interference patterns differ when conducting the experiment with photons, atoms and particles.(A) CSO 3.3:To define and understand the linear superposition principle.(K) CSO 3.4:To explain the concept of matter waves.(U) CSO 3.5:To understand wave amplitude and its significance in describing the behaviour of particles at the quantum level.(U) CSO 3.6:To derive and understand the Schrodinger equation for nonrelativistic particles.(A) CSO 3.7:To understand the role of wave function in describing the quantum state of a system.(U) CSO 3.8:To define momentum and energy operators in the context of quantum mechanics.(K) CSO 3.9:To understand the concept of stationary states and their significance in Schrodinger's equations.(U) CSO 3.11:To understand how probabilities are related to the	8	20	Not to be filled- in

UNIT 4 Quantum mechanics, nuclear physics and atomic structure	One dimensional infinitely rigid box- energy eigen values and igen functions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier. Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy.	CSO 4.2:To calculate energy eigen values and eigen functions for a particle confined in a one- dimensional box.(A) CSO 4.3:To discuss the normalization wave function.(U) CSO 4.4:To explain the concept of quantum dots.(U) CSO 4.4:To explain the concept of quantum dots.(U) CSO 4.5:To analyse quantum mechanical scattering phenomena.(A) CSO 4.6:To understand tunnelling through potential barriers, both step potential and rectangular potential.(U) CSO 4.7:To explore the size and structure of atomic nuclei.(A) CSO 4.8: To understand the relationship between the size and	10	20	Not to be filled- in
		including binding energy.(A)			
UNIT 5 Radioactivity	stability of nucleus; Law of radioactive decay; Mean life and half-life; decay; decay - energy released, spectrum an d Pauli's prediction of neutrino; -ray emission. Fission and fusion - mass deficit, relativity and generation of	factors influencing the stability of atomic nuclei.(U) CSO 5.2: To explain the role of forces within the nucleus in maintaining stability.(U) CSO 5.3: To discuss the law of radioactive decay.(U) CSO 5.4: To define and calculate mean life and half-life of	9	22	Not to be filled- in

energy; Fission -	CSO 5.5:To explain the process	
nature of fragments	of alpha decay.(U)	
and emission of	CSO 5.6:To understand the	
neutrons. Nuclear	characteristics of alpha particles	
reactor: slow neutrons	emitted during the decay.(U)	
interacting with	• • • •	
Uranium 235; Fusion		
and thermonuclear	• · · ·	
reactions	decay spectrum and the role	
	neutrons, as predicted by	
	Pauli.(A)	
	CSO 5.9:To understand the	
	emission of gamma rays in	
	nuclear processes.(U)	
	CSO 5.10: To discuss the	
	properties and characteristics of	
	gamma ray.(U)	
	CSO 5.11: To explain the	
	concept of mass deficit in nuclear	
	reaction.(U)	
	CSO 5.12: To understand the role	
	of relativity in explaining mass-	
	energy equivalence.(U)	
	CSO 5.13: To discuss the	
	generation of energy in nuclear	
	fission and fusion reaction.(A)	
	CSO 5.14: To describe the nature	
	if fragments produced in nuclear	
	fission.(K)	
	CSO 5.15: To understand the	
	significance of neutron emission	
	in fission reaction.(U)	
	CSO 5.16: To explain the basic	
	principle if nuclear reactor.(U)	
	CSO 5.17: To understand the	
	role of sloe neutron in sustaining	
	a chain reaction in uranium-	
	235.(U)	
	CSO 5.18: To discuss the	
	principle of fusion reactions and	
	their role in stellar energy	
	production.(U)	
	CSO 5.19: To explain the	
	condition required for	
	thermonuclear reaction.(U)	

- 1. Arthur Beiser, Concepts of Modern Physics, McGraw-Hill, 2002.
- 2. Rich Meyer, Kennard, Coop, Introduction to Modern Physics, Tata McGraw Hill, 2002.
- 3. David J. Griffith, Introduction to Quantum Mechanics, Pearson Education, 2005.
- 4. Jewett and Serway, Physics for scientists and Engineers with Modern Physics, Cengage Learning, 2010.
- 5. R.A. Serway, C.J. Moses, and C.A.Moyer, *Modern Physics*, Cengage Learning , 2005.
- 6. G. Kaur and G.R. Pickrell, Modern Physics, McGraw Hill ,2014.

Semester	IV
Paper Code	PHM 4(P)
Paper Title	Elements of Modern physics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The student will get the opportunity to measure Planck's constant, to find the Boltzmann constant value using V-I characteristics, they will also find wavelength of laser source by single and double slit experiment, find the value of e/m by magnetic focusing or bar magnet.

- 1. To determine value of Boltzmann constant using V-I characteristic of PN diode.
- 2. To determine work function of material of fi lament of directly heated vacuum diode.
- 3. To determine the ionization potential of mercury.
- 4. To determine value of Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 7. To study the diffraction patterns of single and double slits using laser and measure its intensity variation using Photosensor& compare with incoherent source Na.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.

SUGGESTED READINGS:

- 1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971.
- 2. Michael Nelson and Jon M. Ogborn, Advanced level Physics Practicals, 4th Edition, Heinemann Educational Publishers, 1985.
- 3. I.Prakash& Ramakrishna, A Text Book of Practical Physics, 11th Edn, Kitab Mahal, 2011.

Semester- V

 -	 	 	 	 	 	• •	 	 	 	 	 	-	-	-	-	• •	 	 -	-	-	-	-	-	-	• -	• •	 • •	 	 	 	 -	-	-	-	-	-	-	 	 	-	 •	•	

Semester	V
Paper Code	PHM 5
Paper Title	Solid State Physics
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Solid state physics:

CO 1:	To make the students understand the basic concept of the crystal structure.
CO 2:	To aid the students in the understanding of Elementary Lattice Dynamics.
CO 3:	To create an understanding among the students about different magnetic materials and
	their properties.
CO 4:	To inculcate and create interest among students in the understanding of Dielectric
	properties of materials and Ferroelectric Properties of Materials
CO 5:	To assist the students in the understanding of Elementary band theory and
	superconductors

Unit & Title	C OBJECTIVES (CSO: Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Solids: Amorphous	CSO 1.1: To identify	9	20	Not to be
Crystal Structure	and Crystalline	Amorphous and			filled-in
	Materials. Lattice	Crystalline Materials.			
	Translation Vectors.	(K)			
	Lattice with a Basis.	CSO 1.2: To describe			
	Unit Cell. Miller	lattice translations			
	Indices. Reciprocal	vectors. (K)			
	Lattice. Types of	CSO 1.3: To define			
	Lattices. Brillouin	basis and unit cell (K).			
	Zones. Diffraction of	CSO 1.4: To discuss			
	X-rays by Crystals.	Miller indices. (U)			
	Bragg's Law.	CSO 1.5: To discuss			
		the concept of			
		reciprocal lattice. (U)			
		CSO 1.6: To classify			
		different types of			
		lattices. (U)			
		CSO 1.7: To define the			
		Brillouin zones and			
		discuss its derivations.			
		(K)			
		CSO 1.8: To derive the diffraction of x rays of			
		diffraction of x-rays of crystals. (A)			
		CSO 1.9: To define			
		Bragg's law. (K)			
		CSO 1.10: To construct			
		the reciprocal lattice for			
		simple cubic, face			
		centered cubic and body			
		centered cubic structure.			
		(A)			
		CSO 1.11: To			
		differentiate between			
		simple cubic, face			
		centered cubic and body			
		centered cubic structure			
		CSO 1.12: To derive			
	T	Bragg's equation. (A)	0	10	NT 2 2 T
UNIT 2	Lattice Vibrations	CSO 2.1: To discuss	8	19	Not to be
Elementary	and Phonons: Linear	the concept of lattice			filled-in
Lattice Dynamics	Monoatomic and Diatomic Chains.	vibrations and phonons. CSO 2.2: To construct			
	Acoustical and	the lattice vibrational			
	Optical Phonons.	mode for monoatomic			
	Qualitative	crystal. (A)			
	Description of the	CSO 2.3: To construct			
	Phonon Spectrum in	the lattice vibrational			
	Solids. Dulong and	mode for diaoatomic			
	Petit's Law, Einstein	crystal. (A)			
	and Debye theories of	CSO 2.4: To define			

	specific heat of solids. T ³ law	1			
	solids. 1° law	phonons. (K) CSO 2.5: To discuss			
		the description of the			
		phonon spectrum in			
		solids. (U)			
		CSO 2.6: To state			
		Dulong and Petit's Law.			
		CSO 2.7: To describe			
		Einstein and Debye			
		theories of specific heat			
		of solids. (K)			
		CSO 2.8: To derive the			
		Dulong and Petit's law.			
		(A)			
		CSO 2.9: To construct			
		Einstein theory of			
		specific heat of solid.			
		(A)			
		CSO 2.10: To construct			
		Debye theory of			
		specific heat of solid.			
		(A)			
		CSO 2.11: To define T^3			
		law. (K)			
		CSO 2.12: To derive			
		the T ³ Law			
			0	10	NT () 1
UNIT 3	Dia-, Para-, Ferri-	CSO 3.1: To define	8	19	Not to be
3.4			-		C'11 1 '
Magnetic	and Ferromagnetic		-		filled-in
properties of	and Ferromagnetic Materials. Classical	Ferromagnetic			filled-in
0	and Ferromagnetic Materials. Classical Langevin Theory of	Ferromagnetic materials. (K)			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia- and	Ferromagnetic materials. (K) CSO 3.2: To derive the			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia– and Paramagnetic Domains. Quantum	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia– and Paramagnetic Domains. Quantum Mechanical Treatment of	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A)			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia– and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism.	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia- and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia– and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A)			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia- and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K)			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia- and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetism and			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetism and Ferromagnetic domains.			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetism and Ferromagnetic domains. (A)			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetism and Ferromagnetic domains. (A) CSO 3.6: To illustrate			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetism and Ferromagnetic domains. (A) CSO 3.6: To illustrate the B-H curve of			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetic domains. (A) CSO 3.6: To illustrate the B-H curve of ferromagnetic material.			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetism and Ferromagnetic domains. (A) CSO 3.6: To illustrate the B-H curve of ferromagnetic material. (A)			filled-in
properties of	and Ferromagnetic Materials. Classical Langevin Theory of dia— and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion	Ferromagnetic materials. (K) CSO 3.2: To derive the classical Langevin theory of Dia- and paramagnetic magnetism. (A) CSO 3.3: To analyse the quantum mechanical treatment of paramagnetism. (A) CSO 3.4: To state Curie's law. (K) CSO 3.5: To construct Weiss's theory of Ferromagnetic domains. (A) CSO 3.6: To illustrate the B-H curve of ferromagnetic material.			filled-in

			[
		Dia-, Para-, Ferri- and			
		Ferromagnetic			
		materials. (U)			
		CSO 3.8: To define			
		domains. (K)			
UNIT 4	Polarization. Local	CSO 4.1: To define	11	22	Not to be
Dielectric	Electric Field at an	polarization. (K)			filled-in
properties of	Atom. Depolarization	CSO 4.2: To explain			
materials and	Field. Electric	local electric field of an			
Ferroelectric	Susceptibility.	atom. (U)			
Properties of	Polarizability.	CSO 4.3: To define			
Materials	Clausius Mosotti	depolarization field. (k)			
	Equation. Classical	CSO 4.4: To define			
	Theory of Electric	electric susceptibility.			
	Polarizability.	(K)			
	Normal and	CSO 4.5: To define			
	Anomalous	polarizability. (K)			
	Dispersion. Cauchy	CSO 4.6: To derive and			
	and Sellmeir	explain Clausius			
	relations. Langevin-	Mosotti equation. (A)			
	Debye equation.	CSO 4.7: To explain			
	Optical Phenomena.	classical theory of			
	Application: Plasma	electric polarizability.			
	Oscillations, Plasma	(U) ¹			
	Frequency, Plasmons.	CSO 4.8: To define and			
	· · · · · · · · · · · · · · · · · · ·	discuss normal and			
	Ferroelectric	anomalous dispersion.			
	Properties of	_			
	Materials: Structural	CSO 4.9: To construct			
	phase transition,	Cauchy and Sellmeir			
	Classification of	relations. (A)			
		CSO 4.10: To derive			
	effect, Pyroelectric				
	effect, Ferroelectric	equation. (A)			
	effect,	CSO 4.11: To discuss			
	Electrostrictive	optical phenomena. (U)			
	effect, Ferroelectric	CSO 4.12: To describe			
	domains, PE	plasma oscillations,			
	hysteresis loop.	plasma frequency,			
		plasmons. (K)			
		CSO 4.13: To define			
		and explain ferroelectric			
		properties of materials.			
		(U)			
UNIT 5	Elementary band	CSO 5.1: To define and	9	20	Not to be
Elementary band	theory: Kronig	explain the elementary			filled-in
theory and	Penny model. Band	band theory. (K)			
superconductivity.	Gap. Conductor,	CSO 5.2: To construct			
	Semiconductor and	Kronig Penny model.			
	insulator.	(A)			
	Conductivity of				
	Semiconductor,	band gap. (U)			
	mobility, Hall Effect	CSO 5.4: To define			
	and Hall coefficient.	conductor,			
	Superconductivity:	semiconductor and			
	Superconductivity.	senneonaucioi allu	l	1	

Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation. Isotope effect.	the conductivity of		
	1		

- 1. Charles Kittel, Introduction to Solid State Physics, 8th Edition, Wiley India Pvt. Ltd, 2004.
- 2. J.P. Srivastava, *Elements of Solid State Physics*, 4th Edition, Prentice-Hall of India, 2015.
- 3. Leonid V. Azaroff, Introduction to Solids, Tata Mc-Graw Hill, 2004.
- 4. N.W. Ashcroft and N.D. Mermin, Solid State Physics, Cengage Learning, 1976.
- 5. H. Ibach and H. Luth, Solid-state Physics, Rita John, Springer Solid State Physics, McGraw Hill 2009, 2014.
- 6. 1/e M. Ali Omar, *Elementary Solid State Physics*, Pearson India, 1999.
- 7. M.A. Wahab, Solid State Physics, Narosa Publications, 2011.

Semester	V
Paper Code	PHM 5(P)
Paper Title	Solid State Physics
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

The aim and objective of the lab course is to introduce the students to the formal structure of solid state physics so that they can use these as per their requirement.

- 1. Measurement of susceptibility of paramagnetic solution by (Quinck's Tube Method)/suitable method.
- 2. To measure the Magnetic susceptibility of Solids.
- 3. To measure the Dielectric Constant of a dielectric Material by suitable method.
- 4. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 5. To draw the BH curve of Fe using Solenoid/transformer & determine energy loss from Hysteresis.
- 6. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 °C) and to determine its band gap.
- 7. To determine the Hall coefficient of a semiconductor sample.

- 1. B.L. Flint and H.T. Worsnop, Advanced Practical Physics for students, Asia Publishing House, 1971.
- 2. Michael Nelson and Jon M. Ogborn, *Advanced level Physics Practicals*, 4th Edition, Heinemann Educational Publishers, reprinted 1985.
- 3. I. Prakash& Ramakrishna, A Text Book of Practical Physics, 11th Ed., Kitab Mahal, 2011.
- 4. J.P. Srivastava, *Elements of Solid State Physics*, 2nd Ed., Prentice-Hall of India, 2006.

Semester-VI

Semester	VI
Paper Code	PHM 6
Paper Title	Nuclear and Particle Physics
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Nuclear and Particle Physics:

CO 1:	To understand the basic properties of the nucleus.
CO 2:	To analyse different nuclear models.
CO 3:	To make the students understand the concept of radioactivity and nuclear reactions.
CO 4:	To understand the working of nuclear detectors and counters.
CO 5:	To make the students understand the different types of particles and the conservation
	laws related to them.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Constituents of	CSO 1.1: To define nucleus.(K)	11	18	Not to
General	nucleus and their	CSO 1.2: To understand the			be
Properties of	Intrinsic properties,	constituents that made up a			filled-
Nuclei	quantitative facts	nucleus.(U)			in
	about size, mass,	CSO 1.3: To learn the different			
	charge density (matter	intrinsic properties of the nucleus			
	energy), binding	.(U)			
	energy, average	CSO 1.4: To define binding energy			
	binding energy and its	and explain its variation with mass			
	variation with mass	number.(K&A)			
	number, main features	CSO 1.5: To discuss the			
	of binding energy	classification of nuclei.(U)			
	versus mass number	CSO 1.6: To understand the			
	curve, N/A plot,	concept of nuclear force.(U)			
	angular momentum,				
	parity, magnetic				
	moment, electric				

	moments, nuclear excites states, concept of nuclear force.				
UNIT 2 Nuclear Models	Liquid drop model approach, Fermi gas model ,semi empirical mass formula and significance of various terms, condition of nuclear stability,evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model.	 CSO 2.1: To explain the Liquid Drop model.(U) CSO 2.2: To explain the Fermi Gas model.(U) CSO 2.3: To explain the semi empirical mass formula and the significance of the various terms in the formula. (U) CSO 2.4: To explain the condition of nuclear stability.(U) CSO 2.5: To explain the evidence of nuclear shell structure. (U) CSO 2.6: To define magic numbers .(K) CSO 2.7: To explain the shell model using the concept of magic numbers. (U) 	13	22	Not to be filled- in
UNIT 3 Radioactivity	(a) Alpha decay: basics of α -decay processes, qualitative idea of alpha emission theory, Geiger Nuttall law, (b) Beta-decay: energy kinematics for beta-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion. Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate.	CSO 3.1: To define radioactivity .(K) CSO 3.2: To define radioactivity decay.(K) CSO 3.3: To define alpha, beta and gamma rays.(K) CSO 3.4: To define alpha decay.(K) CSO 3.5: To discuss the basics of alpha decay processes.(U) CSO 3.6: To discuss the qualitative idea of alpha emission theory.(U) CSO 3.7: To explain the Geiger Nuttal law.(U) CSO 3.8: To define beta decay.(K) CSO 3.9: To derive the energy kinematics for different types of beta decay.(A) CSO 3.10: To explain the neutrino hypothesis.(U) CSO 3.11: To define gamma decay.(K) CSO 3.12: To explain the different types of gamma decay processes.(U) CSO 3.14: To define nuclear reactions.(K) CSO 3.15: To discuss the conservation laws related to nuclear reactions.(U) CSO 3.16: To derive the Q-Value of nuclear reactions.(A)	14	24	Not to be filled- in

UNIT 4	Ionization chamber,	CSO 4.1: To define detector.(U)	12	20	Not to
Detector for	proportional counter	CSO 4.2: To explain the Ionization			be
Nuclear	and GM Counter.	Chamber.(U)			filled-
Radiations	Basic principle of	CSO 4.3: To explain the			in
	Scintillation Detectors	Proportional Counter.(U)			
	and construction of	CSO 4.4: To explain the GM			
	Photo-Multiplier Tube	Counter.(U)			
	(PMT).	CSO 4.5: To explain Scintillation			
	Particle	Detector.(U)			
	Accelerators: Van-de	CSO 4.6: To explain Photo			
	Graaff generator,	Multiplier tube. (U)			
	Linear accelerator,	CSO 4.7: To define			
	Cyclotron	accelerators.(K)			
		CSO 4.8: To explain Vande-Graff			
		generator.(U)			
		CSO 4.9: To explain Linear			
		Accelerator.(U)			
		CSO 4.10: To define Cyclotron.(K)			
		CSO 4.11: To explain the			
		Cyclotron.(U)			
UNIT 5	Particle interactions;	CSO 5.1: To define particle	10	16	Not to
Particle	basic features, types	Physics.(K)	- •		be
physics	of particles and its	CSO 5.2: To define elementary			filled-
1 5	families. Symmetries	particles.(K)			in
	and Conservation	CSO 5.3: To explain the			
	Laws: energy and	classification of elementary			
	momentum, angular	particles.(U)			
	momentum, parity,	CSO 5.4: To discuss the			
	baryon number,	fundamental interactions associated			
	Lepton number,	with the elementary particles. (A)			
	Isospin, Strangeness	CSO 5.5: To explain the intrinsic			
	and charm, concept of	1			
	quark model.	elementary particles. (U)			
	•	CSO 5.6: To explain the			
		conservation laws associated with			
		the elementary particles.(U)			
		CSO 5.7: To explain the			
		symmetries related to conservation			
		laws.(U)			
		CSO 5.8: To define quark.(K)			
		CSO 5.9: To explain the quark			
		model.(U)			

- 1. Kenneth S. Krane , Introductory nuclear Physics , Wiley India Pvt. Ltd., 2008.
- 2. Bernard L. Cohen , Concepts of nuclear physics, Tata Mc graw Hill, 1998.
- 3. R.A. Dunlap, Introduction to the physics of nuclei & particles, Thomson Asia, 2004.
- 4. K. Heyde, *Basic ideas and concepts in Nuclear Physics An Introductory Approach*, IOP- Institute of Physics Publishing, 2004.
- 5. G.F. Knoll, Radiation detection and measurement, John Wiley & Sons, 2000.
- 6. J.M. Blatt &V.F.Weisskopf, Theoretical Nuclear Physics, Dover Pub.Inc., 1991.

Semester-VII

Semester	VII
Paper Code	PHM 7
Paper Title	Digital, Analog and Instrumentation
Number of teaching hours per week	03
Total number of teaching hours per semester	45
Number of credits	03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Digital, Analog and Instrumentation**:

CO 1:	To instill an idea on Digital Circuits among the students
CO 2:	To create an awareness among the students on Semiconductor Devices, Amplifiers and
	Bipolar Junction transistors
CO 3:	To let the students understand the concepts of Operational Amplifiers and Sinusoidal
	Oscillators
CO 4:	To inculcate and create interest among students in Instrumentations
CO 5:	To assist the students in understanding Power Supply and Timer IC

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Binary Numbers	CSO 1.1: To define digital	11	24	Not
	Decimal to Binary and	circuits. (K)			to be
Digital	Binary to Decimal	CSO 1.2:To discuss on the			fille
Circuits	Conversion, AND, OR	various number systems and			d-in
	and NOT Gates	their interconversions .(U+A)			
	(Realization using	CSO 1.3: To introduce to logic			
	Diodes	gates and its applications.(U+A)			
	and Transistor).NAND	CSO 1.4:To discuss on De			
	and NOR	Morgan's theorem.(U+A)			
	Gates as Universal	CSO 1.5:To introduce to			
	Gates.XOR and XNOR	Booleans law and simplify			
	Gates.De Morgan's	equations .(U+A)			
	Theorems.	CSO 1.6:To discuss K-Map and			
	Boolean Laws.	simplify problems using the			
	Simplification of Logic	same.(K+U+A)			
	Circuit using Boolean	CSO 1.7:To discuss on 2's			
	Algebra. Fundamental	complement and perform binary			
	Products. Minterms and	addition and subtraction. (A)			
	Max terms. Conversion	CSO 1.8: To define and explain			
	of a Truth Table into an	half adder, full adder, half			
	Equivalent Logic Circuit	subtractor and full subtractor.			
	by Sum of Products	(K+U+A)			
	Method and Karnaugh				
	Map.				
	Binary Addition. Binary				
	Subtraction using 2's				
	Complement Method.				
	Half Adders and Full				

T	4.1.1				
	Adders and				
	Subtractors,4-bit binary				
	Adder Subtractor.				
UNIT 2	Semiconductor Diodes:	CSO 2.1:To define	11	24	Not
Semiconducto	P and N type	semiconductors .(K)			to be
r Devices and	semiconductors. Barrier	CSO 2.2: To discuss the types			fille
		• 1			d-in
Amplifiers		of semiconductors.(U)			u- III
and	Junction Diode.	CSO 2.3:To explain on the			
Bipolar	Qualitative Idea of	formation of barrier in p-n			
Junction	Current Flow	junction. (U)			
transistors	Mechanism	CSO 2.4: To define forward and			
	in Forward and Reverse	reverse bias mode. (K)			
	Biased Diode.	CSO 2.5:To explain on the			
	PN junction and its	-			
	characteristics.	forward and reverse bias mode.			
	Principle and structure	(U+A)			
	of	CSO 2.6:To discus the VI			
	LEDs, Photodiode and	characteristic curve if pn			
	Solar Cell.	junction. (U)			
		CSO 2.7: To define and discuss			
	Bipolar Junction	the principle and structure of			
	transistors: n-p-n and	LED, Photodiode and Solar			
	p-n-p Transistors.	Cell. (A+U)			
	Characteristics of CB,	CSO 2.8:To define			
	,				
	CE and CC	transistor.(K)			
	Configurations. Active,	CSO 2.9: To explain on the			
	Cut off & Saturation	types of transistors and its			
	regions Current gains a	characteristics in various			
	and β .Relations between	modes. (U+A)			
	α and β . Load Line	CSO 2.10: To define and			
	analysis of Transistors.	explain on power amplification			
	DC Load line &	factors .(K)			
	De Load line a	CSO 2.11: To explain the			
		-			
		relationship of α and β . (A)			
		CSO 2.12: To discuss on the			
		mechanism of current flow.			
		(A+U)			
UNIT 3	Operational Amplifiers	CSO 3.1: To explain on	11	23	Not
Operational	Applications of Op-	inverting and non-inverting			to be
Amplifiers	Amps:	amplifiers.(U+A)			fille
and	(1)Inverting and non-	CSO 3.2: To discuss on the use			d-in
Sinusoidal	inverting Amplifiers,	of op-amps as an adder,			ч-111 ч
	• •	1 1			
Oscillators	(2)Adder,(3) Subtractor,	subtractor, differentiator, and			
	(4)Differentiator,	integrator. (U+A)			
	(5)Integrator	CSO 3.3: To explain			
	Sinusoidal Oscillators:	Barkhausen's Criterion for Self-			
	Barkhausen's Criterion	sustained oscillator.			
	for Self-sustained	CSO 3.4: To define operational			
	Oscillations.	amplifier and its difference			
	Determination of	from normal amplifier .(U)			
		- · · ·			
	Frequency of RC	CSO 3.5: To define RC			
	Oscillator	coupled amplifier .(K)			
		CSO 3.6: To determine the			
UNIT 4	Introduction to CRO:	frequency of RC oscillator .(A) CSO 5.1: To define CRO. (K)	5	12	

Instrumentat ions	Block Diagram of CRO. Applications of CRO:(1)Study of Waveform,(2)Measurem ent of Voltage, Current, Frequency, and Phase Difference	CSO 5.2: To discuss the circuital diagram of CRO .(U) CSO 5.3: To study the Application of CRO for measurement of current, voltage. (U+A) CSO 5.4:To explain on how to study waveforms using CRO .(U)			to be fille d-in
UNIT 5 Power Supply and Timer IC	Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifier Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation. Timer IC:IC555 Pin diagram and its application as A stable and Monostable Multivibrator.	CSO 5.1:To define power supply .(K) CSO 5.2: To define rectifiers. (K) CSO 5.3: To explain half wave and full wave rectifier. (U) CSO 5.4: To calculate the ripple factor and efficiency of the output of both half wave and full wave rectifier. (U+A) CSO 5.5: To define filters. (K) CSO 5.6:To study on the importance of filters in rectifiers .(U+A) CSO 5.7: To define and explain zener diode. (U) CSO 5.8: To explain on the application of Zener diode as a voltage regulator. (A+U) CSO 5.9: To define explain on timer IC 555. (K+U) CSO 5.10: To discuss on the pin diagram of the timer IC. (U) CSO 5.11: To explain on the application of timer IC. (A)	7	17	Not to be fille d-in

- 1. J.Millmanand C.C.Halkias, Integrated Electronics, TataMc-GrawHill, 1991.
- 2. S.Salivahanan&N.S.Kumar, *Electronic devices&circuits*, TataMc-GrawHill,2012.
- 3. M.H.Rashid, *Microelectronic Circuits*, ^{2nd}Edn., CengageLearning, 2011.
- 4. Tech., Helfrick and Cooper, *Modern Electronic Instrumentation and Measurement*, PHI Learning, 1990.
- 5. A.P.Malvino, D.P.LeachandSaha, *Digital Principles and Applications*, 7thEd., TataMcGrawHill 2011.
- 6. A.Anand Kumar, *Fundamentals of Digital Circuits*, 2ndEdition, PHI Learning Pvt.Ltd., 2009.
- 7. R.A.Gayakwad, OP-AMP & Linear Digital Circuits, PHI Learning Pvt.Ltd, 2000.

Semester	VII
Paper Code	PHM 7(P)
Paper Title	Digital, Analog and Instrumentation
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	01

Laboratory Objective:

Students will learn about combinational logic functions such as adders, multivibrator, etc and learn to design logic circuits.

- 1. To measure(a)Voltage,and(b)Frequency of a periodic wave form using CRO
- 2. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 3. To minimize a given logic circuit.
- 4. Half adder, Full adder and 4-bit Binary Adder.
- 5. Adder-Subtractor using Full Adder I.C.
- 6. To design a stable multivibrator of given specifications using 555 Timer.
- 7. To design a monostable multivibrator of given specifications using 555 Timer.
- 8. To study IV characteristics of PN diode, Zener and Light emitting diode
- 9. To study the characteristics of a Transistor in CE configuration.
- 10. To design a CE amplifier of given gain(mid-gain)using voltage divider bias.
- 11. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.
- 12. To design an on-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response.
- 13. To study Differential Amplifier of given I/O specification using Op-amp.
- 14. To investigate a differentiator made using op-amp.
- 15. To design a Wien Bridge Oscillator using an op-amp.

- 1. P.B.Zbar, A.P.Malvino, M.A.Miller *Basic Electronics: Atext lab manual*, Mc-Graw Hill., 1994.
- 2. J.D.Ryder, *Electronics: Fundamentals and Applications*, Prentice Hall, 2004.
- 3. R.A.Gayakwad, OP-Amps & Linear Integrated Circuit, 4th Edn, Prentice Hall ,2000.
- 4. Albert Malvino, *Electronic Principle*, TataMc-GrawHill ,2008.

Semester	VII
Paper Code	PHM 8
Paper Title	Biophysics
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Bio Physics**:

CO 1:	To make the students understand the building blocks and structure of living state as well as living state interactions.
CO 2:	To guide the students in the understanding of heat transfer mechanism in biomaterials
	and thermodynamics involved in living state.
CO 3:	To assist the students in learning about open systems. Chemical thermodynamics and
	diffusion and transport mechanisms.
CO 4:	To create an interest among students in the understanding Fluids.
CO 5:	To aid the students in the understanding of Bioenergetics and Molecular motors.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Building Blocks &	CSO 1.1: To define	15	23	Not to be
Building Blocks	Structure of Living	atoms and ions. (K)			filled-in
& Structure of	State: Atoms and	CSO 1.2: To describe			
Living State and	ions, molecules	molecules essential for			
Living State	essential for life,	life. (K)			
Interactions	what is life.	CSO 1.3: To discuss			
	Living State	what is life. (U)			
	Interactions: Forces	CSO 1.4: To describe			
	and molecular bonds,	forces and molecular			
	electric & thermal	bonds. (K)			
	interactions, electric	CSO 1.5: To explain			
	dipoles, Casimir	electric and thermal			
	interactions, domains	interactions. (U)			
	of physics in biology.	CSO 1.6: To evaluate			
		electric dipoles. (A)			
		CSO 1.7: To discuss			
		Casimir interactions. (U)			
		CSO 1.8: To discuss the			
		domains of physics in			
		biology. (U)			
UNIT 2	Heat Transfer in	CSO 2.1: To explain	17	25	Not to be
Heat Transfer in	biomaterials: Heat	heat transfer			filled-in
biomaterials and	Transfer Mechanism,	mechanism. (U)			
Living State	The Heat equation,	CSO 2.2: To derive the			
Thermodynamics	Joule heating of	heat equation. (A)			
	tissue.	CSO 2.3: To discuss			
	Living State	Joule heating of tissue.			
	Thermodynamics:	(U)			
	Thermodynamic	CSO 2.4: To describe			
	equilibrium, first law	thermodynamic			
	of thermodynamics	equilibrium. (K)			

	I		1	1	
	and conservation of	CSO 2.5: To state and			
	energy. Entropy and	define the first law of			
	second law of	thermodynamics. (K)			
	thermodynamics,	CSO 2.6: To discuss the			
	Physics of many	conservation of energy.			
	particle systems, two	(U)			
	state systems,	CSO 2.7: To explain			
	continuous energy	entropy and the second			
	distribution, Casimir	law of thermodynamics.			
	contribution of free	(U)			
	energy	CSO 2.8: To determine			
		the physics of many			
		particles system. (A)			
		CSO 2.9: To discuss			
		two state systems. (U)			
		CSO 2.10: To explain			
		continuous energy			
		distribution. (U)			
		CSO 2.11: To examine			
		Casimir contribution of			
		free energy. (A)			
UNIT 3	Open systems and	CSO 3.1: To define	15	23	Not to be
Open systems,	chemical	enthalpy. (K)			filled-in
chemical	thermodynamics:	CSO 3.2: To define			
thermodynamics,	Enthalpy, Gibbs Free	Gibbs free energy. (K)			
Diffusion and	Energy and chemical	CSO 3.3: To define			
transport	potential, activation	chemical potential. (K)			
	energy and rate	CSO 3.4: To describe			
	constants, enzymatic	activation energy and			
	reactions, ATP	rate constants. (K)			
	hydrolysis&	CSO 3.5: To explain			
	synthesis, Entropy of	•			
	mixing, The grand	CSO 3.6: To explain			
	canonical ensemble,	ATP hydrolysis and			
	Haemoglobin.	synthesis. (U)			
	Diffusion and	CSO 3.7: To discuss			
	transport: Maxwell-	entropy of mixing. (U)			
	Boltzmann statistics,	CSO 3.8: To describe			
	Fick's law of	the grand canonical			
	diffusion,	ensemble. (K)			
	sedimentation of Cell	CSO 3.9: To define and			
	Cultures, diffusion in	describe haemoglobin.			
	a centrifuge, diffusion	(\mathbf{K})			
	in an electric field,	CSO 3.10: To deduce			
	Lateral diffusion in	the Maxwell Boltzmann			
	membranes, Navier	statistics. (A)			
	stokes equation	CSO 3.11: To explain Fick's law of diffusion.			
		(U) CSO 3. 12: To discuss			
		sedimentation of cell			
		cultures. (U)			
		CSO 3.13: To examine			
		diffusion in a centrifuge.			
		(A)			
		CSO 3.14: To examine			
			l		

		diffusion in an electric field. (A) CSO 3.15: To examine diffusion in membranes. (A) CSO 3.16: To derive the Navier stokes equation. (A)			
UNIT 4 Fluids	Laminar and turbulent fluid flow, Bernoulli's equation, equation of continuity, venture effect, Fluid dynamics of circulatory systems, capillary action.	CSO 4.1: To define and describe laminar and turbulent fluid flow. (K) CSO 4.2:To derive Bernoulli's equation. (A) CSO 4.3:To derive equation of continuity. (A) CSO 4.4:To explain Venture effects (U) CSO 4.5:To discuss fluid dynamics of circulatory systems. (U) CSO 4.6:To explain capillary action. (U)	8	14	Not to be filled-in
UNIT 5 Bioenergetics and Molecular motors	Kinesins, Dyneins, and microtubule dynamics, Brownian motion, ATP synthesis in Mitochondria, Photosynthesis in Chloroplasts, Light absorption in biomolecules	CSO 5.1:To describe Kinesins. (K) CSO 5.2:To describe Dyneins. (K) CSO 5.3:To describe microtubule dynamics. (K) CSO 5.4:To explain Brownian motion. (U) CSO 5.5:To discuss ATP synthesis in Mitochondria. (U) CSO 5.6:To discuss photosynthesis in Chloroplasts. (U) CSO 5.7:To explore light absorption in biomolecules. (A)	8	15	Not to be filled-in

- 1. J. Claycomb, Introductory Biophysics, JQP Tran, Jones & Bartelett Publishers.
- 2. Hughe S W, Aspects of Biophysics, John Willy and Sons.
- 3. P Narayanan , Essentials of Biophysics , New Age International.

-----Semester-VIII

Semester	VIII
Paper Code	PHM 9
Paper Title	Earth Science
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Earth science**:

1110 101101	are the course objectives (cos) for the paper Earth science .
CO 1:	To make the students understandprevailing scientific theories and evidence regarding the
	origin and evolution of the universe, creation of elements and earth, energy and particle
	fluxes incident on the earth and the characteristic of the universe.
CO 2:	To understand the behaviour and structure of the earth, hydrosphere, atmosphere,
	cryosphere and biosphere including the plants and animals diversity.
CO 3:	To create an understanding among the students aboutdynamical process outcomes of
	earth's providing the process shaping earth system, including interaction between solid
	earth, hydrosphere, atmosphere and biosphere and their influence in global geophysical
	and environmental phenomena.
CO 4:	To aid an concept on evolution and concept of time in geological studies and understand
	the geochronological method and history of development in uniformitsrianism,
	catastrophism and neptunism also the geology and geomorphology of Indian subcontinent
	including time line, origin and future evolution of earth.
CO 5:	To understand about the disturbance created by different kinds in different sphere on the
	earth by human population, atmosphere, hydrosphere, geosphere, biosphere creating
	pollution and biodiversity loss.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	The Earth and the	CSO 1.1: To understand	14	23	Not to be
The Earth and	Universe:	the theories and evidence			filled-in
the Universe	(a) Origin of	of the origin and			
	universe, creation of	evolution of universe			
	elements and earth.	including Big Bang			
	A Holistic	theory.(U)			
	understanding of our	CSO 1.2: To explain the			
	dynamic planet	concept on creation of			
	through Astronomy,				
	Geology,	CSO 1.3: To explain the			
	Meteorology and	holistic understanding of			
	Oceanography.	our dynamic planet			
	Introduction to	0			
	various branches of	8 89			
	Earth Sciences.	oceanography. (U)			
	(b) General				
	characteristics and	e			
	origin of the				
	Universe. The Milky				
	Way galaxy, solar	–			
	system, Earth's orbit	0			
	and spin, the Moon's	the universe including its			

·					
	orbit and spin. The	vastness, structure and			
	terrestrial and Jovian	composition and origin			
	planets. Meteorites &	of the universe.(U)			
	Asteroids. Earth in	CSO 1.6: To explain the			
	the Solar system,	structure and component			
	origin, size, shape,	of milky way galaxy,			
	mass, density,	solar system, earth's orbit			
	rotational and	and spin in our			
	revolution	universe.(U)			
	parameters and its	CSO 1.7: To understand			
	age.	and explore the structure and formation of the			
	(c) Energy and particle fluxes	moon's orbit and spin.(U)			
	incident on the Earth.	CSO 1.8: To understand			
	(d) The Cosmic	and differentiating			
	Microwave	between the terrestrial and			
	Background	Jovian planets.(K)			
	<u> </u>	CSO 1.9: To understand			
		the properties and			
		significance of meteorites			
		and asteroids.(U)			
		CSO 1.10: To explain			
		theEarth in the Solar			
		system, origin, size,			
		shape, mass, density,			
		rotational and revolution			
		parameters and its age.(U)			
		CSO 1.11: To understand			
		and explore the various			
		sources of energy and			
		particles fluxes incident			
		on the earth and effect of			
		solar variability and space			
		weather on earth's			
		climate and technological			
		infrastructure.(U)			
		CSO 1.12: To explain			
		and understand the			
		cosmic microwave			
		background and explore the discovery and			
		significance also the			
		measurement of			
		CMB.(U)			
UNIT 2	Structure:	CSO 2.1: To understand	13	23	Not to be
Structure	(a) The Solid Earth:	the solid earth including			filled-in
	Mass, dimensions,	its mass, dimensions,			
	shape and	shape and topography.(U)			
	topography, internal	CSO 2.2: To analyse			
	structure, magnetic	internal structure of earth			
	field, geothermal	including composition			
	energy. How do we learn about Earth's	and properties of crust, mantle and core.(A)			
	interior?	CSO 2.3: To explain the			
	(b) The Hydrosphere:	earth's magnetic field and			
	(c) incligatosphere.	earth 5 magnetie neid allu			1

The oceans, their extent, depth, volume, chemical composition. River systems. (c) The Atmosphere: variation of temperature, density and composition with altitude, clouds. (d) The Cryosphere: Polar caps and ice sheets. Mountain	geothermal energy. (U) CSO 2.4: To explain methods used to learn earth's interior including seismology, geodesy and laboratory experiments.(U) CSO 2.5: To understand the ocean as a major component of earth's hydrosphere, including their extend, depth, and volume(U)		
glaciers. (e) The Biosphere: Plants and animals. Chemical	CSO 2.6: To explain the chemical composition of seawater.(U) CSO 2.7: To explain the		
composition, mass. Marine and land organisms.	river system and studying their characteristics and role in the hydrological cycle.(U) CSO 2.8: To understand		
	the variation of temperature, density and composition of the earth's atmosphere with altitude.(U)		
	CSO 2.9: To explain the atmospheric phenomena such as clouds and circular pattern of		
	atmosphere.(U) CSO 2.10: To explain the polar caps and ice sheets as major components of earth's cryosphere,		
	including their extend, thickness and dynamics.(U) CSO 2.11: To understand		
	theformationofmountainglaciers,movementandsignificanceinshapinglandscape.(U)		
	CSO 2.12: To understand the role of gynosphere in global climate progress.(u)		
	CSO 2.13: To understand the chemical composition and mass of earth's biosphere, including the distribution of organic		
	matter and nutrients.(U) CSO 2.14: To understand		

		the diversity of plants and			
		the diversity of plants and animals and their			
		ecological role and study			
		marine and terrestrial			
		organisms including			
		adaptation to different			
		environments.(U)			
UNIT 3	Dynamical	CSO 3.1:To understand	14	24	Not to be
Dynamical	Processes : (a) The	the origin of the earth's			filled-in
Processes	Solid Earth: Origin	magnetic field, .(U)			
	of the magnetic field.	CSO 3.2:To explain the			
	Source of geothermal	source of geothermal			
	energy.	energy including heat			
	Convection in	transfer mechanism from			
	Earth's core and	earth's interior to the			
	production of its	surface.(U)			
	magnetic field.				
	Mechanical	the earth's core			
	Layering of the				
	Earth. Introduction to				
	geophysical methods	magnetic field and			
	of earth	mechanical layering of			
	Investigations.	the earth.(U)			
	Concept of plate				
	tectonics; sea-floor	-			
	spreading and	geophysical methods of			
	continental	earth.(U)			
	Drift. Geodynamic				
	elements of Earth:				
	Mid Oceanic Ridges,	1 1			
	trenches,	floor spreading and			
	,	continental drift and the			
	island arcs. Origin of				
	Ũ	earth such as mid ocean			
	oceans, continents, mountains and				
		ridges, trenches, transform fault and island			
	Rift valleys.				
	Earthquake and				
	earthquake belts.	CSO 3.6: To explain the			
	Volcanoes: types	origin of ocean,			
	products and	continents, mountains and $rift uplays(A)$			
	Distribution.(b) The	5			
	Hydrosphere: Ocean	CSO 3.7: To understand			
	circulations. Oceanic	1			
	current system and				
	effect of coriolis	including their causes,			
	forces. Concepts of				
	eustasy, tend – air-	hazards.(U)			
	sea interaction; wave	CSO 3.8:Toexplain the			
	erosion	types production and			
	and beach processes.	distribution of the			
	Tides. Tsunamis.	volcanoes .(U)			
	(c) The Atmosphere:	CSO 3.1:To explain the			
	Atmospheric	hydrosphere and			
	circulation. Weather	understanding the ocean			
	and climatic changes.	circulation .(U)			
	Earth's heat budget.	CSO 3.2:To discuss the			

	Γ	I		I	-
	Cyclones.	ocean current system and			
	Climate:	effect of coriolis forces			
	i. Earth's	and concept of eustasy			
	temperature and	trend including air-sea			
	greenhouse effect.	interaction wave erosion			
	ii. Paleoclimate and	and beach process.(U)			
	recent climate	CSO 3.3:To understand			
	changes.	tides and tsunamis causes			
	iii. The Indian	and variation as well as			
	monsoon system.	generation.(U)			
	(d) Biosphere: Water	CSO 3.1:To define			
	cycle, Carbon cycle,	atmosphere and explain			
	Nitrogen cycle,	the atmospheric			
	Phosphorous cycle.	circulation .(K)			
	The role of cycles in	CSO 3.2: To explain the			
		-			
	maintaining a steady				
	state	changes and study earth's			
		heat budget as well as			
		cyclones formation,			
		structure and impact.(U)			
		CSO 3.3:To discuss the			
		climate including earth's			
		temperature and			
		greenhouse effect, paleo			
		climate and recent			
		climate change and the			
		Indian monsoon system			
		CSO 3.1:To understand			
		the biosphere exploring			
		the water cycle, carbon			
		cycle, nitrogen cycle,			
		phosphorous cycle			
		including the movement			
		of water. (U)			
		CSO 3.13: To understand			
		the role of biochemical			
		cycle in maintaining a			
		steady state within the			
		biosphere. (U)			
UNIT 4	Evolution:	CSO 4.1: To understand	13	22	Not to be
Evolution	Nature of	the Evolution in	10		filled-in
	stratigraphic records,	nature.(U)			
	Standard	CSO 4.2: To explain the			
	stratigraphic time	nature of straightgraphic			
	scale and	records, standard time			
	introduction	scale and introduction to			
		concept of time in			
	to the concept of	-			
	time in geological	geological studies.(U) CSO 4.3:To discuss			
	studies. Introduction				
	to geochronological	about the			
	methods in their	geochronological			
	application in	methods and application			
	geological studies.	in geological studies.(U)			
	History of	CSO 4.4: To explain the			
	•	-			
	development in concepts of	history of development in			

				r	
	uniformitarianism,	uniformitarianism,			
	catastrophism and	catastrophism and			
	neptunism. Law of	neptunism.(U)			
	superposition and	CSO 4.5:To understand			
	faunal succession.	the law of superposition			
	Introduction to the	and faunal succession.(A)			
	geology and	CSO 4.6:To explain the			
	geomorphology of	introductory to the			
	Indian subcontinent.	geology and			
	1. Time line of major	geomorphology of Indian			
	geological and	subcontinent.(U)			
	biological events.	CSO 4.7:To understand			
	2. Origin of life on	the timeline of major			
	Earth.	geological and biological			
	3. Role of the	events.(U)			
	biosphere in shaping	CSO 4.8: To understand			
	1 1 0				
	the environment.	the origin of life of earth.			
	4. Future of	(U) CSO 40.To diagona the			
	evolution of the	CSO 4.9: To discuss the			
	Earth and solar	role of biosphere in			
	system: Death of the	shaping the			
	Earth.	environment.(U)			
		CSO 4.10:To understand			
		the future of evolution of			
		the earth and solar system			
		including death of the			
		earth.(U)			
UNIT 5	Disturbing the		6	8	Not to be
Disturbing the	Earth –	the concept on disturbing			filled-in
Earth –	Contemporary	the earth on different			
Contemporary	dilemmas				
		aspects.(U)			
dilemmas	(a) Human	CSO 5.2:To understand			
	(a) Human population growth.	CSO 5.2: To understand how the human			
	(a) Humanpopulation growth.(b) Atmosphere:	CSO 5.2: To understand how the human population growth is			
	(a) Human population growth.	CSO 5.2: To understand how the human			
	(a) Humanpopulation growth.(b) Atmosphere:	CSO 5.2: To understand how the human population growth is			
	(a) Humanpopulation growth.(b) Atmosphere:Green house gas	CSO 5.2: To understand how the human population growth is disturbing the earth			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate 	CSO 5.2: To understand how the human population growth is disturbing the earth contemporary			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. 	CSO 5.2: To understand how the human population growth is disturbing the earth contemporary dilemmas.(U)			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, 	CSO 5.2: To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3: To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U)			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K)			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K)			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the geosphere including chemical effluent and			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the geosphere including chemical effluent and nuclear waste.(U)			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the geosphere including chemical effluent and nuclear waste.(U) CSO 5.6:To discuss			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the geosphere including chemical effluent and nuclear waste.(U) CSO 5.6:To discuss about the biosphere of			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the geosphere including chemical effluent and nuclear waste.(U) CSO 5.6:To discuss about the biosphere of biodiversity loss			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the geosphere including chemical effluent and nuclear waste.(U) CSO 5.6:To discuss about the biosphere of biodiversity loss including deforestation ,			
	 (a) Human population growth. (b) Atmosphere: Green house gas emissions, climate change, air pollution. (c) Hydrosphere: Fresh water depletion. (d) Geosphere: Chemical effluents, nuclear waste. (e) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of 	CSO 5.2:To understand how the human population growth is disturbing the earth contemporary dilemmas.(U) CSO 5.3:To discuss the atmosphere effect including green house gas emission, climate change and air pollution.(U) CSO 5.4:To define and understand the hydrosphere including fresh water depletion.(K) CSO 5.5:To explain the geosphere including chemical effluent and nuclear waste.(U) CSO 5.6:To discuss about the biosphere of biodiversity loss			

- 1. H. Jay Melosh , *Planetary Surface Processes*, Cambridge University Press, 2011.
- 2. Holme's, Principles of Physical Geology, Chapman & Hall, 1992.
- 3. Emiliani, C, *Planet Earth, Cosmology, Geology and the Evolution of Life and Environment*, Cambridge University Press, 1992.

Semester	VIII
Paper Code	PHM 10
Paper Title	Astrobiology and Extraterrestrial Life
Number of teaching hours per week	04
Total number of teaching hours per semester	60
Number of credits	04

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Astrobiology and extraterrestrial life**:

CO 1:	To make the students aware of the basic components of Astrophysics.
CO 2:	To explain to students about the history of astrobiology.
CO 3:	To create an understanding among the students on how stars and solar system are formed.
CO 4:	To inform the students about habitable planets and extraterrestrial life.
CO 5:	To assist the students in the understanding of extrasolar planets and prospects for life on
	Mars

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Basic concepts -	CSO 1.1:To define Astronomical	12	20	Not
Basic Concepts	Astronomical Units,	units. (K)			to be
of Astrophysics	Light year, parallax,	CSO 1.2: To describe light year. (K)			filled-
	Astronomical	CSO 1.3: To explain parallax. (U)			in
	Coordinates, Kepler's	CSO 1.4:To explain Astronomical			
	Laws, Optical	coordinates. (U)			
	telescopes and their	CSO 1.5:To discuss Kepler's law.			
	characteristics,	(U)			
	Modern Optical	CSO 1.6: to define the term			
	telescopes,	convergence. (K)			
	Astronomical	CSO 1.7: To elaborate and			
	Instruments –	characterize optical telescopes. (A)			
	Photometer,	CSO 1.8:To explain modern optical			
	Photographic plates,	telescopes. (U)			
	Spectrographs,	CSO 1.9:To describe different types			
	Charge Coupled	of astronomical instruments such as			
	Detector.	photometer, photographic plates,			
		spectrographs and charge coupled			
		detector. (K)			
UNIT 2	Astrobiology History	CSO 2.1:To explain Astrobiology	12	20	Not
Astrobiology	of Astrobiology, Life	history. (U)			to be
History of	on earth, structure of	CSO 2.2:To describe life on earth.			filled-
Astrobiology	Life – building	(K)			in
	blocks, cells, Life on	CSO 2.3:To explain structure of life			

	. ~		_		
	rth – Conditions on	– building blocks and cells. (U)			
	rly earth, evidence	CSO 2.4: To discuss the conditions on			
	life, the tree of	early earth. (U)			
	e, life in extreme	CSO 2.5: To examine the evidence of			
	vironments, the	life. (A)			
ris		CSO 2.6: To discuss the tree of life.			
	ulticellularity, the				
-	eat oxidation	CSO 2.7: To understand life in			
eve	ent.	extreme environments. (U)			
		CSO 2.8: To explore the rise of multicellularity (A)			
		multicellularity. (A) CSO 2.9:To discuss the great			
		CSO 2.9: To discuss the great oxidation event. (U)			
UNIT 3 Sta	ar & Solar system	CSO 3.1: To describe star and solar	12	20	Not
	ormation of star,	system. (K)	12	20	to be
	assification of star	CSO 3.2: To explain the formation for			filled-
•	HR diagram, White	stars (U)			in
	varfs, Neutron	CSO 3.3: To discuss the classification			
	ars, Pulsars,	of star – HR diagram. (U)			
	ipernovae, Stellar	CSO 3.4: To describe white dwarfs.			
	ack holes, Solar	(K)			
	stem - formation of	CSO 3.5: To describe white dwarfs.			
-	lar system, sun –	(K)			
	aracteristics & its	CSO 3.6: To describe neutron stars.			
dif	fferent zones,	(K)			
Int	terior & Exterior	CSO 3.7:To describe supernovae. (K)			
pla	anets – properties,	CSO 3.8:To describe stellar black			
sat	tellites, Kuiper	holes. (K)			
be	lt, Oort clouds.	CSO 3.9:To explain the formation of			
		solar system. (U)			
		CSO 3.10:To characterise sun and its			
		different zones. (A)			
		CSO 3.11:To explain interior and			
		exterior planets. (U)			
		CSO 12:To list the properties of			
		satellites, Kuiper belt and oort clouds.			
		(K)	10	20	NT
	abitable planets &	CSO 4.1:To describe habitable	12	20	Not
	xtraterrestrial	planets and extraterrestrial			to be filled-
-	telligence abitable planets –	intelligence. (K) CSO 4.2:To characterise habitable			in
	naracteristics –	planets and its conditions. (A)			111
0	Conditions, Life on	CSO 4.3: To explain life on mars-			
	ars – locations,	locations, Europa, Enceladus and			
-	ropa, Enceladus &	other icy bodies. (U)			
	ther Icy Bodies,	CSO 4.4: To classify the methods of			
	ethods of detection	detection of exoplanet atmosphere.			
of	exoplanets, Bio-	(A)			
	gnature of life on	CSO 4.5: To discuss how to look for			
ex	oplanet	Bio-signatures. (U)			
atr	mosphere, how	CSO 4.6:To discuss the missions to			
tol					
	look Bio-	search for Bio-signatures. (U)			
sig	gnatures, Missions	CSO 4.7:To discuss about contacting			
sig to		-			

	be led-
UNIT 5Extrasolar planets: Discovery of planetsCSO 5.1:To list the discovery of planets around other stars; to-date; (U)1220NUNIT 5Extrasolar planets: 	be led-
UNIT 5 Extrasolar planets around other stars; 	be led-
UNIT 5 Extrasolar planetsExtrasolar planets: Discovery of planets 	be led-
UNIT 5Extrasolar planets: Discovery of planets around other stars; summary of 	be led-
UNIT 5 Extrasolar planetsExtrasolar planets: Discovery of planets 	be led-
Extrasolar planetsDiscovery of planets around other stars;planets around other stars. (K)toplanetsand around other stars;cSO 5.2:To summarize discoveries 	be led-
Extrasolar planetsDiscovery of planets around other stars;planets around other stars. (K)toplanetsand around other stars;cSO 5.2:To summarize discoveries 	be led-
planetsand prospectsaround other stars; summaryCSO 5.2:To summarize discoveries to-date. (U)fillife on Marsdiscoveriesto-date; 	led-
prospects life on Marsfor summary discoveries to-date; limitations of the current methods; future imaging of spectroscopic for bio signatures in the atmosphere ofto-date. (U) CSO 5.3:To describe the limitations of the current methods. (K) CSO 5.4:To discuss future imaging of extra solar terrestrial. (U) CSO 5.5:To explore the atmosphere of extrasolar planets. (A)in	
Iife on Marsdiscoveries to-date; limitations of the current methods; future imaging of spectroscopic search for bio signatures in the atmosphere ofCSO 5.3:To describe the limitations of the current methods. (K) CSO 5.4:To discuss future imaging of extra solar terrestrial. (U)CSO 5.4:To discuss future imaging of extra solar terrestrial; spectroscopic search for bio signatures in the atmosphere of the atmosphere ofCSO 5.3:To describe the limitations of the current methods. (K) CSO 5.4:To discuss future imaging of extra solar terrestrial. (U)	
limitations of the current methods;of the current methods. (K)current methods;CSO 5.4:To discuss future imaging of extra solar terrestrial. (U)extra solar terrestrial;CSO 5.5:To explore the spectroscopic search for bio signatures in the atmosphere of extrasolar planets. (A)	
currentmethods;CSO 5.4:To discuss future imaging of extra solar terrestrial. (U)extra solar terrestrial;CSO 5.5:Toexplorespectroscopicsearchspectroscopicsearchfor bio signatures in the atmosphere ofsignatures in the atmosphere of extrasolar planets. (A)cross future imaging of extra solar terrestrial. (U)	
future imaging of extra solar terrestrial; spectroscopic search for bio signatures in the atmosphere ofof extra solar terrestrial. (U) CSO 5.5:To explore the spectroscopic search for bio signatures in the atmosphere of extrasolar planets. (A)	
extra solar terrestrial; spectroscopic search for bio signatures in the atmosphere of extrasolar planets. (A)	
spectroscopic search spectroscopic search for bio for bio signatures in signatures in the atmosphere of the atmosphere of extrasolar planets. (A)	
for bio signatures in signatures in the atmosphere of the atmosphere of extrasolar planets. (A)	
the atmosphere of extrasolar planets. (A)	
extrasolar planets; CSO 5.6:10 explain interstellar	
interstellar panspermia. (U)	
panspermia CSO 5.7:To discuss the evidence for	
Prospects for life on surface water in the past. (U)	
Mars: Evidence for CSO 5.8:To define climate change.	
surface water in the (K)	
past; climate change; CSO 5.9:To explain Viking results.	
Viking results; (U)	
possible sub-surface CSO 5.10:To explore sub-surface	
life; Martian life. (A)	
palaeontology; future CSO 5.11:To explore Martian	
exploration palaeontology. (A)	
CSO 5.12:To discuss future	
exploration. (U)	
CSO 5.13: to explain composite	
Simpson's rule. (U)	
CSO 5.14: to define ordinary	
Differential equation. (K)	
CSO 5.15: to explain Euler's method.	
(U)	
CSO 5.16: to explain Runge-Kutta	
methods of order two and four. (U)	
CSO 20:	

- 1. BW Carroll & DA Ostlie, An Introduction to Modern Astrophysics, Latest Edition, AddisonWesley ,2005.
- 2. Martin Harwit, Astrophysical Concepts, Latest Edition, Springer, 2014
- 3. C.R. Kitchin, Astrophysical Techniques, CRC press(2015.
- 4. Carroll, Bradley W., and Dale A. Ostlie. An Introduction to Modern Astrophysics. Reading, MA: Addison-Wesley Pub., 1995.
- 5. Kippenhahn, Rudolf, and Alfred Weigert. *Stellar Structure and Evolution*, New York, NY: Springer-Verlag, 1990.
- 6. Teerikorpi, P, The Evolving Universe and the Origin of Life, Springer publishing, 2001.
- 7. Souza, Valeria, Segura, Antígona, Foster, Jamie, Astrobiology and Basin as an Analog of Early Earth, Springer, 19

SKILL ENHANCEMENT COURSES (SEC)

Semester-I

Semester	Ι
Paper Code	PHS 1
Paper Title	Renewable Energy and
	Energy Harvesting
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	02

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Renewable energy and energy harvesting**:

CO 1:	To make the students understand fossil fuel, nuclear energy and various renewable energy source with focus on solar energy technologies and their applications in
	addressing global energy challenges and transitioning to sustain energy future.
CO 2:	To understand various renewable energy harvesting technologies, including wind, ocean, geothermal, hydro and piezoelectric energy and their potential application in sustainable
	energy system.
CO 3:	To create an understanding of electromagnetic energy harvesting, carbon capture technologies, environmental issues related to energy production and consumption and the importance of renewable source of energy. Hands-on demonstration and experiment allowing applying theoretical knowledge to practical applications.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Mark s	LOs
UNIT 1 Fossil fuels and alternate source of Energies	Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass,	CSO 1.1: To understand fossil fuel and nuclear energy as traditional sources of energy including their limitation .(U) CSO 1.2: To explain the need of renewable energy and also the non- conventional energy source.(U) CSO 1.3: To explain an overview of development in offshore wind energy, tidal energy, wave energy system, ocean thermal energy conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal and tidal energy.(U) CSO 1.4: To understand the development in offshore wind energy, including offshore wind farm, turbine technology and	8	18	Not to be filled- in

	biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun	potential challenges and opportunities for offshore wind power generation.(U) CSO 1.5: To explain geothermal energy and hydroelectricity as renewable source of energy derived from natural processes.(U) CSO 1.6: To understand the importance of solar energy as a sustainable and abundant source of renewable energy, including its potential for reducing greenhouse gas emission and climate change.(U) CSO 1.7: To explain the method for the storage of solar energy, including technologies such as solar pond and non-conventional solar ponds.(U) CSO 1.8: To explain various application of solar energy including solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell.(U) CSO 1.9: To understand need and characteristics of photovoltaic system including PV models, equivalent circuit and sun tracking system.(U)			
UNIT 2 Wind energy harvesting; ocean energy; geothermal energy; hydro energy; piezoelectric energy harvesting	tracking systems. Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean	CSO 2.1: To understand the fundamentals of wind energy harvesting.(U) CSO 2.2: To explain the wind turbines and different electrical machines in wind turbines.(U) CSO 2.3: To explain the power electronic interface and grid interconnection topologies. (U) CSO 2.4: To understand the ocean energy potential compared to wind and solar energy.(U) CSO 2.5: To analyse wave characteristics and statistics to understand the variability and predictability of wave energy source and wave energy device.(A) CSO 2.6: To understand the tide characteristics and statistics, tide energy technologies.(U) CSO 2.7: To understand ocean thermal energy, osmotic power and ocean biomass for potential energy	10	20	Not to be filled- in

	·			[ر
	Thermal Energy,	harvesting applications.(U)			
	Osmotic Power,	CSO 2.8: To explain the			
	Ocean Bio-mass.	geothermal resources and			
	Geothermal Energy:	understand the geological processes			
	Geothermal	that produce heat within earth's			
	Resources,	crust and exploring geothermal			
	Geothermal	technologies.(U)			
		CSO 2.9: To understand			
	Technologies. Hydro	hydropower resources, hydropower			
	Energy: Hydropower	technologies including			
	resources, hydropower	environmental impact of hydro power sources.(U)			
	technologies,	CSO 2.10: To understand the			
	environmental impact	concept of piezoelectric energy			
	of hydro power	harvesting and understand the			
	sources. Piezoelectric	physics and characteristics of the			
	Energy harvesting:	piezoelectric effect.(U)			
	Introduction, Physics	CSO 2.11: To discuss the materials			
	and characteristics of	used in piezoelectric energy			
		harvesting devices and			
	piezoelectric effect,	mathematical description of			
	materials and	piezoelectric.(A)			
	mathematical	CSO 2.12: To understand			
	description of	piezoelectric parameters and			
	piezoelectricity,	modelling for energy harvesting			
	Piezoelectric	applications including vibration			
	parameters and	energy harvesting and human			
	modeling	powered devices.(U)			
	piezoelectric				
	generators,				
	Piezoelectric energy				
	harvesting				
	applications, Human				
	power				
UNIT 3	Electromagnetic	CSO 3.1: To understand the concept	9	20	Not to
Electromagnet	Energy Harvesting	of electromagnetic energy			be
ic energy	Linear generators,	harvesting, particularly focusing on			filled-
harvesting;	physics mathematical	linear generator.(U)			in
cell,batteries and power	models, recent applications. Carbon	CSO 3.2: To explain the physics and mathematical models and study			
consumption;	captured technologies,	recent application of			
environmental	cell, batteries, power	electromagnetic energy harvesting			
issue and	consumption.	.(U)			
renewable	Environmental issues	CSO 3.3: To discuss about carbon			
sources of		captured technologies, cell,			
energy;	sources of energy,	batteries, and understanding power			
demonstration	sustainability.	consumption in various device and			
and	Demonstrations and	system.(U)			
experiments	Experiments:	CSO 3.4: To explain environmental			
	Demonstration of	issue with conventional energy			
	Training modules on	source.(U)			
1					
	Solar energy, wind energy, etc.	CSO 3.5: To understand importance of adopting renewable energy			

Conversion of vibration to voltage using piezoelectric materials. Conversion of thermal energy into voltage using thermoelectric modules	technologies to address environmental challenges and achieve sustainable development goals.(U) CSO 3.6: To demonstrate training modules on solar energy, wind energy and other renewable energy technologies to provide hands-on experience and practical understanding of energy harvesting principles.(A) CSO 3.7: To demonstrate the experimental conversion of		
	understanding of energy harvesting		
	principles.(A)		
	CSO 3.7: To demonstrate the experimental conversion of		
	vibration to voltage using piezoelectric material and the		
	conversion of thermal energy to		
	voltage using thermoelectric modules.(A)		

- 1. G.D Rai, Non conventional energy sources, Khanna Publishers, New Delhi.
- 2. M P Agarwal , Solar energy , S Chand and Co. Ltd.
- 3. Suhas P Sukhative , Solar energy , Tata McGraw Hill Publishing Company Ltd.
- 4. Godfrey Boyle, *Renewable Energy, Power for a sustainable future*, Oxford University Press, in association with The Open University, 2004.
- 5. Dr. P Jayakumar, Solar Energy: Resource Assessment Handbook, 2009.

Semester-II

Semester	Ш
Paper Code	PHS 2
Paper Title	Basic Instrumentation Skills
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	02

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Basic instrumentation skills**:

CO 1:	To make the students understand both theoretical principles and practical aspects of basic measurements instruments of electronic voltmeter, ac milli voltmeter providing a comprehensive understanding of their operation, specification and significance in various measurement.
CO 2:	To understand cathode ray oscilloscope through block diagram, construction and explanation and giving specification of CRO, also understanding the signal generator, use and analysing the instruments.
CO 3:	To create an understanding among the students, in impedance bridge and Q-meters including block diagram and specification; understanding the working principles and characteristics of digital instruments as well as digital multimeter in various measurement

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Basic of	CSO 1.1: To describe instruments	8	17	Not to
Basic of	Measurement:	accuracy, precision, sensitivity,			be
measurement;	Instruments accuracy,	resolution range etc. (K)			filled-
Electronic	precision, sensitivity,	CSO 1.2: To analyse errors in			in
voltmeter;		measurements and loading effects. (A)			
AC	resolution range etc.	CSO 1.3: To explain multi-meter			
millivoltmeter	Errors in	including principles of measurement			
	measurements and	of dc voltage and dc current, ac			
	loading effects.	voltage, ac current an resistance. (U)			
	Multi-meter:	CSO 1.4: To explain the specifications			
	Principles of	of a multi-meter. (U)			
	measurement of dc	CSO 1.5: To understand the electronic			
	voltage and dc	voltmeters advantage over			
	U U	conventional multi-meter for voltage			
	current, ac voltage,	measurement with respect to input			
	ac current and	impedance and sensitivity. (U)			
	resistance.	CSO 1.6: To discuss the principles of			
	Specifications of a	voltage measurement (block diagram			
	multi-meter and their	only). (U)			
	significance.	CSO 1.7: To discuss the specification			
	significance.	of an electronic voltmeter and their			

	ElectronicVoltmeter:Advantageoverconventionalmulti-meterforvoltagemeasurementmeasurementwithrespecttoinputinputimpedanceandsensitivity.Principlesofvoltagemeasurement(blockdiagramonly).Specificationsof anelectronicVoltmeterMulti-meterand theirsignificance.ACACmillivoltmeters:Amplifier-rectifier,andrectifier,andrectifier-amplifier.Blockdiagramacmillivoltmetersandtheir significanceand	significance. (U) CSO 1.8: To explain types of AC millivoltmeter including amplifier- rectifier and rectifier-amplifier.(U) CSO 1.9: To explain block diagram ac millivoltmeters. (U) CSO 1.10: To write the specification and the signification block diagram ac millivoltmeter. (K)	12	20	
UNIT 2 Cathode ray oscilloscope; Specifications of a CRO and their significance; Signal generator and analysis instrument	CathodeRayOscilloscope:BlockdiagramofbasicCRO.ConstructionofCRT.Electrongun,electrostaticfocusingandacceleration(Explanation only-nomathematicaltreatment),briefdiscussion on screenphosphor,visualpersistence&chemicalcomposition.Timebaseoperation,synchronization.Front panel controlsSpecificationsofaCROandtheirsignificance.Visual	 CSO 2.1: To illustrate block diagram of basic CRO. (U) CSO 2.2: To explain the construction of CRT including electron gun, electrostatic focusing and acceleration (explanation only-on mathematical treatment). (U) CSO 2.3: To write brief discussion on screen phosphor, visual persistence and chemical composition. (K) CSO 2.4: To explain time base operation, synchronization including front panel controls. (U) CSO 2.5: To explain specification of a CRO and their significance. (U) CSO 2.6: To understand the use of CRO for the measurement of voltage (dc and ac) including frequency and time period. (U) CSO 2.7: To explain special feature of dual trace. (U) CSO 2.8:To explain the introductory in digital oscilloscope and probs. (U) CSO 2.9: To explain digital storage oscilloscope using block diagram and working principles. (U) 	13	20	Not to be filled- in

	Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.	CSO 2.10: To write block diagram on signal generator and analysis instruments including explaination and specification of low frequency signal generators, pulse generator and function generator. (A) CSO 2.11: To explain brief idea for testing and specification including distortion factor meter and wave analysis. (U)			
UNIT 3 Impedance Bridge and Q- meters; Digital instruments; Digital multimeter		CSO 3.1: To explain impedance bridge and Q-meters from block diagram of bridge. (U) CSO 3.2: To explain working principles of basic RLC bridge including specification. (U) CSO 3.3: To understand block diagram and working principles of Q- meter. (U) CSO 3.4: To explain digital LCR bridges. (U) CSO 3.5: To understand digital instruments through principle and working of digital meters. (U) CSO 3.6: To write the comparison of analog and digital instrument. (K) CSO 3.7: To explain the characteristics of a digital meter including working principles of digital voltmeter. (U) CSO 3.8: To explain digital multimeter from block diagram and working of a digital multimeter. (U) CSO 3.9: To explain the working principle of time interval, frequency and period measurement using	7	13	Not to be filled- in

Digital Multimeter:	universal counter frequency counter.		
Block diagram and			
working of a digital	CSO 3.10: To understand time-based		
multimeter. Working	stability accuracy and resolution. (U)		
principle of time			
interval, frequency			
and period			
measurement using			
universal counter			
frequency counter,			
time- base stability,			
accuracy and			
resolution.			

- 1. A.P. Malvino, D.P.Leach and Saha, Digital Principles and Applications, 7 Ed., Tata Mc Graw, 2011.
- 2. Anand Kumar, Fundamentals of Digital Circuits, 2ndEdn, PHI Learning Pvt. Ltd ,2009.
- 3. Venugopal, Digital Circuits and systems, Tata McGraw Hill ,2011.
- 4. G K Kharate , Digital Electronics, Oxford University Press, 2010.
- 5. R.J.Tocci, N.S.Widmer, Digital Systems: Principles & Applications, PHI Learning ,2001.
- 6. S.K. Mandal, *Digital Electronics*, 1st edition, McGraw Hill, 2010.
- 7. S.Salivahanan&N.S.Kumar, *Electronic Devices & circuits*, 3rd Ed., PHI Learning ,Tata Mc-Graw Hill,2012.

Semester-III

Semester	III
Paper Code	PHS 3
Paper Title	Radiation Safety
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	02

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Radiation Safety:

CO 1:	To create an awareness among the students about Basics of Atomic and Nuclear Physics
	and Interaction of Radiation with matter.
CO 2:	To instill the idea of Radiation detection and monitoring devices.
CO 3:	To let the students understand the concepts Radiation safety management and Application
	of nuclear techniques.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Basic concept of atomic	CSO 1.1: To explain	14	17	Not
Basics of Atomic and	structure; X rays	about the basic concept			to be
Nuclear Physics and	characteristic and	of atomic structure.			filled-
Interaction of	production; concept of	(K+U)			in
Radiation with	bremsstrahlung and auger	CSO 1.2: To define X-			
matter	electron, The composition	ray (K)			
	of nucleus and its	CSO 1.3: To illustrate			
	properties, mass number,	on X-ray Characteristic			
	isotopes of element, spin,	and its production (A)			
	binding energy, stable and	CSO 1.4: To define and			
	unstable isotopes, law of	explain on concept of			
	radioactive decay, Mean life	bremsstrahlung and auger			
	and half-life, basic concept	electron (K+U)			
	of alpha, beta and gamma	CSO 1.5: To define			
	decay, concept of cross	nucleus and explain on			
	section and kinematics of	the composition of			
	nuclear reactions, types of	nucleus and its various			
	nuclear	properties (K+U)			
	reaction, Fusion, fission.	CSO 1.6: To define and			
	Interaction of Radiation	explain mass number,			
	with matter:	isotopes, spin, and			
	Types of Radiation: Alpha,	binding energy of the			
	Beta, Gamma and Neutron	nucleus (K+U+A)			
	and their sources, sealed and	CSO 1.7: To define and			
	unsealed sources,	compare the difference			
	Interaction of Photons-	between stable and			
	Photo- electric effect,	unstable nucleus			
	Compton Scattering, Pair	(K+U+A)			
	Production, Linear and	CSO 1.8: To define and			
	Mass Attenuation				
	Coefficients	radioactive decay			
	Interaction of Charged	(K+A) CSO 1.9: To define and			
	Particles: Heavy charged				
	particles - Beth-Bloch	discussmean life, half life $(K + U)$			
	Formula, Scaling laws,	life (K+U) CSO1.10: To define			
	Mass Stopping Power,	and explain on basic			
	Range, Straggling,	concept of alpha, beta and			
	Channeling and Cherenkov	gamma decay(K+U+A)			
	radiation. Beta Particles-	CSO1.11: To define			
	Collision and Radiation loss	and explain on concept			
	(Bremsstrahlung),	of cross section and			
		kinematics of nuclear			
		reactions			
		CSO 1.12: To define			
		nuclear reaction and			
		discuss on its various			
		types (K+U+A)			
		CSO 1.13: To discuss on the interaction of photons			
		the interaction of photons by studying photoelectric			
		effect and Compton			
		scattering ,etc. (U+A)			
		CSO 1.14 : To discuss and			

	1				
		explain on the interaction			
		of charged particles by using the methods			
		mentioned(U+A)			
UNIT 2	Basic idea of different units	CSO 2.1: To explain	6	13	Not
Radiation detection	of activity, KERMA,	about the basic idea of	-		to be
and monitoring	exposure, absorbed dose,	different units used in			filled-
devices	equivalent dose, effective	radiation detection and			in
	dose, collective equivalent	monitoring devices.			
	dose, Annual Limit of	0			
	Intake (ALI) and derived	CSO 2.2:To define			
	Air Concentration (DAC).	KERMA and to explain			
	Radiation detection: Basic	about parameter related			
	concept and working	to KERMA. (K+U)			
	principle of gas detectors	CSO 2.3:To illustrate			
	(Ionization Chamber,	on the parameter like			
	Proportional Counter,	exposure, absorbed			
	Multi-Wire Proportional	dose, equivalent dose,			
	Counters (MWPC) and	effective dose and			
	Gieger Muller Counter),	equivalent dose as			
	Scintillation Detectors	radiation quantities			
	(Inorganic and Organic	(U+A)			
	Scintillators), Solid States	To define			
	Detectors and Neutron	CSO 2.4:To define and			
	Detectors, Thermo	compare between			
	luminescent Dosimetry.	Annual Limit of Intake			
		and Derive Air			
		Concentration (A+U)			
		CSO 2.5: To define			
		detectors and explain on			
		the basic concept and			
		principle of gas			
		detectors (K+U)			
		CSO 2.7:To explain			
		and illustrate on the use			
		of various types of			
		detectors mentioned in			
		radiology. (K+U+A)			
UNIT 3		CSO 3.1:To define	10	20	Not
Radiation safety	Biological effects of	radiation safety (K)			to be
management and	ionizing radiation,	CSO 3.2:To illustrate			filled-
Application of	Operational limits and	on the Biological			in
nuclear techniques	basics of radiation hazards	effects of ionizing			
	evaluation and control:	radiation safety			
	radiation protection	management (U+A)			
	standards, International Commission on	CSO 3.3: To discuss on			
	CommissiononRadiologicalProtection	the operational limits			
	C C	and basic idea on			
	(ICRP) principles, justification, optimization,	radiation hazard			
	justification, optimization, limitation, introduction of	evaluation control (U)			
	safety and risk management	CSO 3.4: To Add on the radiation hazards			
	of radiation. Nuclear waste	radiation hazards evaluation and control			
	and disposal management.				
	Application of nuclear	by supplementing it with ICRP Principles			
	techniques: Application in	1			
	reality Application III	(U+A)			

medical science (e.g., MRI,	CSO 3.5:To discuss on	
PET, Projection Imaging	the risk and safety in	
Gamma Camera, radiation	management of	
therapy), Archaeology, Art,	radiation and ways to	
Crime detection, Mining	dispose nuclear waste	
and oil. Industrial Uses:	(K+U+A)	
Tracing, Gauging, Material	CSO 3.6:To discuss on	
Modification, Sterization,		
Food preservation.	technique in modern	
1	medical science by	
	taking examples like	
	MRI,PET, etc. (U+A)	
	CSO 3.7:To discuss	
	and illustrate its use in	
	archaeology, Art,	
	mining industries, etc.	
	(U+A)	

- 1. W.E.Burcham and M.Jobes, Nuclear and Particle Physics, Longman, 1995.
- 2. Dosimetry, Mcknlay, A.F., Bristol, Adam Hilger, *Thermo luminescence (Medical Physics Handbook 5)*.
- 3. W.J.Meredith and J.B.Massey, *Fundamental Physics of Radiology*, John Wright and Sons, UK, 1989.
- 4. J.R.Greening, *Fundamentals of Radiation Dosimetry, Medical Physics Hand Book Series, No.6*, Adam Hilger Ltd., Bristol 1981.
- 5. G.C.Lowental and P.L. Airey, *Practical Applications of Radioactivity and Nuclear Radiations*, Cambridge University Press, U.K., 2001.
- 6. A.Martin and S.A.Harbisor, *An Introduction to Radiation Protection*, John Willey & Sons, Inc. New York, 1981.
- 7. W.R.Hendee, *Medical Radiation Physics*, Year Book–Medical Publishers Inc. London, 1981.

Semester-IV

Semester	IV
Paper Code	PHS 4
Paper Title	Electrical Circuit and Network
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	02

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Electrical circuits and network**:

CO 1:	To introduce to students' basic electricity principles and make them understand electrical
	circuits.
CO 2:	To make the students learn about electrical drawing and symbols, generators, transformers and electric motors.
CO 3:	To aid the students in understanding solid states devices and aware of electrical protection as well as electrical wiring.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Basic Electricity	CSO 1.1:To describe	7	14	Not to be
Basic	Principles : Voltage,	voltage (K)			filled-in
Electricity	Current, Resistance,	CSO 1.2: To describe			
Principles and	and Power. Ohm's	Current. (K)			
understanding	law. Series, parallel,	CSO 1.3:To describe			
electrical	and series-parallel				
circuits	combinations. AC	CSO 1.4:To describe			
	Electricity and DC	-			
	Electricity.	CSO 1.5:To explain			
	Familiarization with				
	multimeter, voltmeter	CSO 1.6:To explain in			
	and ammeter.	detail about series			
	Understanding				
	Electrical Circuits:	1			
	Main electric circuit	1			
	elements and their				
	combination. Rules to	1			
	analyze DC sourced				
	electrical circuits.	1			
	Current and voltage	e			
	drop across the DC				
	circuit elements.				
	Single-phase and				
	three-phase	characterize multimeter,			

	alternating current sources. Rules to analyse AC sourced	voltmeter and ammeter. (A) CSO 1.11: To discuss the			
	electrical circuits. Real, imaginary and complex power components of AC	main electric circuits and their combination. (U) CSO 1.12: To explain the rules required to analyse			
	source. Power factor. Saving energy and money.	DC sourced electrical circuits. (U) CSO 1.13: To examine			
		the current and voltage drop across the dc circuit elements. (A)			
		CSO 1.14: To distinguish single phase and three phase alternating current sources. (A)			
		CSO 1.15: To explain the rules required to analyse AC sourced electrical			
		circuits. (U) CSO 1.16: To distinguish real, imaginary and			
		complexpowercomponentsofACsource. (A)CSO 1.17:Todescribe			
		power factor. (K) CSO 1.18: To write about saving energy and			
		money. (K)			
UNIT 2	Electrical Drawing	CSO 2.1:To explain	10	17	Not to be
Electrical Drawing and	and Symbols: Drawing symbols.	drawing symbols. (U) CSO 2.2:To			filled-in
Symbols,	Drawing symbols. Blueprints. Reading	describeBlueprints. (U)			
Generators,	Schematics. Ladder	CSO 2.3:To enumerate			
Transformers	diagrams. Electrical	reading schematics. (K)			
and electric	Schematics. Power	CSO 2.4:To explain			
motors.	circuits. Control	reading ladder diagrams.			
	circuits. Reading of circuit schematics.	(U) CSO 2.5:To enumerate			
	Tracking the	electrical schematics. (K)			
	connections of	CSO 2.6:To describe			
	elements and identify	power circuits. (K)			
	current flow and voltage drop.	CSO 2.7:To describe Control circuits. (K)			
	Generators and	CSO 2.8: To describe			
	Transformers: DC	reading a circuit			
	Power sources.	schematic. (K)			
	AC/DC generators. Inductance,	CSO 2.9: To identify how to track connections of			
	capacitance, and	elements and identify			
	impedance. Operation	current flow and voltage			
	of transformers.	drop. (K)			
	Electric Motors:	CSO 2.10:To describe			
	Single-phase, three-	DC power sources. (K)			

	phase & DC motors.	CSO 2.11:To explain			
	Basic design.	AC/DC generators. (U)			
	Interfacing DC or AC	CSO 2.12: To define and			
	sources to control	describe inductance,			
	heaters & motors.	capacitance and			
	Speed & power of ac	impedance. (K)			
	motor.	CSO 2.13: To discuss			
		operation of transformers.			
		(U)			
		CSO 2.14: To explain			
		single-phase, three phase			
		and DC motors. (U)			
		CSO 2.15: To examine			
		interfacing DC or AC			
		-			
		sources to control heaters			
		and motors. (A)			
		CSO 2.16: To explain			
		speed and power of ac			
		motor. (U)			
UNIT 3	Solid State Devices:	CSO 3.1:To describe	13	19	Not to be
Solid State	resistors, inductors	resistors, inductors and			filled-in
Devices,	and capacitors. Diode	capacitors. (K)			
electrical	and rectifiers	CSO 3.2:To explain			
protection and	Components in Series	diode and rectifiers. (U)			
electrical	or in shunt. Response	CSO 3.3: To describe the			
wiring	of inductors and	components in series and			
	capacitors with DC or	shunt. (K)			
	AC sources.	CSO 3.4: To examine the			
	Electrical	response of inductors and			
	protection: Relays.	capacitors with DC or AC			
	Fuses and disconnect	sources. (A)			
	switches. Circuit	CSO 3.5:To describe			
	breakers. Overload	relays. (K)			
	devices. Ground-fault	CSO 3.6:To describe			
	protection. Grounding	fuses and disconnect			
	and isolating. Phase	switches. (K)			
	reversal. Surge	CSO 3.7:To explain			
	protection. Interfacing	circuit breakers. (U)			
	DC or AC sources to	CSO 3.8:To discuss			
	control elements	overload devices. (U)			
	(relay protection	CSO 3.9: To examine			
	device).	ground fault protection.			
	Electrical Wiring:	(A)			
	Different types of	CSO 3.10:To describe			
	conductors and	grounding and isolating.			
	cables. Basics of	(K)			
	Wiring-Star and delta	CSO 3.11: To understand			
	connection. Voltage	phase reversal. (U)			
	drop and losses across	CSO 12: To explain surge			
	cables and	protection. (U)			
	conductors.	CSO 3.13: To examine			
	Instruments to	interfacing DC or AC			
	measure current,	sources to control			
	voltage, power in DC	elements.			
	and AC circuits.	CSO 3.14: To distinguish			
	Insulation. Solid and	e			

stranded cable.	conductors and cables.
Conduit. Cable trays.	(A)
Splices: wirenuts,	CSO 3.15: To explain
crimps, terminal	basics of wiring-star and
blocks, split bolts,	delta connection. (U)
and solder.	CSO 3.16: To discuss
Preparation of	voltage drop and losses
extension board.	across cables and
	conductors. (U)
	CSO 3.17: To list the
	instruments to measure
	current, voltage, power in
	DC and AC circuits. (K)
	CSO 3.18: To identify
	insulation, solid and
	stranded cables, conduit,
	cable trays, splices-
	wirenuts, crimps,
	terminal blocks, split
	bolts and solder. (A)
	CSO 3.19: To discuss
	preparation of extension
	board. (U)

- 1. B L Theraja, A K Theraja, A text book in Electrical Technology, S Chand & Co. 23rd Edn,1959.
- 2. M G Say , Performance and design of AC machines , ELBS Edn.

Semester-V

Semester	V
Paper Code	PHS 5
Paper Title	Basic Workshop Skills
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	02

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Basic Workshop Skills**:

CO 1:	To make the students understand the Introduction to different instruments and mechanical	
	skill 1.	
CO 2:	To make the students understand mechanical skill 2 i.e introducing them to common	
	machine tools.	
CO 3:	To introduce the students to electrical and electronic Skill.	

Unit & Title	CCIFIC OBJECTIVES (CS Unit Contents	Course Specific Objective (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 Introduction to different instruments and mechanical skill 1	Introduction: Measuring units. conversion to SI and CGS. Familiarization with meter scale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet etc. Use of Sextant to measure height of buildings, mountains, etc. Mechanical Skill 1: Concept of workshop practice. Overview of manufacturing methods: casting, forming and welding. Types of welding joints and welding defects. Common materials used for manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood.	 CSO 1.1: To learn the measuring units.(K) CSO 1.2: To define SI and CGS units and learn their conversion.(K) CSO 1.3: To define meter scale, Vernier calliper, Screw gauge and learn their utility.(K&A) CSO 1.4: To learn to measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet using the different instruments. (A) CSO 1.5: To define sextant.(K) CSO 1.6: To learn to use sextant to measure height of buildings, mountains etc.(U) CSO 1.7: To understand the concept of workshop practice. (U) CSO 1.8: To learn the overview of manufacturing methods like casting, foundry, machining, forming and welding.(U) CSO 1.9: To explain the types of welding joints and welding defects.(U) CSO 1.10: To classify the common materials used for manufacturing. (U) 	8	17	Not to be filled- in
UNIT 2 Mechanical Skill 2	Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools, lubricating oils. Cutting of a metal sheet using blade. Smoothening of cutting edge of sheet using file. Drilling of holes of different diameter in metal sheet and wooden block. Use of bench vice and tools for fitting. Make funnel using metal sheet.	machine processing. (U))	6	13	Not to be filled- in
UNIT 3 Electrical and Electronic Skill	Use of Multimeter. Soldering of electrical circuits having discrete components (R, L, C, diode) and ICs on PCB. Operation of oscilloscope.	CSO 3.1: To define multimeter.(K) CSO 3.2: To learn the use of multimeter.(A) CSO 3.3: To explain the soldering of electrical circuits having discrete components.(A)	16	20	Not to be filled- in

Making regulated power		
supply. Timer circuit,	an oscilloscope.(U)	
Electronic switch using	CSO 3.5: To explain how to make	
transistor and relay.	regulated power supply.(A)	
Introduction to prime	CSO 3.6: To explain timer circuit,	
movers: Mechanism, gear	electronic switch using transistor and	
system, wheel, Fixing of	relay.(U)	
gears with motor axel.	CSO 3.7: To introduce prime	
Lever mechanism, Lifting	movers.(K)	
of heavy weight using	CSO 3.8: To introduce the	
lever, braking systems,	mechanism.(K)	
pulleys, working principle	CSO 3.9: To explain the gear system	
of power generation	and wheel.(U)	
systems. Demonstration of	CSO 3.10: To explain the fixing of	
pulley experiment.	gears with motor axel.(U)	
	CSO 3.11: To explain the mechanism	
	of a lever.(U)	
	CSO 3.12: To explain lifting of heavy	
	weight using lever.(U)	
	CSO 3.14: To explain the mechanism	
	of braking systems, pilleys.(U)	
	CSO 3.15: To explain the working	
	principles of power generation	
	systems. (U)	
	CSO 3.16: To show the	
	demonstration of pulley	
	experiment.(A)	
	onportition(1)	

- 1. B LTheraja , A *textbook in Electrical Technology*, S.Chand and Company, 23rd Edn, 1959.
- 2. M.G.Say ,*Performance and design of AC machines*, ELBSEdn.
- 3. K.C.John, Mechanical workshop practice ,PHI LearningPvt.Ltd. 2010.
- 4. Bruce J Black, *Workshop Processes*, *Practices and Materials*, 3rdEdn., Editor Newnes, 2005 [ISBN: 0750660732]

Semester	V
Paper Code	PHS 6
Paper Title	Weather Forecasting
Number of teaching hours per week	02
Total number of teaching hours per semester	30
Number of credits	02

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Weather forecasting:

To make the students understand the atmosphere and the process involved in measuring	
weather variables such as temperature, pressure, wind, humidity, clouds, rainfall and	
radiation also introducing fundamental weather phenomena and atmospheric dynamics.	
To understand weather system, climate processes and the drivers and impact of climate	
change also addressing the interconnections of atmospheric dynamics, environmental	
factors and societal response to climate related challenges.	
To provide a foundational understanding to weather forecasting principles, method and	

	technique as well as the challenges and the uncertainties associate with predicting future
	weather condition and importance of weather forecasting.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	Introduction to	CSO 1.1: To understand	13	20	Not to be
Introduction	atmosphere:	the elementary idea of the			filled-in
to atmosphere,	Elementary idea of	atmosphere including its			
Measuring the	atmosphere: physical	physical structure and			
weather	structure and	composition.(U)			
	composition;	CSO 1.2: To explain the			
	compositional	concept of compositional			
	layering of the	layering of the			
	atmosphere; variation	atmosphere.(U)			
	of pressure and	CSO 1.3: To explain the			
	temperature with	variation of pressure and			
	height; air	temperature with height.			
	temperature;	(U)			
	requirements to	CSO 1.4: To describe			
	measure air	about the air temperature			
	temperature;	including the requirement			
	temperature sensors:	to measure air			
	types; atmospheric	temperature and types of			
	pressure: its	temperature sensor.(K)			
	measurement;	CSO 1.5: To understand			
	cyclones and	the atmospheric pressure			
	anticyclones: its	and its measurement and			
	characteristics.	characteristics including			
	Measuring the	cyclones and			
	weather: Wind;	anticyclones.(U)			
	forces acting to	CSO 1.6: To understand			
	produce wind; wind	about the measuring of			
	speed direction:	the weather .(U)			
	units, its direction;	CSO 1.7: To explain			
	measuring wind speed	wind including forces			
	and direction;	acting to produce wind,			
	humidity, clouds and	its speed direction			
	rainfall,	including units of			
	radiation: absorption,	measurement.(U)			
	emission and	CSO 1.8: To explain the			
	scattering in	humidity, clouds and			
	atmosphere; radiation	rainfall.(K)			
	laws.	CSO 1.9: To understand			
	14,475.	the concept of radiation in			
		the atmosphere including			
		absorption, emission and			
		scattering also the law of			
		radiation in the			
		atmosphere.(U)			
UNIT II	Weather systems:	CSO 2.1: To understand	9	15	Not to be
Weather	Weather systems: Global wind systems;	the weather system by	7	15	filled-in
systems,Climat	air masses and fronts:	exploring in different			
e and Climate	classifications; jet	fields.(U)			
	· ·	CSO 2.2: To understand			
Change	streams; local	USU 4.4: 10 understand			

			r		
	thunderstorms;	the global wind system			
	tropical cyclones:	including air masses and			
	classification;	front classification and			
	tornadoes; hurricanes.	their influence.(U)			
	Climate and Climate	CSO 2.3: To explain the			
	Change: Climate: its	concept of jet streams			
	classification; causes	including their			
	of climate change;	classification and their			
	global warming and	influence on weather			
	its outcomes; air	pattern and aviation. (U)			
	pollution; aerosols,	CSO 2.4: To understand			
	ozone depletion, acid	the local thunderstorm			
	rain,	formation,			
	environmental issues	characteristics.(U)			
	related to climate.	CSO 2.5: To understand			
		the cyclones their			
		classifications including			
		tornadoes and hurricanes			
		and their impact on the			
		coastal region and			
		societies.(U)			
		CSO 2.6: To understand			
		the climate and climate			
		change and its			
		classification including			
		causes of climate			
		change.(U)			
		CSO 2.7: To explain the			
		global warming and its			
		outcomes(U)			
		CSO 2.8: To understand			
		the air pollution and its			
		contribution to climate			
		change including role of			
		aerosols.(U)			
		CSO 2.9: To explain the			
		ozone depletion, acid rain			
		and environmental issue			
		relating to climate			
		change.(U)			
UNIT III	Basics of weather	CSO 3.1:To understand	8	15	Not to be
Basics of	forecasting: Weather	the basic concept of			filled-in
weather	forecasting: analysis	weather forecasting.(U)			
forecasting	and its historical	CSO 3.2: To explain the			
	background; need of	weather forecasting			
	measuring weather;	analysis and its historical			
	types of weather	background.(A)			
	forecasting; weather	CSO 3.3:To understand			
	forecasting methods;	the need of measuring			
	criteria of choosing	weather variable and their			
	weather station; basics	importance .(U)			
	of choosing site and	CSO 3.4:To explain the			
	exposure; satellites	different types of weather			
	observations in	forecasting and weather			
	weather forecasting;	forecasting method.(U)			
1	weather maps;	CSO 3.5:To understand			

uncertainty and predictability; probability forecasts.	the criteria of choosing weather station including basics of choosing site and exposure.(U) CSO 3.6:To explain the
	important role of satellites observation in weather forecasting.(A) CSO 3.7:To understand
	the weather map including uncertainty and predictability and giving
	the probability forecasts.(U)

- 1. I.C. Joshi, *Aviation Meteorology*, Himalayan Books, 3rd edition ,2014.
- 2. Stephen Burt, The *weather Observers Hand book*, Cambridge University Press, 2012.
- 3. S.R. Ghadekar, *Meteorology*, Agromet Publishers, Nagpur, 2001.
- 4. S.R. Ghadekar, *Text Book of Agrometeorology*, , Agromet Publishers, Nagpur ,2005.
- 5. Charls Franklin Brooks, *Why the weather*, Chpraman& Hall, London, 1924.
- 6. John G. Harvey, *Atmosphere and Ocean*, The Artemis Pres, 1999.