

ST. JOSEPH'S COLLEGE (AUTONOMOUS) JAKHAMA-NAGALAND

SYLLABUS (Outcome Based Education)

CURRICULUM AND CREDIT FRAMEWORK FOR UNDERGRADUATE PROGRAMMES (NEP-2020)

DEPARTMENT OF MATHEMATICS

With effect from the Academic Year 2023-2024 (1st to 4thFYUGP)

Preamble

Since ancient times, mathematics has been studied, and it has been essential to the advancement of both science and technology. This subject has been applied to solve issues in computer science, engineering, physics, and economics, among other subjects. An educated and informed citizenry requires a fundamental foundation of mathematics and statistics as well as the capacity for statistical and mathematical reasoning. The goal of the National Education Policy (NEP) 2020 is to give pupils a comprehensive, multidisciplinary education. The revised Four Year Under-Graduate Programme (FYUGP) Mathematics Program syllabus has been developed in accordance with NEP 2020 criteria. In addition to giving students a solid foundation in mathematics, the syllabus aims to get them ready for advanced coursework in the subject. Numerous topics, including calculus, algebra, analysis, statistics, are included in the course. The curriculum aims to improve students' analytical and problem-solving abilities as well as their ability to apply mathematical ideas to practical issues.

B.Sc. Mathematics (Honors) Programme Outcomes (PO): By the end of the program the students will be able to:

PO 1	Disciplinary Knowledge: Bachelor's degree in mathematics is the culmination of in-depth knowledge of algebra, calculus, geometry, differential equations and several other branches of mathematics. This also leads to study of related areas like computer science and statistics. Thus, this programme helps learners in building a solid foundation for higher studies in mathematics.
PO 2	Communication Skills: Capacity to successfully explain a variety of mathematical ideas through examples and their geometrical representation. This program's knowledge and abilities will help students become proficient in analytical reasoning, which they can use to model and solve situations in real life.
PO 3	Critical thinking and analytical reasoning: Students enrolled in this program gain the capacity to think critically, reason logically, and recognize and discern between the numerous facets of real-world problems.
PO 4	Problem Solving: Students who complete this program with a strong foundation in mathematics will be able to assess issues and determine what kind of computing resources are needed to solve them. In addition to improving children' general development, this program gives them problem-solving and mathematical modeling skills.
PO 5	Research related skills: The completing this programme develop the capability of inquiring about appropriate questions relating to the Mathematical concepts in different areas of Mathematics.
PO 6	Information/digital Literacy: The completion of this programme will enable the learner to use appropriate softwares to solve system of algebraic equation and differential equations.
PO 7	Moral and ethical awareness/reasoning: The student completing this program will develop an ability to identify unethical behavior such as fabrication, falsification or misinterpretation of data and adopting objectives, unbiased and truthful actions in all aspects of life in general and mathematical studies in particular.
PO 8	Lifelong learning: This programme provides self-directed learning and lifelong learning skills. This programme helps the learner to think independently and develop algorithms and computational skills for solving real word problems.
PO 9	Ability to peruse advanced studies and research in pure and applied Mathematical sciences.
PO 10	Students undergoing this programme learn to logically question assertions, to recognise patterns and to distinguish between essential and irrelevant aspects of problems. They also share ideas and insights while seeking and benefitting from knowledge and insight of others. This helps them to learn behave responsibly in a rapidly changing interdependent society.
PO 11	Completion of this programme will also enable the learners to join teaching profession in primary and secondary schools.
PO 12	This programme will also help students to enhance their employability for government jobs, jobs in banking, insurance and investment sectors, data analyst jobs and jobs in various other public and private enterprises.

Programme Structure

Semester	Major or Discipline Specific Core Paper (DSC) (4 credits each)	Interdisciplinary Minor Paper (IDM) (4 credits each)	Multidisciplinary course (MDC) (4 credits each)	Skill Enhancement courses (SEC) OR Internship/ Apprenticeship/Project/Com munity Outreach (2 credits each)	Ability enhancement courses (AEC) (2 credits each)	Value addition course (VAC) (2 credits each)	Total Credits
I	MTC 1.1: Calculus (3) MTC 1.1(P): Calculus (1) MTC 1.2: Algebra (4)	MTM 1: Calculus (3) MTM 1(P): Calculus (1)	MDC 1: EVS (4)	MTS 1: Logic and Sets (2)	AEC 1: English Communication (2)	VAC 1: Constitutional Values (2)	22
Π	MTC 2.1: Real Analysis (4) MTC 2.2: Differential Equation (3) MTC 2.2(P): Differential Equation (1)	MTM 2: Differential Equation (3) MTM 2(P): Differential Equation (1)	MDC 2: Programming using Python (4)	MTS 2: LaTeX & HTML (2)	AEC 2: Basic Functional English (2)	VAC 2: Consumer Rights (2)	22
Exit option with Undergraduate Certificate (44 Credits)						44	
III	MTC 3.1: Theory of Real Function (4) MTC 3.2: Group Theory I (4) MTC 3.3: PDE and Systems of ODE (3) MTC 3.3(P): PDE and Systems of ODE (1)	MTM 3: PDE and Systems of ODE (3) MTM 3 (P): PDE and Systems of ODE (1)	MDC 3: Intellectual Property Rights (4)	MTS 3: Graph Theory (2)			22
IV	MTC 4.1: Numerical Methods (3) MTC 4.1(P): Numerical Methods (1) MTC 4.2: Riemann Integration and Series of Functions (4) MTC 4.3: Group Theory II (4)	MTM 4: Linear Algebra (4)		MTS 4: Laplace and Fourier Transform (2)	AEC 3: Poetry, prose and Short Stories (2)	VAC 3: Work Ethics (2)	22
		Exit option with Undergraduate D	iploma (88 Credits)				88
V	MTC 5.1: Multivariant Calculus (4) MTC 5.2: Linear Algebra (4) MTC 5.3: Number Theory (4)	MTM 5.: Group Theory (4)		MTS 5: Project work (2)	AEC 4: Novel and Drama (2)	VAC 4: India through the ages (2)	22
VI	MTC 6.1: Complex Analysis (4) MTC 6.2: Ring Theory (4) MTC 6.3: Operation Research (4) MTC 6.4: Probability and Statistics (4)	MTM 6: Numerical Methods (3) MTM 6(P): Numerical Methods (1)		MTS 6: Project Work (2)			22
Exit option with Bachelor of Science, B.Sc Mathematics (132 Credits)-UG Degree 13						132	

Semester	Major or Discipline Specific Core Paper (DSC) (4 credits each)	Interdisciplinary Minor Paper (IDM) (4 credits each)	Multidisciplinary course (MDC) (4 credits each)	Skill Enhancement courses (SEC) OR Internship/ Apprenticeship/Project/Communi ty Outreach (2 credits each)	Research Project/ Dissertation (12 Credits) OR 3 Theory Papers (12 Credits)	Total Credits
VII	MTC 7.1: Metric Spaces (4) MTC 7.2: Calculus of Variations and Integral Equations (4) RM 7: Research Methodology (4)	MTM 7.1: Real Analysis (4) MTM 7.2: Discrete Mathematics (4)			Research Project/ Dissertation will start	20
VIII	MTC 8.1: Topology (4)	MTM 8.1: Probability and Statistics (4)			Research Project/Dissertation in major (12) OR MTM 8.2: Linear Programming and Theory of Games (4) MTC 8.2: Linear Programming and Theory of Games (4) MTC 8.3: Mechanics (4)	20
		Bachelor of Science, B.Sc Mathematics (Honou	rs) with Research (172 Ci	redits)		172

DISCIPLINE SPECIFIC COURSES (DSC) (MAJOR COURSES)

SEMESTER	PAPER	PAPER	TITLE OF THE PAPER	CREDITS
	CODE	CODE		
		(used)		
Ι	DSC 1	MTC 1.1	Calculus	3
		MTC 1.1(P)	Calculus	1
	DSC 2	MTC 1.2	Algebra	4
II	DSC 3	MTC 2.1	Real Analysis	4
	DSC 4	MTC 2.2	Differential Equations	3
		MTC 2.2 (P)	Differential Equations	1
III	DSC 5	MTC 3.1	Theory of Real Function	4
	DSC 6	MTC 3.2	Group Theory I	4
	DSC 7	MTC 3.3	PDE and systems of ODE	3
		MTC 3.3 (P)	PDE and systems of ODE	1
IV	DSC 8	MTC 4.1	Numerical Methods	3
		MTC 4.1 (P)	Numerical Methods	1
	DSC 9	MTC 4.2	Riemann Integration and series of Functions	4
	DSC 10	MTC 4.3	Group Theory II	4
V	DSC 11	MTC 5.1	Multivariant Calculus	4
	DSC 12	MTC 5.2	Linear Algebra	4
	DSC 13	MTC 5.3	Number Theory	4
VI	DSC 14	MTC 6.1	Complex Analysis	4
	DSC 15	MTC 6.2	Ring Theory	4
	DSC 16	MTC 6.3	Operation Research	4
	DSC 17	MTC 6.4	Probability and Statistics	4
VII	DSC 18	MTC 7.1	Metric Spaces	4
	DSC 19	MTC 7.2	Calculus of Variations and Integral Equations	4
		RM 7	Research Methodology	4
VIII	DSC 20	MTC 8.1	Topology	4
			2 Major Theory Papers in lieu of Research	
			Project/Dissertation (For Honors Students	
			not undertaking Research Projects)	
	DSC 21	MTC 8.2	Linear Programming and Theory of Games	4
	DSC 22	MTC 8.3	Mechanics	4

MULTI-DISCIPLINARY/INTRODUCTORY COURSES (MDC)

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	MDC 1	Environmental Studies	4
II	MDC 2	Programming using Python	4
III	MDC 3	Intellectual Property Rights (IPR)	4

INTER-DISCIPLINARY MINOR COURSES (IDM)

SEMESTER	PAPER CODE	PAPER CODE (used)	TITLE OF THE PAPER	CREDITS
Ι	IDM 1	MTM 1	Calculus	3
		MTM 1 (P)	Calculus	1
II	IDM 2	MTM 2	Differential Equation	3
		MTM 2 (P)	Differential Equation	1
III	IDM 3	MTM 3	PDE and Systems of ODE	3
		MTM 3 (P)	PDE and Systems of ODE	1
IV	IDM 4	MTM 4	Linear Algebra	4
V	IDM 5	MTM 5	Group Theory	4
VI	IDM 6	MTM 6	Numerical Methods	4
		MTM 6 (P)	Numerical Methods	
VII	IDM 7	MTM 7.1	Real Analysis	4
	IDM 8	MTM 7.2	Discrete Mathematics	4
VIII	IDM 9	MTM 8.1	Probability and Statistics	4
			1 Minor Theory Papers in lieu	
			of Research	
			Project/Dissertation (For	
			Honors Students not	
			undertaking Research	
			Projects)	
	IDM 10	MTM 8.2	Linear Programming and Theory of Games	4

SKILL ENHANCEMENT COURSES (SEC)

SEMESTER	PAPER CODE	PAPER CODE (used)	TITLE OF THE PAPER	CREDITS
Ι	SEC 1	MTS 1	Logic and Sets	2
II	SEC 2	MTS 2	LaTeX & HTML	2
III	SEC 3	MTS 3	Graph Theory	2
IV	SEC 4	MTS 4	Laplace and Fourier Transform	2

DISCIPLINE SPECIFIC COURSES (DSC)

NAME OF THE PAPER (CODE): CALCULUS (MTC 1.1)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The follow	wing are the Course Objectives (COs) for the paper Calculus:
CO 1:	To aid the students in understanding the foundations of calculus.
CO 2:	To assist the students in the understanding of derivatives of hyperbolic and trigonometric functions.
CO 3:	To create an understanding of curve tracing and integration techniques.
CO 4:	To inculcate the students in understanding how to find the volume and surface of revolution.
CO 5:	To make the students aware of techniques of sketching conics and properties of conics.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	The definition of the	CSO 1.1: to define the term	10	22	Not to
Foundations	limit of a function,	limit of a function (K)			be
of Calculus	The definition of	CSO 1.2: to solve some			filled-
	continuity of a	functions to check its limit with			in
	function, the basic	the help of the definition. (U)			
	limit theorems. More	CSO 1.3: to define the term			
	examples of	continuity of a function. (K)			
	continuous functions,	CSO 1.4: to solve some			
	Proofs of the basic	functions to check its			
	limit theorems,	continuity with the help of the			
	Composite functions	definition. (U)			
	and continuity,	CSO 1.5: to state and prove			
	Bolzano's theorem for	basic limit theorems. (K/U)			
	continuous functions,	CSO 1.6: to define the term			
	The intermediate-	composite functions and			
	value theorem for	continuity. (K)			
	continuous functions	CSO 1.7: to state and prove			
	and examples.	Bolzano's theorem for			
		continuous functions. (K/U)			
		CSO 1.8: to state and prove the			
		intermediate-value theorem for			
		continuous function and			
		examples. (K/U)			
LINIT 2	Hyperbolic functions	CSO 21. to define hyperbolic	0	20	Not to
Derivatives of	higher order	functions and some properties	2	20	he
byperbolic	derivatives Leibniz	(K)			filled_
and	rule and its	CSO 22: to define higher			in
trigonometric	applications to	order derivatives and solve			111
a igonomen ic	nrohlems of type	some problems (K/A)			
	$\rho(ax+b) \sin x$	CSO 2.3: to explain Leibniz			
	$a(ax+b) \cos x$ (ax 1	rule and its applications to			
	$b^n \sin x$ (ax +	problems (U/A)			
	b) ⁿ cos x concavity	CSO 2.4: to apply Leibnitz rule			

	and inflection points, asymptotes.	to solve some problem types. (A) CSO 2.5: to define and explain concavity and inflection points. (U) CSO 2.6: to find concavity and inflection points. (U/A) CSO 2.7: to define and explain asymptotes. (K/U) CSO 2.8: to solve some problems to find asymptotes. (U)			
UNIT 3 Curve tracing and Integration techniques	Curve tracing in Cartesian coordinates, introduction to polar coordinates and curve tracing in polar coordinates of standard curves (cycloid, cardioid, other simple curves), Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n$ xdx , $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx$, $\int (sin^m x) cos^n x dx$	CSO 3.1: to define curve tracing (K) CSO 3.2: to define cartesian coordinates. (K) CSO 3.3: to explain curve tracing in cartesian coordinates. (U) CSO 3.4: to define polar coordinates (K) CSO 3.5: to explain curve tracing in polar coordinate of standard curves. (U) CSO 3.6: to tackle some problems on curve tracing. (A) CSO 3.8: to explain reduction formulae and derivatives. (U) CSO 3.9: to apply reduction formulae to some specific type of problems. (A)	10	22	Not to be filled- in
UNIT 4 Volume and Surfaces of revolution	Volumes by slicing disks and washer's methods, volumes by cylindrical shells, volumes by parametric equations, Parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution.	CSO 4.1: to explain volumes by slicing disks. (K/U) CSO 4.2: to solve problems to find the volume by slicing disks. (A) CSO 4.3: to define and explain Washer's method. (K/U) CSO 4.4: to apply Washer's method to find volume. (A) CSO 4.5: to explain Volume by cylindrical shells. (U) CSO 4.6: to solve problems to find volume by cylindrical shells. (A) CSO 4.7: to explain volume by parametric equations. (U) CSO 4.8: to solve problems to	8	18	Not to be filled- in

		find volume by parametric equations. (A) CSO 4.9: to explain Parameterizing a curve. (U) CSO 4.10: to define arc length and some problems to find arc length. (K/A) CSO 4.11: to explain arc length of parametric curves. (U) CSO 4.12: to solve problems to find area of surface of revolution. (A)	2		
UNIT 5 Conic Section	Techniques of sketching conics, reflection properties of conics, rotation of axes and second- degree equations, classification into conics using the discriminant, polar equations of conics.	CSO 5.1: to explain techniques of sketching conics and draw some sketch. (U) CSO 5.2: to explore and comprehend the reflection properties of conic sections, particularly focusing on the reflective behaviour of ellipses, hyperbolas, and parabolas across different axes. (U) CSO 5.3: to explain rotation of axes and second-degree equations and solve some problems. (U) CSO 5.4: to explain the classification into conics using the discriminant and solve some problems. (U) CSO 5.5: to explain polar equations of conics and solve some problems (U)	8	18	Not to be filled- in

NAME OF THE PAPER (CODE)	: CALCULUS (MTC 1.1) (Practical)
Number of Credit	: 01
Number of Hours of Lecture	: 30

List of Practical's (using any software)

- 1. Practical based on tracing curves (trigonometric functions, inverse function, exponential function, logarithmic function and hyperbolic function)
 - a. Draw the graph of sinx, cosx, tanx, cotx, secx, cosecx.
 - b. Draw the graph of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$, $\cot^{-1} x$, $\sec^{-1} x$, $\cos ec^{-1} x$.
 - c. Draw the graph of sinhx, coshx, tanhx, cothx.
 - d. Draw the graph of $\log_a x, a_x$.
 - e. Draw the graph of cardioids and asteroid
- 2. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.
- 3. Practical based on integral and reduction formula, summation of the series, surface and volume.
- 4. Matrix operation (Addition, multiplication, inverse, transpose)
- 5. Practical based on successive differentiation.

- a. Find the nth derivative of the given function at a given point.
- b. Application of Leibnitz's theorem.
- 6. Evaluation of limits by L'Hospital's rule.
- 7. Application of reduction formula for integration.
- 8. Application of series using integration.
- 9. Application of volume revolution.
- 10. Matrix Operations: Addition, Multiplication, Inverse, Transpose, Determinant.

1. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.

2. M.J. Strauss, G.L. Bradley and K. J. Smith, *Calculus, 3rd Ed.*, Dorling Kindersley (India) P. Ltd. (Pearson Education), Delhi, 2007.

3. H. Anton, I. Bivens and S. Davis, *Calculus, 7th Ed.*, John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.

4. R. Courant and F. John, *Introduction to Calculus and Analysis (Volumes I & II)*, Springer-Verlag, New York, Inc., 1989.

5. Tom. M. Apostol, Calculus - Volume I and II, 2nd Ed., John Wiley and Sons, Inc, 1967

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Algebra:

CO 1:	Students are exposed to solving polynomial equations, summation of an infinite series, matrices, and elementary number theory.
CO 2:	learn the different methods to solve polynomial equations.
CO 3:	understand the methods of the sum to infinity of a binomial, exponential, and logarithmic series.
CO 4:	find the Eigen values and Eigen vectors of a given square matrix.
CO 5:	acquire a basic knowledge of different types of numbers, a number of divisors of a positive integer.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSUs)	Hours		
UNIT 1	Summation of series	CSO 1.1: find the sum to infinity	11	18	Not to
Basic	using Binomial -	of the given			be
Algebra	Exponential and	binomial/exponential/logarithmic			filled-in
series:	Logarithmic series	series. (K)			
	(Theorems without	CSO 1.2: carry out the			
	proofs) -	calculations of approximate roots			
	Approximation	of the given polynomial equation.			
	using Binomial,	(U)			
	Exponential and	CSO 1.3: demonstrate the			
	Logarithmic series -	knowledge of the relationship			
	simple problems.	between roots and coefficients			
		of the given equation (\mathbf{A})			
		or the groun equation. (11)			
UNIT 2	Systems of linear	CSO 2.1: Find the rank and type	11	18	Not to
Systems of	equations, row	of solutions. (K)			be
linear	reduction and	CSO 2.2: Determine of			filled-in
equations	echelon forms, the	homogeneous and non-			
-	matrix equation	homogeneous system of linear			
	Ax=b, solution sets	equations. (U)			
	of linear systems,				
	applications of				
	linear systems.				
UNIT 3	Introduction to	CSO 3.1: Learn about the	13	22	Not to
Basic	vector space, vector	concept of linear independence			be
Linear	equations, linear	of vectors over a field, and the			filled-in
Algebra:	independence of	dimension of a vector space			
C	vectors,	(K)			
	Introduction to	CSO 32: Pasia concenta of			
	linear	Linear transformations			
	transformations,	innear transformations,			
	matrix of a linear	dimension theorem, matrix			
	transformation,	representation of a linear			

	inverse of a matrix, characterizations of invertible matrices.	transformation, and the change of coordinate matrix. (A) CSO 3.3: Understand the basic concept of vector space, subspace, quotient space and linear combination of vectors, linear span and its results, basis and dimension of vector space and subspace. (U)			
UNIT 4 Matrices	Symmetric - Skew Symmetric, - Hermitian - Skew Hermitian - Orthogonal and Unitary Matrices - Eigen Values - Eigen Vectors - Cayley-Hamilton Theorem (without proof) - Similar Matrices - Diagonalization of a Matrix.	CSO 4.1: demonstrate the knowledge of matrices and calculate the Eigen values and Eigen vectors of a given square matrix. (U) CSO 4.2: Study about basic matrix definitions (U) CSO 4.3: Cayley Hamilton theorem application. (A)	12	20	Not to be filled-in
UNIT 5 Theory of Number	Prime Number - Composite Number - Decomposition of a Composite Number as a Product of Primes uniquely (without proof) - Divisors of a Positive Integer - Congruence Modulo n - Euler Function (without Proof) - Highest Power of a Prime Number p contained in n!- Fermat's and Wilson's Theorems (statements only) - simple problems.	CSO 5.1: discuss the basic number theory concepts. (K) CSO 5.2: Describe some important results in the theory of numbers including the prime number theorem, Chinese remainder theorem, Wilson's theorem and their consequences. (U) CSO 5.3: Describe number theoretic functions, modular arithmetic and their applications. (A)	13	22	Not to be filled-in

1. P. Kandasamy, K. Thilagavathy, *Mathematics for B.Sc.* Vol-I, II, III & IV, S. Chand & Company Ltd, 2005.

2. S. Arumugam, Algebra, New Gamma Publishing House, Palayamkottai, 2003.

3. P. R. Vittal, V. Malini, Algebra and Trigonometry, Margham Publications, Chennai.

4. S. Sudha, Algebra and Trigonometry, Emerald Publishers, Chennai, 1998.

5. Edgar G. Goodaire and Michael M. Parmenter, *Discrete Mathematics with Graph theory*, Pearson Education

6. David C. Lay, *Linear Algebra and its applications*, 3rd Ed., Pearson Education Asia, India, 2019.

7. Gilbert Strang, Linear algebra and its application, Pearson Education India, 2016.

: REAL ANALYSIS (MTC 2.1)

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Real Analysis**:

:04

:60

CO 1:	To learn "Countability of sets and the real number system" and gaps in the rational
	numbers.
CO 2:	To acquire the knowledge of "Topology of real numbers" by learning completeness axiom
	and denseness in \mathbb{R} . The student shall be able to find limit points of set and define closed
	set with this concept.
CO 3:	The students shall aware of the "Sequence of real numbers" and its convergence. The
	idea of monotone sequence and its convergence theorem is also introduced.
CO 4:	To impart the knowledge of "Subsequence" to identify monotone subsequence and its
	convergence, divergence subsequence.
CO 5:	To help students understand "Infinite series and its convergence" by using various
	convergence test.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1 Countability of sets and the real number system	Rational numbers and its properties, gaps in the rational numbers, Review of algebraic and order properties of \mathbb{R} - neighbourhood of a point in \mathbb{R} , Idea of countable sets, uncountable sets and uncountability of \mathbb{R} . Bounded above sets, Bounded below sets, Bounded sets, Unbounded sets, Suprema and Infima	CSO 1.1: To understand the rational number system and its gap (K) CSO 1.2: To discuss the algebraic and order properties of \mathbb{R} (U) CSO 1.3: Defining neighbourhood of point (K) CSO 1.4: Theorems on neighbourhoods of a point (U) CSO 1.5 Finding neighbourhood of a point (A) CSO 1.5 Finding neighbourhood of a point (A) CSO 1.6: To introduce the concept of countable and uncountable sets (K) CSO 1.7: Theorems on union of countable sets, infinite subsets of countable sets, uncountability of \mathbb{R} (U) CSO 1.8: Defining bounded sets, unbounded sets, (K) CSO 1.9: To find the upper bound and lower bound of sets (A) CSO 1.10: Defining suprema and infima of a set (K) CSO 1.11: To find suprema and	13	22	Not to be filled- in
		infima of a set (A)	11	10	
UNIT 2	The completeness	CSO 2.1: Describing the concept of	11	18	Not
Topology of	property of \mathbb{K} , The	completeness axiom (K)			to be
real numbers	Archimedean	CSU 2.2: Theorems on			filled-
	property, Density of	completeness axiom (U)			1 n
	rational and	CSO 2.3: Describing the concept of			
	irrational numbers in	Archimedean property of real			

	R, Intervals. Limit points of a set, Isolated points, Illustration of Bolzano-Weierstrass theorem for bounded sets	numbers (K) CSO 2.4: Theorems based on Archimedean property of real numbers (U) CSO 2.5: To discuss denseness in \mathbb{R} (U) CSO 2.6: to understand the idea of intervals(K) CSO 2.7: to define limit point and isolated point of a set(K) CSO 2.8: Finding limit point and isolated point of a set (A) CSO 2.9: Illustration of Bolzano Weierstrass theorem for bounded sets (A)			
UNIT 3 Sequence of real numbers	Sequences, Bounded sequence, Convergent sequence, Limit of a sequence. Limit theorems, Monotone sequence, Monotone convergence theorem	CSO 3.1: To define sequence of real numbers (K) CSO 3.2: To define bounded sequence and unbounded sequence (K) CSO 3.3: To define limit of a sequence (K) CSO 3.4 To discuss the convergence of a sequence (U) CSO 3.5: Finding the limit of a sequence and determining its convergence (A) CSO 3.6: To describe the algebra of limits (K) CSO 3.7: Theorem on limits (U) CSO 3.8: To define monotone sequence (K) CSO 3.9: To discuss monotone convergence theorem (U) CSO 3.10: To determine monotone	12	20	Not to be filled- in
UNIT 4 Subsequence	Subsequence, Divergence criteria, Monotone subsequence theorem (statement only), Bolzano- Weierstrass theorem for sequences. Cauchy sequence, Cauchy's convergence criterion	CSO 4.1: Defining subsequence of a sequence (K) CSO 4.2: To discuss the convergence and divergence concept of subsequence (U) CSO 4.3: Discussing the divergence criteria of a subsequence (U) CSO 4.4: Solving problem based on convergence and divergence of sequence (A) CSO 4.5: To describe monotone subsequence theorem (K) CSO 4.6: To discuss Bolzano Weierstrass theorem for sequences (U) CSO 4.7: Defining Cauchy's sequence (K) CSO 4.8: Describing Cauchy's Convergence Criterion (K)	12	20	Not to be filled- in

		CSO 4.9: Determining Cauchy's			
		sequence (Δ)			
LINIT 5	Infinite cories	CSO 5 1: Defining infinite series	12	20	Not
UNIT J	annuar gange and	(\mathbf{V})	12	20	to he
and its	divergence and	(K) CSO 5 2: Discussing Cauchy's			filled
	infinite coming	cso 5.2. Discussing Cauchy s			ineu-
convergence	Couchy criterion	criterion of convergence of minine			111
	Cauchy criterion,	series (0)			
	lests for	CSO 5.3: Discussing some			
	convergence:	properties on infinite series (U)			
	Comparison test,	CSO 5.4: Defining Comparison test			
	Ration test,				
	Cauchy's nth root	CSO 5.5: Applying Comparison test			
	test, Integral test,	on infinite series (A)			
	Alternating series,	CSO 5.6: Defining limit			
	Leibnitz's test,	comparison test (K)			
	Absolute and	CSO 5.7: Applying comparison test			
	conditional	on infinite series (A)			
	convergence	CSO 5.8: Defining ratio test (K)			
		CSO 5.9: Applying ratio test on			
		infinite series (A)			
		CSO 5.10: Defining Cauchy's nth			
		root test (K)			
		CSO 5.11: Applying Cauchy's nth			
		root test (A)			
		CSO 5.12: Defining integral test			
		(K)			
		CSO 5.13: Applying integral test on			
		infinite series (A)			
		CSO 5.14: Introducing Alternate			
		series (U)			
		CSO 5.15: Testing convergence of			
		infinite series (A)			
		CSO 5.16: Defining Leibnitz's test			
		(U)			
		CSO 5.17: Testing convergence of			
		alternate series by using Leibnitz's			
		test (A)			
		CSO 5.18: Discussing the			
		convergence of absolute and			
		conditional convergence (U)			

1. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and Sons, 2011.

- 2. A. Kumar and S. Kumaresan, A Basic Course in Real Analysis, CRC Press.
- 3. W. Rudin Principles of Mathematical Analysis, McGraw Hill Education, 1976.
- 4. S.K. Berberian, A first Course in Real Analysis, Springer Verlag, New York, 1994.
- 5. Terence Tao, Analysis I, Hindustan Book Agency, 2016.

: DIFFERENTIAL EQUATION (MTC 2.2) : 03

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Differential Equation:

: 45

CO 1:	the student will be able to know the various methods of solving the first-order higher degree differential equations.
CO 2:	the student will be able to carry out the different methods of solving the second order differential equations.
CO 3:	the student will be able to understand the concepts of total differential equations and solve the problems.
CO 4:	the student will be able to demonstrate knowledge of Laplace transform and its applications.
CO 5:	the student will be able to solve partial differential equations.

UNIT 1	Domoulli Equation	(CSUS)	Hours		
UNIT 1	Domoulli Equation		IIUUIS		
	Bernoulli Equation –	CSO 1.1: Formulate logical	9	2	Not to
	Exact Differential	skills in the formation of		0	be
Differential	Equations – Equations	differential equations (K)			filled-
Equation for	Reducible to Exact	CSO 1.2: Solve first order			in
first order	Equations – Equations	non-linear differential			
	of First order and	equation and linear			
	Higher degree.	differential equations of			
	6 6	bisher order using various			
		techniques. (U)			
UNIT 2	Method of Variation of	CSO 2.1: Solving the	9	20	Not to
Differential	Parameters – 2nd order	parameter variables (K)			be
Equation for	Differential Equations	CSO 2.2: Finding P.I for			filled-
second order	with Constant	second order or higher order			in
and higher or	Coefficients for	D.E (K)			
	finding the P. I's of the	CSO 2.3: Varies method			
	form e ^{ax} V, where V is	applying to solve			
	$\sin(mx)$ or $\cos(mx)$ or	Differential Equation (U)			
	\mathbf{x}^{n} – Equations	Differential Equation: (0)			
	reducible to Linear				
	equations with				
	constant coefficients				
UNIT 3	Total Differential	CSO 3.1: Expose different	9	20	Not to
Simultaneous	Equations	techniques for finding	-	20	he
Equations	Simultaneous Total	solutions to differential			filled-
with Constant	Differential Equations	equations and understand the			in
coefficients	- Faultions of the	topics of simultaneous and			111
	form $dx/P - dv/O -$	total differential equations			
	dz/R	(K)			
		CSO 3 2 • Finding first order			
		differential equation using			
UNIT 2 Differential Equation for second order and higher or UNIT 3 Simultaneous Equations with Constant coefficients	Method of Variation of Parameters – 2nd order Differential Equations with Constant Coefficients for finding the P. I's of the form e^{ax} V, where V is sin(mx) or cos(mx) or x^n – Equations reducible to Linear equations with constant coefficients. Total Differential Equations Simultaneous Total Differential Equations – Equations of the form dx/P = dy/Q = dz/R	CSO 2.1: Solving the parameter variables (K) CSO 2.2: Finding P.I for second order or higher order D.E (K) CSO 2.3: Varies method applying to solve Differential Equation. (U) CSO 3.1: Expose different techniques for finding solutions to differential equations and understand the topics of simultaneous and total differential equations (K) CSO 3.2: Finding first order differential equation using	9 9	20	Not be fille in Not be fille in

		by Cauhy metho d. (U)			
UNIT 4 General solution for the second order differential equations:	Particular integrals of second order differential equations with constant coefficients - Linear equations with variable coefficients - Method of Variation of Parameters	CSO 4.1: Find second order differential equation solution with constant coefficients. (K) CSO 4.2: Find the Method of Variation of Parameters (U) CSO 4.3: finding General terms solutions (A)	9	20	Not to be filled- in
UNIT 5 Mathematical modelling	Compartmental model-exponential growth and decay model [limited growth of population and limited growth with harvesting] equilibrium points, interpretation of the phase plane. Predatory prey model and its analysis, epidemic model of influenza	 CSO 5.1: Apply these techniques to solve and analyze various mathematical models. (K) CSO 5.2: Plotting of second order solution family of differential equation. (U) CSO 5.3: Plotting of third order solution family of differential equation. (A) 	9	20	Not to be filled- in

NAME OF THE PAPER (CODE)	: DIFFERENTIAL EQUATION (MTC 2.2) (Practical)
Number of Credit	: 01
Number of Hours of Lecture	: 30

List of Practicals (using any software):

- 1. Plotting of second order solution family of differential equation.
- 2. Plotting of third order solution family of differential equation.
- 3. Growth model (exponential case only).
- 4. Decay model (exponential case only).
- 5. Limited growth of population (with and without harvesting).
- 6. Predatory prey model (basic volterra model, with density dependence, effect of DDT, two prey one predator).
- 7. Epidemic model of influenza (basic epidemic model, contagious for life disease with carriers).
- 8. Battle model (basic battle model, jungle warfare, long range weapons).

Suggested Readings:

1. M.D. Raisinghania, [2001] Ordinary and Partial Differential Equations, S. Chand and Co., New Delhi, 2014.

2. M.R. Spiegel, Advanced Mathematics for Engineers and Scientists, McGraw Hill Edition, New Delhi, 1971.

- 3. S.L Ross, *Differential Equations*, 3rd Ed., John Wiley and Sons, India, 2004.
- 4. S. Sudha [2003] Differential Equations and Integral Transforms, Emerald Publishers.
- 5. M.K. Venkataraman [1998] Higher Engineering Mathematics, III-B, National Publishing Co.

6. C.H. Edwards and D.E Penny, *Differential Equations and Boundary Value problems computing and Modeling*, Pearson Education India, 2005.

7. George F. Simmons, Differential equation with applications and historical notes, McGraw-Hill, 197

NAME OF THE PAPER (CODE) Number of Credit Number of Hours of Lecture

: THEORY OF REAL FUNCTIONS (MTC 3.1)

: 04 : 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Theory of Real Functions:

CO 1:	To learn "Limit of functions" by introducing different limits such as infinite limit, limit at infinity, one sided limit and etc.
CO 2:	To help the students in the understanding of "Continuity" of functions with the help of different theorems based on this concept and solving problems. Further, the concept of uniform continuity is introduced.
CO 3:	To impart the knowledge of "Differentiability of functions" and extending the concept to prove Rolle's theorem, mean value theorem and Cauchy's mean value theorem.
CO 4:	To learn "Indeterminate forms" by applying L' Hospital's rule and find limit of function.
CO 5:	To help the students in the understanding of "Taylor's theorem and its application" and obtaining some infinite series with the help of Taylor's and Maclaurin's series.

Unit &	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1 Limit of functions	Limit of functions $(\varepsilon - \delta$ approach), sequential criterion for limits, divergence criteria, limit theorems, one sided limits, infinite limits, and limits at infinity	CSO 1.1: Defining limit by $\varepsilon - \delta$ approach (K) CSO 1.2: Defining left hand and right limit, limits at infinity and infinite limits (K) CSO 1.3: Finding left hand and right limit, limits at infinity and infinite limits (A) CSO 1.4: Discussing Algebra of limits (U) CSO 1.5: Proving sequential criterion of limit (U) CSO 1.6: Describing divergence criterion of limits (K) CSO 1.7: Discussing theorem on infinite limits (U)	11	18	Not to be filled- in
UNIT 2 Continuity and Uniform Continuity of functions	Continuous functions, sequential criterion of continuity and discontinuity, Algebra of continuous functions, Continuous functions on an interval, intermediate value theorem, Location of roots theorem, preservation of interval theorem, Uniform continuity,	 CSO 2.1: Defining continuity of a function (K) CSO 2.2: To determine continuous functions (A) CSO 2.3: Proving sequential criterion for continuous function (U) CSO 2.4: Describing algebra of continuous function (K) CSO 2.5: Elaborating intermediate value theorem (U) CSO 2.6: Proving location of root theorem (U) CSO 2.7: Discussing intermediate value theorem and 	13	22	Not to be filled- in

	Non-uniform continuity criteria, uniform, continuity theorem	preservation of interval theorem (U) CSO 2.8: Defining non uniform continuity criteria (K) CSO 2.9: To determine uniform continuous functions (A)			
UNIT 3 Differentiab ility of functions	Differentiability of a function at a point and in an interval, Caratheodory's theorem, Algebra of differentiable functions, Rolle's theorem, Mean value theorem, Cauchy's mean value theorem	CSO 3.1: To define differentiability of a function (K) CSO 3.2: To determine differentiable functions (A) CSO 3.3: Describing algebra of differentiability (K) CSO 3.4 Proving Caratheodory's theorem which gives the relation between continuity and differentiability (U) CSO 3.5: Proving Rolle's theorem (U) CSO 3.6: Identifying functions which supports Rolle's theorem (K) CSO 3.7: Proving Mean value theorem (U) CSO 3.8: Identifying functions which supports Mean value theorem (K) CSO 3.9: Proving Cauchy's mean value theorem (U) CSO 3.10: Applying Cauchy's mean value theorem on functions (A)	12	20	Not to be filled- in
UNIT 4 Indetermina te forms	L' Hospital's rule, Intermediate value property of derivatives, Darboux's theorem, Application of mean value theorem to inequalities and approximation of polynomials, Taylor's theorem to inequalities.	CSO 4.1: Identifying the indeterminate forms (K) CSO 4.2: Finding limits of different functions using different indeterminate forms (A) CSO 4.3: Proving Darboux's theorem(U) CSO 4.4: Application of Lagrange's mean value theorem to inequalities and approximation of polynomials (A) CSO 4.5: Proving Taylor's theorem (U) CSO 4.6: Application of Taylor's theorem to inequalities (A) CSO 4.7: Describing sign of the derivative theorem (K) CSO 4.8: Proving Intermediate value property of derivatives (U)	13	22	Not to be filled- in
UNIT 5 Taylor's theorem and its	Taylor'stheoremwithLagrange'sform ofremainder,Taylor'stheorem	CSO 5.1: Elaborating Taylor's theorem (U) CSO 5.2: Describing Taylor's theorem with Lagrange's form of	11	18	Not to be filled- in

application	with Cauchy's form of remainder, Application of Taylor's, theorem to convex functions, Relative extrema, Interior extremum theorem, Taylor's series and Maclaurin's series expansion of exponential, trigonometry and logarithmic functions	remainder (K) CSO 5.3: Describing Taylor's theorem with Cauchy's form of remainder (K) CSO 5.4: Application of Taylor's theorem to convex functions (A) CSO 5.5: Defining Taylor's series and Maclaurin's series(K) CSO 5.6: Expansion of some infinite series such as exponential, logarithm, trigonometric etc using Taylor's series and Maclaurin's series (U) CSO 5.7: Proving interior exterior theorem (U) CSO 5.8: Defining relative minima, reative maxima (K) CSO 5.9: Finding relative minima and maxima of functions (A)		
-------------	--	--	--	--

- R. G. Bartle and D. R. Sherbert, *Introduction to Real Analysis*, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 2. S. R. Ghorpade and B. V. Limaye, A Course in Calculus and Real Analysis, Springer, 2006.
- 3. K. A. Ross, *Elementary Analysis: The Theory of Calculus*, Springer, 2004.
- 4. A. Mattuck, Introduction to Analysis, Prentice Hall, 1999.

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Group Theory I:

CO 1:	To provide a comprehensive understanding of Group Theory, focusing on the definition and examples of Groups.
CO 2:	To provide a comprehensive understanding of subgroups and Cyclic groups. Also explore techniques to identify and classify subgroups.
CO 3:	To enhance critical thinking skills by analyzing and interpreting Permutation structures and their implications for problem solving in diverse contexts. Also learn the concept of Cosets and Lagrange's theorem including its use in proving Fermat's little theorem.
CO 4:	To provide an in depth understanding of advanced topics in Group Theory, focusing on the External direct products, Normal subgroups and Factor groups.
CO 5:	To provide a comprehensive understanding of Group Homomorphism, Isomorphism and its properties, understand its First, Second and Third Theorem. Also learn about Symmetries of a Square and Dihedral groups.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Definition and	CSO 1.1: To define groups	12	20	Not to
Introduction to	examples of groups	(K)			be
Groups	including	CSO 1.2: Illustration of			filled-
	permutation groups	groups with examples. (U)			in
	and quaternion	CSO 1.3: to define			
	groups (illustration	Permutation Groups and			
	through matrices),	Quaternion Groups (K)			
	elementary	CSO 1.4: to Illustrate			
	properties of groups.	Permutation Groups and			
		Quaternion Groups with			
		matrices (U)			
		CSO 1.5: to discuss the			
		elementary properties of			
		groups (K+U)			
UNIT 2	Subgroups and	CSO 2.1: to define	12	20	Not to
Subgroups and	examples of	subgroups and understand			be
Cyclic groups	subgroups, product	with the help of examples			filled-
	of two subgroups,	(K+U)			in
	center of a group,	CSO 2.2: to define and			
	centralizer,	prove that two subgroups			
	normalizer.	of a group G is a product of			
	Properties of cyclic	subgroups of G (K+A)			
	groups, classification	CSO 2.3: to define			
	of subgroups of	centralizer, normalizer and			
	cyclic groups.	center of a group. (K)			
		CSO 2.4: to prove that			
		centralizer, normalizer and			
		center of a group is a			
		subgroup of a group (A)			

		CSO 2.5: to define cyclic			
		groups (K)			
		CSO 2.6: to learn the			
		properties of a cyclic group			
		(U)			
		CSO 2.7: to classify			
		subgroups of cyclic groups			
	~	(U)			
UNIT 3	Cycle notation for	CSO 3.1: Define cycle	12	20	Not to
Permutation	permutations,	permutation.(K)			be filled
and Lagrange's	properties of	examples (L)			in
Theorem	and odd	CSO 3 3 • to find different			111
Theorem	permutations.	powers of a cycle and its			
	alternating group,	order. (A)			
	properties of cosets,	CSO 3.4: to learn the			
	Lagrange's theorem	properties of permutations			
	and consequences	(K) CSO 3.5: to define			
	including Fermat's	even and odd permutation.			
	Little theorem.				
		CSO 3.6: to Illustrate with			
		CSO 37 to define			
		alternating group and to			
		show that the set of all even			
		permutation is a normal			
		subgroup. (K+A)			
		CSO 3.8: to define and			
		understand cosets and its			
		properties. (K+U)			
		CSO 3.9: to state and prove			
		Lagrange's theorem. $(K \perp \Delta)$			
		CSO 3.10: to state and			
		prove Fermat's little			
		theorem. (K+A)			
UNIT 4	External direct	CSO 4.1: to define external	12	20	Not to
External direct	product of a finite	direct product. (K)			be
products,	number of groups,	CSO 4.2: to prove that			filled-
Normal	normal subgroups,	external direct product is a			1 n
subgroups and Factor groups	Tactor groups,	$\begin{array}{c} \text{group} (U+A) \\ \textbf{CSO 4 3} \text{ to define normal} \end{array}$			
racior groups	for finite abelian	subgroups Illustrate with			
	groups.	an example. (K+U)			
		CSO 4.4: to define Factor			
		group. Illustrate Factor			
		group with an example.			
		(K+U)			
		USU 4.5: to Prove that			
		evelic group is evelic (A)			
		CSO 4.6: to Prove that a			
		subgroup of a group G is			
		normal in G iff the product			
		of two right cosets is again			
		a right coset of H in G.			

		(K+U) CSO 4.7: to state and prove Cauchy theorem for finite abelian group (K+A)			
UNIT 5	Group	CSO 5.1: to define group	12	20	Not to
Group	homomorphism	homomorphism. Illustrate			be
homomorphisms,	s, properties of	with examples. (K+U)			filled-
isomorphisms	homomorphism	CSO 5.2: to understand the			in
and Some special	s, Cayley's	Properties of			
groups	theorem,	homomorphism. (U)			
	properties of	CSO 5.3: to define group			
	isomorphisms,	isomorphism. Illustrate			
	First, Second	with examples. (K+U)			
	and Third	CSO 5.4: to understand the			
	isomorphism	Properties of isomorphism.			
	theorems,Symm	(U)			
	etries of a	CSO 5.5: to state and prove			
	square, Dihedral	Cayley's theorem. (K+A)			
	groups	CSO 5.6: to state and			
		prove First, Second and			
		Third theorem of			
		isomorphism. (K+A)			
		CSO 5.7: To understand			
		Symmetries of a square of			
		how they form Group			
		under composition (U)			
		CSO 5.8: To learn about			
		Dihedral Groups,			
		understand its properties,			
		representations and			
		applications. (K+U+A)			

1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.

2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.

3. Joseph A. Gallian, *Contemporary Abstract Algebra*, 4th Ed., Narosa Publishing House, New Delhi, 1999.

4. Joseph J. Rotman, An Introduction to the Theory of Groups, 4th Ed., Springer Verlag, 1995.

5. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, India, 1975.

: PDE AND SYSTEMS OF ODE (MTC 3.3)

Use of Scientific Calculator is allowed

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **PDE and Systems of ODE**:

:03

: 45

CO 1:	To introduce the basic concepts of partial differential equations. To Construct, interpret geometrically, form and classify the first order PDE. To obtain the general solution of PDE.
CO 2:	To provide a comprehensive understanding of method of separation of variables for first
	order linear PDEs and the derivation, classification and, solution of second order PDEs.
CO 3:	To particularly focus more on the application of PDEs in solving Cauchy and boundary
	value problems related to wave propagation.
CO 4:	To equip students with the necessary skills and knowledge to tackle PDEs with non-
	homogeneous boundary conditions, focusing on practical applications in wave
	propagation and heat conduction
CO 5:	To provide a comprehensive understanding of systems of linear differential equations,
	and their solution methods, with a focus on practical applications and numerical
	techniques.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Partial Differential	CSO 1.1: to define PDE (K)	9	20	Not to
Introduction	Equations – Basic	CSO 1.2: to discuss basic			be
to Partial	concepts and	concepts of partial differential			filled-
Differential	Definitions,	equations. (U)			in
Equations	Mathematical	CSO 1.3: to classify, Construct			
	Problems. First-Order	and give geometrical			
	Equations:	interpretation of first order			
	Classification,	PDE (U)			
	Construction and	CSO 1.4: to form PDE by			
	Geometrical	eliminating constants (U)			
	Interpretation. Method	CSO 1.5: to find the general			
	of Characteristics for	solution of first order linear			
	obtaining General	PDE. (A)			
	Solution of Quasi	CSO 1.6: to explain the method			
	Linear Equations.	of canonical form of first order			
	Canonical Forms of	linear equations (U)			
	First-order Linear	CSO 1.7: to Reduce the linear			
	Equations.	PDE to canonical form and			
		obtain the general solution. (A)			
UNIT 2	Method of Separation	CSO 2.1: to explain Method of	9	20	Not to
Method of	of Variables for	Separation of Variables (U)			be
Separation of	solving first order	CSO 2.2: to apply Method of			filled-
Variables and	partial differential	Separation of Variables to			in
Classification	equations. Derivation	solve first order PDEs. (A)			
of second	of Heat equation,	CSO 2.3: to explain and derive			

order linear equations	Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order Linear Equations to canonical forms.	Heat, Wave and Laplace Equation (U+A) CSO 2.4: to Classify second order linear equations hyperbolic, parabolic or elliptic (U) CSO 2.5: to explain the method of canonical form of second order PDE(U) CSO 2.6: to reduce second order Linear Equations to canonical forms (A) CSO 2.7: to explain Secant method and its derivative. (U)			
UNIT 3 Solving Cauchy problem and Boundary Value Problems	The Cauchy problem, the Cauchy- Kowaleewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems, Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end.	CSO 3.1: to define Cauchy problem with problems (K+U) CSO 3.2: to give the statement for Cauchy-Kowaleewskaya theorem (K) CSO 3.3: to apply method of separation of variables to solve Initial Boundary Value Problems. (A) CSO 3.4: to explain Semi- Infinite String with a fixed end, Semi-Infinite String with a Free end. (U) CSO 3.5: to solve various problems on Semi-Infinite String with a fixed end, Semi- Infinite String with a Free end (A)	9	20	Not to be filled- in
UNIT 4 Solving non- homogeneous equations with boundary conditions using separation of variables	Equations with non- homogeneous boundary conditions, Non-Homogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String Problem, Solving the Heat Conduction problem.	 CSO 4.1: to derive the equations of non-homogeneous boundary conditions. (K+A) CSO 4.2: to Solve the non-homogeneous wave equation. (A) CSO 4.3: to apply method of separation of variables to derive vibrating string problem. (A) CSO 4.4: to solve the Vibrating String Problem (A) CSO 4.5: to derive the Heat Conduction problem by method of separation of variables (K+A) CSO 4.6: to solve by the method of heat conduction (A) 	9	20	Not to be filled- in
UNIT 5 Systems of linear	Systems of linear differential equations, types of linear	CSO 5.1: to understand the concept of systems of linear differential equations (K+U)	9	20	Not to be filled-

differential	systems, differential	CSO 5.2: to explain types of		in
equations	operators, an operator	linear systems (U)		
	method for linear	CSO 5.3: to understand the		
	systems with constant	concept of differential		
	coefficients, Basic	operators (U)		
	Theory of linear	CSO 5.4: to use the operator		
	systems in normal	method to find the general		
	form, homogeneous	solution of the given linear		
	linear systems with	systems. (A)		
	constant coefficients:	CSO 5.5: to understand the		
	Two Equations in two	concept of basic theory of		
	unknown functions,	linear system in normal form		
	The method of	(U)		
	successive	CSO 5.6: to illustrate with		
	approximations, the	examples (U)		
	Euler method, the	CSO 5.7: to define		
	modified Euler	homogeneous linear system.		
	method, The Runge-	(K)		
	Kutta method.	CSO 5.8: to define non-		
		homogeneous linear system (K)		
		CSO 5.9: to find Solutions of		
		homogeneous and non-		
		homogeneous linear system.		
		(A)		
		CSO 5.10: to explain method		
		of successive approximations,		
		the Euler method, the modified		
		Euler method, The Runge-		
		Kutta method. (U)		
		CSO 5.11: to apply the		
		methods to systems of linear		
		differential equations. (A)		

NAME OF THE PAPER (CODE) : PDE AND SYSTEMS OF ODE (MTC 3.3) (Practical) **Number of Credit** :01 Number of Hours of Lecture : 30

List of Practicals (using any software)

(i) Solution of Cauchy problem for first order PDE.

(ii) Finding the characteristics for the first order PDE.

(iii) Plot the integral surfaces of a given first order PDE with initial data.

(iv) Solution of wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ for the following associated conditions

a) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), x \in \mathbb{R}, t > 0$

b) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), u(0,t) = 0, x \in (0,\infty), t > 0$

- c) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), u_x(0,t) = 0, x \in (0,\infty), t > 0$ d) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), u(0,t) = 0, u(l,t) = 0, 0 < x < l, t > 0$

(v) Solution of heat equation $\frac{\partial u}{\partial t} = K^2 \frac{\partial^2 u}{\partial x^2}$ for the following associated conditions a) $u(x,0) = \phi(x)$, u(0,t) = a, u(l,t) = b, 0 < x < l, t > 0

- b) $u(x,0) = \phi(x), u(0,t) = a, x \in (0,\infty), t \ge 0$
- c) $u(x, 0) = \phi(x), u(0, t) = a, x \in \mathbb{R}, 0 < t < T$

1. Tyn Myint-U and Lokenath Debnath, *Linear Partial Differential Equations for Scientists and Engineers*, 4th edition, Springer, Indian reprint, 2006.

2. S.L. Ross, *Differential equations*, 3rd Ed., John Wiley and Sons, India, 2004.

3. Martha L Abell and James P Braselton, *Differential equations with MATHEMATICA*, 3rd Ed., Elsevier Academic Press, 2004.

4. J Sinha Roy and S Padhy, A course of Ordinary and Partial differential equation, Prentice-Hall, New Delhi, 2012.

5. Martha L Abell, James P Braselton, *Differential equations with MATHEMATICA*, 3rd Ed., Elsevier Academic Press, 2004.

6. Robert C. McOwen, Partial Differential Equations, Pearson Education Inc., 2010.

7. T Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publications, 2005.

: NUMERICAL METHODS (MTC 4.1)

Use of Scientific Calculator is allowed.

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Numerical Methods:

CO 1:	To make the students aware of the numerical methods and basic concepts of algorithm, convergence and errors.
CO 2:	To aid the students in the understanding of transcendental and polynomial equations and help them to solve the equations by using different methods, and analyse its convergence.
CO 3:	To create an understanding among the students, the system of linear algebraic equations and how to solve it and analyse its convergence.
CO 4:	To inculcate and create interest among students in the understanding of interpolation.
CO 5:	To assist the students in the understanding of Numerical integration.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Algorithms,	CSO 1.1: to define the term	8	18	Not to
Introduction to	Convergence,	Algorithm (K)			be
Numerical	Errors: Relative,	CSO 1.2: to construct an			filled-
Methods	Absolute, Round	Algorithm for a sequence to find			in
	off and	mean and standard deviation. (U)			
	Truncation	CSO 1.3: to apply the Algorithm			
		to find mean and standard			
		deviation. (A)			
		CSO 1.4: to construct an			
		Algorithm to find an integral of a			
		function using trapezoidal rule.			
		(U)			
		CSO 1.5: to apply the Algorithm			
		to find an integral. (A)			
		CSO 1.6: to define the term			
		convergence. (K)			
		CSO 1.7: to understand the rate of			
		convergence and order of			
		convergence. (U)			
		CSO 1.8: to evaluate rate of			
		convergence and order of			
		convergence of some functions.			
		(A)			
		CSO 1.9: to define the term error.			
		(K)			
		CSO 1.10: to write and define the			
		different types of errors. (K)			
		CSO 1.11: to find the value of the			
		different errors by solving some			
		questions. (A)			

UNIT 2	Transcendental	CSO 2.1: to define Transcendental	9	20	Not to
Transcendental	and Polynomial	equation (K)	,	20	he
and Polynomial	equations:	CSO 22. to define polynomial			filled_
Equations	Disaction	CSO 2.2. to define polynomial			in
Equations	Disection	equation. (\mathbf{K})			III
	method,	CSO 2.3: to explain Bisection			
	Newton's	Method and its derivative. (U)			
	method, Secant	CSO 2.4: to apply Bisection			
	method, Rate of	Method to solve some			
	convergence of	Transcendental and polynomial			
	these methods	equations. (A)			
		CSO 2.5: to explain Newton's			
		method and its derivative. (U)			
		CSO 2.6: to apply Newton's			
		method to solve some			
		Transcendental and polynomial			
		equations (A)			
		CSO 2.7: to explain Secant			
		method and its derivative (II)			
		CSO 2.8. to apply Secant method			
		to solve some Transcendental and			
		nolynomial equations (A)			
		CSO 20: to analyze the rote of			
		CSO 2.9: to analyse the late of			
		convergence for Newton's			
		method. (A)			
		CSO 2.10: to analyse the rate of			
		convergence for Bisection method.			
		CSO 2.11: to analyse the rate of			
		convergence for Secant method.			
		(A)			
UNIT 3	System of linear	CSO 3.1: to define system of	9	20	Not to
System	algebraic	linear algebraic equation. (K)			be
of	equations:	CSO 3.2: to explain Gaussian			filled-
Linear	Gaussian	Elimination method and its			in
Algebraic	Elimination and	derivative. (U)			
Equations	Gauss Jordon	CSO 3.3: to apply Gaussian			
	methods, Gauss	Elimination method to solve some			
	Jacobi method,	system of linear algebraic			
	Gauss Seidel	equations. (A)			
	method and their	CSO 3.4: to explain Gauss Jordon			
	convergence	method and its derivative. (U)			
	analysis	CSO 3.5: to apply Gauss Jordon			
		method to solve some system of			
		linear algebraic equations. (A)			
		CSO 3.6: to explain Gauss Jacobi			
		method and its derivative. (U)			
		CSO 3.7: to apply Gauss Jacobi			
		method to solve some system of			
		linear algebraic equations (A)			
		CSO 3.8: to explain Gauss Seidel			
		method and its derivative (II)			
		CSO 3.9: to apply Gauss Seidel			
		method to solve some system of			
		linear algebraic equations (A)			
		CSO 3 10 to analyse the rate of			
		convergence for Gaussian			
		convergence for Gaussfall			

		Elimination method. (A) CSO 3.11: to analyse the rate of convergence for Gauss Jordon method. (A) CSO 12: to analyse the rate of convergence for Gauss Jacobi method. (A) CSO 3.13: to analyse the rate of convergence for Gauss Seidel method. (A)			
UNIT 4 Interpolation	Interpolation: Lagrange and Newton's methods, Error bounds. Finite difference operators, Gregory forward and backward difference interpolation.	 CSO 4.1: to define Interpolation. (K) CSO 4.2: to explain Lagrange method. (U) CSO 4.3: to apply Lagrange method to solve some questions. (A) CSO 4.4: to explain Newton's method. (U) CSO 4.5: to apply Newton's method to solve some questions. (A) CSO 4.5: to apply Newton's method to solve some questions. (A) CSO 4.6: to define error bound. (K) CSO 4.7: to analyse the error bound of some problems. (A) CSO 4.8: to define finite difference operators. (K) CSO 4.9: to solve problems using the finite difference operators. (A) CSO 4.10: to explain Gregory forward Interpolation. (U) CSO 4.12: to explain Backward difference Interpolation. (U) CSO 4.13: to apply Backward difference Interpolation to solve some problems. (A) 	9	20	Not to be filled- in
UNIT 5 Numerical Integration	Numerical Integration: Trapezoidal rule, Simpson's $1/_3$ rule, Simpsons $3/_8$ rule, Boole's rule, Midpoint rule, Composite Trapezoidal rule, Composite Simpson's rule, Ordinary Differential Equations: Euler's method, Runge-Kutta	CSO 5.1: to define Numerical Integration. (K) CSO 5.2: to explain Trapezoidal rule. (U) CSO 5.3: to apply Trapezoidal rule to find the integration of some equations. (A) CSO 5.4: to explain Simpson's 1/3 rd rule. (U) CSO 5.5: to apply Simpson's 1/3 rd rule to find the integration of some equations. (A) CSO 5.6: to explain Simpson's 3/8 th rule. (U) CSO 5.7: to apply Simpson's 3/8 th rule to find the integration of some	10	22	Not to be filled- in

Methods orders two at	f equations. (A) d CSO 5 8: to explain Boole's rule
four	(I)
1001.	CSO 5.9: to apply Boole's rule to
	find the integration of some
	equations. (A)
	CSO 5.10: to explain Midpoint
	rule. (U)
	CSO 5.11: to apply Midpoint rule
	to solve some equations. (A)
	CSO 5.12: to explain composite
	Trapezoidal rule. (U)
	CSO 5.13: to explain composite
	Simpson's rule. (U)
	CSO 5.14: to define ordinary
	Differential equation. (K)
	CSO 5.15: to explain Euler's
	method. (U)
	CSO 5.16: to explain Runge-Kutta
	methods of order two and four. (U)
	CSO 5.17: to apply Euler's method
	and Runge-Kutta methods to solve
	some problems.

NAME OF THE PAPER (CODE)	: NUMERICAL METHODS (MTC 4.1) (Practical)
Number of Credit	: 01
Number of Hours of Lecture	: 30

List of Practicals (using any software)

- (i) Calculate the sum 1/1+1/2+1/3+1/4+...+1/N
- (ii) To find the absolute value of an integer.
- (iii) Enter 100 integers into an array and sort them in an ascending order.
- (iv) Bisection Method.
- (v) Newton Raphson Method.
- (v) Secant Method.
- (vi) Regula Falsi Method.
- (vii) LU decomposition Method.
- (ix) Gauss-Jacobi Method.
- (x) SOR Method or Gauss-Siedel Method.
- (xi) Lagrange Interpolation or Newton Interpolation.
- (xii) Simpson's rule.

Suggested Readings:

1. Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007.

2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, *Numerical Methods for Scientific and Engineering Computation, 6th Ed.*, New age International Publisher, India, 2007.

3. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Education, India, 2008.

4. Uri M. Ascher and Chen Greif, A First Course in Numerical Methods, 7th Ed., PHI Learning Private Limited, 2013.

5. John H. Mathews and Kurtis D. Fink, *Numerical Methods using Matlab, 4th Ed.*, PHI Learning Private Limited, 2012.

NAME OF THE PAPER (CODE): RIEMANN INTEGRATION AND SERIES OF FUNCTIONS (MTC 4.2)

Number of Credit	: 04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Riemann Integration and series of Functions:**

CO 1:	To understand the concept of Riemann integration.
CO 2:	To aid the students in understanding more about Riemann integration.
CO 3:	To create the students in understanding about improper integrals.
CO 4:	To inculcate and create interest among students in the understanding functions of analysis.
CO 5:	To assist the students in the understanding more on functions of analysis.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1 Riemann integration	Riemann integration- inequalities of upper and lower sums; Riemann conditions of integrability. Riemann sum and definition of Riemann integral through Riemann sums; equivalence of two definitions.	CSO 1.1: Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Fundamental theorems of integration. (K) CSO 1.2: Riemann integration- inequalities of upper and lower sums; Riemann conditions of integrability. (U) CSO 1.3: Riemann sum and definition of Riemann integral through Riemann sums; equivalence of two definitions. (A)	8	18	Not to be filled- in
UNIT 2 Riemann integration	Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals; Fundamental theorems of Calculus.	CSO 2.1: Intermediate Value theorem for Integrals; Fundamental theorems of Calculus. (K) CSO 2.2: definition and integrability of piecewise continuous and monotone functions. (K) CSO 2.3: Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; (U)	9	20	Not to be filled- in

UNIT 3 Improper integrals	Improper integrals; Convergence of Beta and Gamma functions.	 CSO 3.1: Know about improper integrals including, beta and gamma functions. (K) CSO 3.2: finding few examples reg. convergent and divergent. (U) 	9	20	Not to be filled- in
UNIT 4 Functions of Analysis	Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions; Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test.	CSO 4.1: Learn about Cauchy criterion for uniform convergence and Weierstrass M-test for uniform convergence. (K) CSO 4.2: Know about the constraints for the inter- changeability of differentiability and integrability with infinite sum. (U)	9	20	Not to be filled- in
UNIT 5 Functions of Analysis	Limit superior and Limit inferior. Power series, radius of convergence, Cauchy Hadamard Theorem, Differentiation and integration of power series; Abel's Theorem; Weierstrass Approximation Theorem.	CSO 5.1: Approximate transcendental functions in terms of power series as well as, differentiation and integration of power series. (K) CSO 5.2: Cauchy Hadamard Theorem, Differentiation and integration of power series; Abel's Theorem (U)	10	22	Not to be filled- in

1. K.A. Ross, *Elementary Analysis, The Theory of Calculus*, Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.

2. R.G. Bartle D.R. Sherbert, *Introduction to Real Analysis*, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.

3. Charles G. Denlinger, *Elements of Real Analysis*, Jones & Bartlett (Student Edition), 2011.

4. Bartle, Robert G., & Sherbert, Donald R. (2015). *Introduction to Real Analysis* (4th ed.). Wiley India Edition. Delhi.

5. Denlinger, Charles G. (2011). *Elements of Real Analysis*. Jones & Bartlett (Student Edition). First Indian Edition. Reprinted 2015.

6. Ghorpade, Sudhir R. & Limaye, B. V. (2006). A Course in Calculus and Real Analysis. Undergraduate Texts in Mathematics, Springer (SIE). First Indian reprint.

7. Ross, Kenneth A. (2013). *Elementary Analysis: The Theory of Calculus* (2nd ed.). Undergraduate Texts in Mathematics, Springer.

NAME OF THE PAPER (CODE)	: GROUP THEORY II (MTC 4.3)
Number of Credit	: 04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Group Theory II:

CO 1:	To provide an in depth understanding of advanced topics in Group Theory, focusing more on Automorphisms. Also see its various applications in real world problem.
CO 2:	To provide a comprehensive understanding of the properties of External Direct Products. Also learn its applications in Cryptography and Number theory.
CO 3:	To develop a solid understanding of group actions and how groups acts on sets and other mathematical structures. Also learn its applications in various mathematical contexts.
CO 4:	To provide an in depth understanding of Groups acting on themselves by conjugation, the class equations and its consequences, conjugacy in permutations and p-groups.
CO 5:	To provide a deep understanding of Sylow theorems. Also learn non-simplicity test to check whether a group is simple.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Automorphism, inner	CSO 1.1: To define	12	20	Not to
Introduction to	automorphism,	Automorphisms (K)			be
Group	automorphism groups,	CSO 1.2: to illustrate with			filled-
Automorphism	automorphism groups	examples. (U)			in
	of finite and infinite	CSO 1.3: to define Inner			
	cyclic groups,	automorphism (K)			
	applications of factor	CSO 1.4: to Illustrate with			
	groups to	examples (U)			
	automorphism groups,	CSO 1.5: to discuss the			
	Characteristic	Automorphism groups and to			
	subgroups,	determine automorphisms			
	Commutator subgroup	groups of finite and infinite			
	and its properties.	cyclic group. (K+U)			
		CSO 1.6: to define factor			
		groups and dicuss its			
		applications (K+U+A)			
		CSO 1.7: to define			
		Commutator Subgroup and			
		discuss its properties (K+U)			
UNIT 2	Properties of external	CSO 2.1: to discuss the	12	20	Not to
External	direct products, the	properties of external direct			be
Direct	group of units modulo	product (U)			filled-
Products	n as an external direct	CSO 2.2: to define group of			in
	product, internal	units modulo n as an external			
	direct products,	direct product (K)			
	Fundamental	CSO 2.3: to understand its			
	Theorem of finite	properties and applications in			
	abelian groups.	Cryptography and Number			

					1
UNIT 3 Group Actions	Group actions, stabilizers and kernels,	theory (K+U) CSO 2.4: to define and understand the properties of internal direct product (K+U) CSO 2.5: to understand the Fundamental Theorem of finite abelian groups and explore its implications for the classification of finite Abelian Groups (U+A) CSO 3.1: Define Group Actions and learn its	12	20	Not to be
and its Applications	permutation representation associated with a given group action, Applications of group actions: Generalized Cayley's theorem, Index theorem.	properties (K+U) CSO 3.2: to define Stabilizers and Kernels of grouo action and to understand it with examples (K+U) CSO 3.3: to construct permutation representations associated with group actions (A) CSO 3.4: to state and prove Generalized Cayley's theorem and Index theorem. (K+A) CSO 3.5: to understand the applications of group actions through Generalized Cayley's theorem and Index theorem. (A)			filled- in
UNIT 4 Class Equations, Conjugacy and p-Groups	Groups acting on themselves by conjugation, class equation and consequences, conjugacy in S_n , <i>p</i> - groups.	CSO 4.1: to define conjugate class. (K) CSO 4.2: to illustrate with examples (U) CSO 4.3: to define class equations (K+U) CSO 4.4: to determine class equations and conjugacy classes for various Groups (A) CSO 4.5: to understand the concept of p-groups. (U) CSO 4.6: to apply the concept and techniques to group actions (A)	12	20	Not to be filled- in
UNIT 5 Sylow Theorems, Simplicity and Non-Simplicity Tests	Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for $n \ge 5$, non- simplicity tests.	CSO 5.1: to define and discuss Sylow first, second, third theorem and its consequences (K+U) CSO 5.2: to state and prove Cauchy's theorem (K+A) CSO 5.3: to define Simple Groups (K) CSO 5.4: to discuss different non-simplicity tests (U)	12	20	Not to be filled- in

CSO 5.5: to apply the tests to various problems to check		
non simplicity of a group (A)		

- 1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- 3. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, 1999.
- 4. David S. Dummit and Richard M. Foote, *Abstract Algebra*, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2004.
- 5. J.R. Durbin, Modern Algebra, John Wiley & Sons, New York Inc., 2000.
- 6. D. A. R. Wallace, Groups, Rings and Fields, Springer Verlag London Ltd., 1998.
| NAME OF THE PAPER (CODE) | : MULTIVARIATE CALCULUS (MTC 5.1) |
|----------------------------|-----------------------------------|
| Number of Credit | : 04 |
| Number of Hours of Lecture | : 60 |

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Multivariate Calculus:

CO 1:	To make the students aware of the "Functions of several variables" by learning continuity and differentiability of two variables
CO 2:	To extend the "Functions of several variables" by introducing gradient, divergence, curl of vectors and extreme values
CO 3:	To establish an understanding among the students, the concept of "Multiple Integrals" by learning double integrals and triple integrals in cartesian and polar forms, cylindrical coordinate, spherical co-ordinate and changing of variables
CO 4:	To instruct and make interest among students in the understanding of "Vector Calculus" by introducing line integral, and using it to find work done and to determine path independent of a vector field.
CO 5:	To extend the concept of "Vector Calculus" to introduce Green's theorem, Stoke's theorem and Gauss's Divergence theorem

Unit &	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
Title			Hours		
UNIT 1	Functions of several	CSO 1.1: To define explicit and	12	20	Not
Functions	variables, limit and	implicit functions (K)			to be
of several	continuity of	CSO 1.2: To define explicit functions			filled-
variables	functions of two	of two variables (K)			in
(I)	variables, Partial	CSO 1.3: To define the			
	differentiation, Total	neighbourhood of a point of functions			
	differentiability and	of two variables (K)			
	differentiability,	CSO 1.4: To define the limit point of			
	Sufficient condition	functions of two variables (K)			
	for differentiability,	CSO 1.5: To define the limit or			
	Chain rule for one	double limit or simultaneous limit of			
	and two independent	functions of two variables (K)			
	parameters.	CSO 1.6: Determining the limit of			
		functions of two variables (A)			
		CSO 1.7 : Discussing the condition of			
		non-existence of limit (U)			
		CSO 1.8: Describing the algebra of			
		limits of functions of two variables			
		(K)			
		CSO 1.9: To define continuity of			
		functions of two variables (K)			
		CSO 1.10: Interpreting continuity of			
		functions of two variables (U)			
		CSO 1.11: To define partial			
		derivatives of continuity of functions			
		of two variables (K)			

		CSO 1.12: Determining the partial			
		derivatives of continuity of functions			
		of two variables (A)			
		CSO 1.13: To define differentiability			
		of functions of two variables (K)			
		CSO 1.14: Identifying the functions			
		of two variables which are			
		differentiable. (K)			
		CSO 1.15: Describing sufficient			
		conditions for differentiability of			
		functions of two variables (K)			
		CSO 1.16: Stating Young's theorem			
		and Schwarz's theorem (K)			
		CSO 1.17: Applying Young's			
		theorem and Schwarz's theorem in			
		determining differentiability of			
		functions of two variables (A)			
		CSO 1.18: Describing Chain rule for			
		one and two independent parameters.			
LINIT 2	Definition of meet-	(N) CSO 21. To define cooler field and	12	20	Net
UNIT 2	field Divergence and	CSO 2.1: To define scalar field and vector field (K)	12	20	NOL
of soverel	Curl Directional	CSO 2 2: To define divergence and			filled
variables	derivatives The	curl directional derivatives gradient			in
(II)	gradient Maximal	(K)			111
(11)	and normal property	CSO 2.3. Determining divergence			
	of the gradient	and curl directional derivatives			
	Tangent planes.	gradient of functions of several			
	Extrema of functions	variables (A)			
	of two variables.	CSO 2.4: Discussing maximal and			
	Method of	normal property of the gradient (U)			
	Lagrange's	CSO 2.5: To define tangent and			
	multipliers,	normal planes of functions of several			
	Constrained	variables (K)			
	optimization	CSO 2.6: Determining tangent and			
	problems.	normal planes of functions of several			
		variables (A)			
		CSO 2.7: Identifying maxima and			
		minima of functions of two variables			
		(K)			
		CSO 2.8: Discussing Lagrange's			
		method of undetermined multipliers			
		for several and independent variables			
LINIT 2	Double internetion	CSO 31. To define devide	14	24	Net
UNIT 3 Multiple	over rectangular	(50, 5.1; 10) define double integration (K)	14	24	to be
Integrals	region Double	CSO 32 Applying double			filled
incgrais	integration over non	integration over rectangular and non			in
	rectangular region	rectangular region (A)			
	Double integral over	CSO 3.3: Describing double			
	polar coordinate	integration over polar coordinate (K)			
	Triple integrals.	CSO 3.4 To define triple integrals			
	Change of variable in	(K)			
	double and triple	CSO 3.5: Discussing change of			
	integrals, Triple	variables in double integration from			
	integral over	rectangular to polar coordinate (U)			

	parallelepiped and solid regions, volume by triple integral, cylindrical and spherical coordinates.	 CSO 3.6: Describing triple integrals over parallelepiped and solid regions (K) CSO 3.7: Describing volume by triple integrals using cylindrical and spherical coordinates (K) CSO 3.8: Discussing change of variables in triple integrals from rectangular to cylindrical coordinates (U) CSO 3.9: Discussing change of variables in triple integrals from rectangular spherical coordinates (U) 			
UNIT 4	Line integral,	CSO 4.1: To define line integral of	10	16	Not
Vector	Application of line	functions of several variables (K)			to be
Calculus	integrals: Mass and	CSO 4.2: Applying line integrals in			filled-
(I)	Work done,	determining mass and work done of			in
	Fundamental	functions of several variables (A)			
	theorem for line	CSO 4.3: Discussing fundamental			
	integrals,	theorem for line integral (U)			
	Conservative vector	CSO 4.4: To define conservative			
	fields, Independence	vector fields (K)			
	of path.	CSO 4.5: Identifying conservative			
	_	vector fields of functions of several			
		variables (K)			
		CSO 4.6: Discussing Independence			
		of path of functions of several			
		variables (U)			
UNIT 5	Green's theorem,	CSO 5.1: Stating Green's theorem	12	20	Not
Vector	Surface integrals,	(K)			to be
calculus	Integrals over	CSO 5.2: Discussing Green's			filled-
(II)	parametrically	theorem over functions of several			in
	defined surfaces,	variables (U)			
	Stoke's theorem, The	CSO 5.3: To define surface integrals			
	divergence theorem.	over functions of several variables			
		CSO 5.4: Finding Surface integrals			
		over functions of several variables			
		(A)			
		USU 5.5: Stating Stoke's theorem			
		(A) CSO 56: Discussion Stall?			
		LOU 5.0: Discussing Stoke's			
		veriables (II)			
		variables (U) CSO 5.7. Stating Gauge's divergence			
		theorem (V)			
		$\frac{\text{uncorem}(\mathbf{K})}{\mathbf{CSO}} = 58, \text{Descuibing} \text{dimensions}$			
		theorem over functions of several			
		uncorem over functions of several			
		variables (N)			

- G. B. Thomas and R. L. Finney, *Calculus*, 9th Ed., Pearson Education, Delhi, 2005.
 M. J. Strauss, G. L. Bradley and K. J. Smith, *Calculus*, 3rd Ed., Dorling Kindersley (India) Pvt. Ltd., (Pearson Education), Delhi, 2007.

- 3. James Stewart, *Multivariate Calculus, Concepts and Contexts, 2nd Ed.*, Brooks/Cole, Thomson Learning, USA, 2001.
- 4. E. Marsden, A. J. Tromba and A. Weinstein, *Basic Multivariate calculus*, Springer (SIE), Indian reprint, 2005.

NAME OF THE PAPER (CODE)	: LINEAR ALGEBRA (MTC 5.2)
Number of Credit	: 04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Linear Algebra:

CO 1:	To provide a comprehensive understanding of Vector Spaces and its subspaces, and methods to finding basis of a vector space.
CO 2:	To provide a comprehensive understanding of Linear Transformation and isomorphisms, the concept of rank and nullity of linear transformation, and learn techniques for computing them, including the use of Matrix representation.
CO 3:	To provide a comprehensive understanding of advanced concepts in linear algebra, focusing more on dual spaces. Also, learn about the minimal polynomial for a linear operator, such as its diagonalizability and its relationship with the characteristic polynomial.
CO 4:	To provide a comprehensive understanding of Inner Product Spaces, also learn techniques for constructing Orthonormal bases using Gram-Schmidt process.
CO 5:	To provide an in depth understanding of advanced topics in linear algebra, focusing more on Least Squares Approximation to check the orthogonality of vectors. Also, understand the spectral theorem for self-adjoint operators.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Vector spaces,	CSO 1.1: to define vector	12	20	Not to
Vector Spaces	subspaces, algebra of	spaces and understand the			be
	subspaces, quotient	general properties of vector			filled-
	spaces, linear	spaces (K+U)			in
	combination of	CSO 1.2: to define and			
	vectors, linear span,	understand subspaces and			
	linear independence,	algebra of subspaces (K+U)			
	basis and dimension,	CSO 1.3: to define Quotient			
	dimension of	spaces (K)			
	subspaces.	CSO 1.4: to define and			
		understand linear			
		combination of vectors, linear			
		span, linear dependence and			
		independence of vectors.			
		(K+U)			
		CSO 1.5: to define basis and			
		dimension of subspaces (K)			
		CSO 1.6: to define basis and			
		dimension of vector spaces			
		(K)			
UNIT 2	Linear	CSO 2.1: to define linear	12	20	Not to
Linear	transformations, null	transformation and linear			be

	r		1		
Transformations	space, range, rank	operator (K)			filled-
and	and nullity of a linear	CSO 2.2: to define null			in
Isomorphisms	transformation.	space, range, rank and nullity			
150morphisms	matrix	of a linear transformation (K)			
	representation of a	CSO 23: to represent linear			
	linear	CSO 2.3. to represent linear			
	innear	transformation in matrix form			
	transformation,				
	algebra of linear	CSO 2.4: to apply matrix			
	transformations.	representation of a linear			
	Isomorphisms,	transformation to find range			
	Isomorphism	and nullity of a linear			
	theorems,	transformation (A)			
	invertibility and	CSO 2.5: to understand the			
	isomorphisms,	concept of isomorphism			
	change of coordinate	theorem, invertible matrix			
	matrix	and change of coordinate (U)			
LINIT 3	Dual spaces dual	CSO 31. to define dual	12	20	Not to
Linear	hasis double dual	space dual basis and double	14	20	he
Transformations	transpose of a linear	space, dual basis and double $dual(K)$			filled
Figonvoluog and	transformation and	CSO = 22 to understand			in
Eigenvalues allu	its matrix in the dual	CSO 3.2: to understand			111
Eigenvectors,	its matrix in the dual	transpose of a finear			
Elementary	basis, annihilators,	transformation and its matrix			
canonical forms	Eigen spaces of a	in the dual basis (U)			
	linear operator,	CSO 3.3: to define			
	diagonalizability,	annihilators (K)			
	invariant subspaces	CSO 3.4: to define Eigen			
	and Cayley-	value, Eigen vector and Eigen			
	Hamilton theorem.	spaces of a linear operator (K)			
	The minimal	CSO 3.5: to understand			
	polynomial for a	diagonalizability and check			
	linear operator.	whether a matrix is			
		diagonalizable (U)			
		CSO 3.6: to understand the			
		concept of invariant			
		subspaces (II)			
		CSO 37 to state and prove			
		Coulou Hamilton theorem			
		(\mathbf{X}, \mathbf{A})			
		$(\mathbf{K}+\mathbf{A})$			
		CSU 3.8: to define and			
		understand the concept of			
		characteristic polynomial and			
	т і,	minimal polynomial (K+U)	10	20	NT A A
	Inner product spaces	CSO 4.1: to define and	12	20	Not to
Inner Product	and norms, Gram-	understand Inner Product and			be
spaces and	Schmidt	Inner product space with			filled-
Operators on	orthogonalization	examples (K+U)			1 n
Inner Product	process, orthogonal				
Spaces	complements,	CSO 4.2: to define Norms			
	Bessel's inequality,	and prove theorems related to			
	the adjoint of a	norms such as Cauchy-			
	linear operator.	Schwartz inequality theorem,			
		, triangle theorem, Pythagoras			
		theorem (U+A)			
		CSO 4.3: to understand Gram			
		Schmidt Orthogonalization			
		Process (U)			

		CSO 4.4: to understand orthogonal complements (U) CSO 4.5: to understand Bessel's inequality, the adjoint of a linear operator. (U)			
UNIT 5	Least Squares	CSO 5.1: to learn least square	12	20	Not to
Orthogonality	Approximation, minimal solutions to systems of linear equations, Normal and self-adjoint operators, Orthogonal projections and Spectral theorem.	approximation and apply it. (K+A) CSO 5.2: to understand the minimal solution to system of linear equations and solve.(U+A) CSO 5.3: to define normal and self-adjoint operators (K) CSO 5.4: to understand the Orthogonal projections and Spectral theorem. (U+A)			be filled- in

1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.

2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.

3. Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence, *Linear Algebra, 4th Ed.*, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.

4. Joseph A. Gallian, *Contemporary Abstract Algebra, 4th Ed.*, Narosa Publishing House, New Delhi, 1999.

5. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

6. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

7. S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999.

8. Kenneth Hoffman, Ray Alden Kunze, Linear Algebra, 2nd Ed., Prentice-Hall of India Pvt. Ltd., 1971.

9. D.A.R. Wallace, Groups, Rings and Fields, Springer Verlag London Ltd., 1998.

NAME OF THE PAPER (CODE): NUMBER THEORY (MTC 5.3)Number of Credit: 04Number of Hours of Lecture: 60

COURSE OBJECTIVES (COs)

The follo	wing are the Course Objectives (COs) for the paper Number Theory:
CO 1:	To create an understanding of the concepts of Number Theory.
CO 2:	To assist the students in understanding Number Theoretic functions and formulas.
CO 3:	To create an understanding of Integer functions and Euler's theorem.
CO 4:	To inculcate the students in understanding order, roots and congruences.
CO 5:	To make the students familiar with cryptography.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Linear Diophantine	CSO 1.1: to define linear	13	22	Not to
Exploring	equation, prime	Diophantine equation with			be
Number	counting function,	appropriate examples. (K/U)			filled-
Theory	statement of prime	CSO 1.2: to define prime			in
	number theorem,	counting function with			
	Goldbach	examples. (K/U)			
	conjecture, linear	CSO 1.3: to state prime			
	congruences,	number theorem. (K)			
	complete set of	CSO 1.4: to define Goldbach			
	residues, Chinese	conjecture with examples.			
	Remainder theorem,	(K/U)			
	Fermat's Little	CSO 1.5: to define and			
	theorem, Wilson's	explain linear congruences			
	theorem.	and workout some problems.			
		(K/U/A)			
		CSO 1.6: to define complete			
		set of residues with examples.			
		(K/U)			
		CSO 1.7: to state and proof			
		Chinese Remainder theorem.			
		(K/U)			
		CSO 1.8: to tackle some			
		questions based on Chinese			
		remainder theorem. (A)			
		CSO 1.9: to state and proof			
		Fermat's little theorem. (K/U)			
		CSO 1.10: to solve some			
		problems based on Fermat's			
		little theorem. (A)			
		CSO 1.11: to state and proof			
		wilson's theorem. (K/U)			
UNIT 2	Number theoretic	CSO 2.1: to define and	12	20	Not to
Number	functions, sum and	explain Number theoretic			be
Theoretic	number of divisors,	functions. (K/U)			filled-

Functions and	totally multiplicative	CSO 2.2: to workout some			in
Formulas	functions definition	problems based on number			
	and properties of the	theoretic functions (A)			
	Dirichlet product	CSO 2.3 to explain sum and			
	the Mobius	number of divisors with			
	Inversion formula	appropriate examples (K/I)			
	mversion formula.	CSO 24: to define total			
		multiplicative functions and			
		workout some functions			
		(\mathbf{K}/\mathbf{A})			
		(NA) CSO 25: to define Dirichlet			
		CSO 2.5. to define Diffement			
		CSO 26: to write down the			
		properties of the Dirichlet			
		product (K)			
		CSO 27: to define and			
		explain Mobius inversion			
		formula with examples (K/I)			
LINIT 3	The greatest integer	CSO 31 to define and	12	20	Not to
UNIT J Integer	function Fuler's	explain the greatest integer	14	20	he
Functions and	nhi function	function and workout some			filled
Fuler's	Fuler's theorem	problems $(K/U/A)$			in
Theorem	reduced set of	CSO 32 to define Euler's			111
	residues some	phi function and workout			
	properties of	some problems (K/Λ)			
	Fuler's phi	CSO 3 3: to state and prove			
	function	CSO 3.3: to state and prove Euler's theorem (V/U)			
	function.	CSO 34; to define reduced			
		set of residues with examples			
		(\mathbf{K}/\mathbf{I})			
		(NO) CSO 3 5: to write down some			
		properties of Euler's phi			
		function and explain it (K/I)			
		CSO 36. to workout some			
		problems with the help of the			
		properties of Euler's phi-			
		function (A)			
UNIT 4	Order of an integer	CSO 4.1: to define order of	12	20	Not to
Order, Roots	modulo n. primitive	an integer modulo n with	12	20	he
and	roots for primes.	examples. (K/U)			filled-
Congruences	composite numbers	CSO 4.2: to define primitive			in
0	having primitive	roots for primes and workout			
	roots, Euler's	some problems. (K/A)			
	criterion, the	CSO 4.3: to explain			
	Legendre symbol	composite numbers having			
	and its properties,	primitive roots and solve			
	quadratic	some problems based on it.			
	reciprocity,	(U/A)			
	quadratic	CSO 4.4: to state Euler's			
	congruences with	criterion and prove it. (K/U)			
	composite moduli.	CSO 4.5: to define Legendre			
		symbol and its properties with			
		some problem solutions.			
		(K/U/A)			
		CSO 4.6: to define quadratic			
		reciprocity with appropriate			

		examples. (K/U) CSO 4.7: to explain quadratic congruences with composite moduli and workout problems based on it. (K/U/A)			
UNIT 5	Public key	CSO 5.1: to define and	11	18	Not to
Cryptography	encryption, RSA	explain Public key encryption			be
And non-linear	encryption and	with examples. (K/U)			filled-
Diophantine	decryption, the	CSO 5.2: to define and			in
equation	equation	explain RSA encryption and			
	$x^{2} + y^{2} = z^{2}$,	decryption and workout			
	Fermat's Last	problems based on it.			
	theorem.	(K/U/A)			
		CSO 5.3: to explain the			
		equation			
		$x^{2} + y^{2} = z^{2}$. (U)			
		CSO 5.4: to state and prove			
		Fermat's Last theorem. (U)			

Suggested Readings:
1. David M. Burton, *Elementary Number Theory, 6th Ed.*, Tata McGraw-Hill, Indian reprint, 2007.
2. Neville Robbins, *Beginning Number Theory, 2nd Ed.*, Narosa Publishing House Pvt. Ltd., Delhi, 2007.

: COMPLEX ANALYSIS (MTC 6.1)

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Complex Analysis:

:04

: 60

CO 1:	To make the students in understanding "Analytic functions" by introducing basic concepts of complex systems and C-R equations limits, derivatives and properties of complex planes.
CO 2:	To make the students understand by Discussing "Complex Integration" through Cauchy's theorem, Cauchy's integral theorem, contour integral and also expansion of series by Taylor's and, Laurent's series
CO 3:	To make the students in understanding "Singularities and Calculus of Residue" Zeros, singularities, residue at a pole and infinity, conformal and bilinear transformation, fixed points, critical points, cross ratio. Prove of Cauchy's residue theorem and Jordan's lemma.
CO 4:	To make the students in understanding "Meromomorphic functions and Analytic Continuation" Poles and Zeros of meromorphic functions, prove of Mittag-Leffler's theorem, the principle of argument. Prove of Rouche's theorem with examples. Prove of fundamental theorem of algebra. The power series methods of analytic continuation and schwarz reflection of principle.
CO 5:	To make the students in understanding "Uniform Convergence of a Sequence and Series" by applying Weierstrass's-M test. To make students understand infinite product and its convergence with some examples. Defining Gamma function and its properties and canonical product.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	Los
		(CSOs)	Hours		
UNIT 1	Functions of complex	CSO 1.1: To define limit of a	12	20	Not to
Analytic	variables, Continuity	function of complex variables,			be
functions	and Differentiability,	and its continuity and			filled-
	Analytic functions,	differentiability (K)			in
	Conjugate functions,	CSO 1.2: Defining Analytic			
	Harmonic functions,	functions (K)			
	Cauchy Riemann	CSO 1.3: To define conjugate			
	Equation (Cartesian	and harmonic function (K)			
	and polar of form)	CSO 1.4: Discussing the			
	Construction of	condition of Laplace equation			
	Analytic functions,	for the function to be a			
	Milne Thompson	harmonic (U)			
	method,	CSO 1.5: Proving Cauchy-			
	Stereographic	Riemann equation on Cartesian			
	projection and the	and polar of form (U)			
	spherical	CSO 1.6: Determining analytic			
	representation of the	functions based on Cauchy-			
	extended complex	Riemann equation (A)			
	plane	CSO 1.7: Constructing			
	-	Analytic function by Milne's			

		Thompson's method (A)			
		function $f(z) = u + iv$ when			
		u or v is given (A)			
		CSO 1.9: Describing the			
		Stereographic projection and			
		the spherical representation of			
		the extended complex plane (K)			
UNIT 2	Complex line integral,	CSO 2.1: To define line integral	12	20	Not to
Complex	Cauchy's theorem,	in complex variable (K)			be
Integration	Cauchy's integral	CSO 2.2: Statement and proof			filled-
	formula, Contour	of Cauchy's theorem (U)			in
	integrals and its	CSO 2.3: Solving contour			
	examples, Cauchy's	integral using Cauchy's			
	inequality, Morera's	theorem (A)			
	integral formula for a	cs0 2.4: Statement and proof			
	circle Liouville's	(II)			
	theorem Power	CSO 2.5. Solving contour			
	series Taylor's series	based on Cauchy's integral			
	Laurent's series.	formula (A)			
	Fundamental theorem	CSO 2.6: Describing Cauchy's			
	of algebra, Maximum	inequality (K)			
	modulus principle,	CSO 2.7: Describing Morera's			
	Schwarz Lemma	theorem (K)			
		CSO 2.8: Describing Poisson			
		integral formula for a circle (K)			
		CSO 2.9: Discuss Liouville's			
		theorem (U)			
		CSO 2.10: To define power			
		series (K)			
		CSO 2.11: Applying Taylor's			
		obtain some series of complex			
		variable (A)			
		CSO 2.12: Discussing			
		Fundamental theorem of			
		algebra (U)			
		CSO 2.13: Describing			
		Maximum modulus principle			
		(A)			
		CSO 2.14: Proving Schwarz's			
	7	Lemma (U)	10	20	
UNIT 3	Zeros and	USU 3.1: Defining the term	12	20	Not to
Singularities	singularities, Residue	CSO 3 2 Finding zeros of $f(z)$			be filled
of residue	at a pole and infinity,	(A) $CSU 5.2$; Finding zeros of $f(Z)$			inea-
of residue	theorem Iordan's	(A) CSO 33. Defining the term			
	lemma. Evaluation of	singularity and its types (K)			
	definite integrals	CSO 3.4: Finding singularities			
	using residue.	and determining its type on			
	Conformal and	f(z) (A)			
	bilinear	CSO 3.5: Defining residue at a			
	transformation, Fixed	pole and residue at infinity (K)			
	points, Critical points,	CSO 3.6: Proving Cauchy's			
	Cross ratio	residue theorem (U)			

	"%/od"	CSO 37 . Finding residue at			
	700	pole of $f(z)$ and at infinity (A)			
		CSO 38 • Applying Cauchy's			
		residue theorem to solve			
		definite integral (A)			
		CSO 3.0: To define conformal			
		CSO 5.9. To define comofination (K)			
		$CSO_{2}10$, Einding region of			
		CSO 3.10. Finding region of			
		W - plane under the			
		transformation type $w = z + \beta$;			
		$w = ze_4; w = 2z; w = 1/z$			
		CSO 3.11: Studying conformal			
		property (U)			
		CSO 3.12: Defining bilinear			
		transformation, fixed point.			
		cross ratio (K)			
		CSO 3.13: Determining			
		bilinear transformation (A)			
		CSO 3.14: Proving preservance			
		of cross ratio theorem (U)			
UNIT 4	Poles and zeros of	CSO 4.1: To define the term	12	20	Not to
Meromorphic	meromorphic	meromorphic function and			be
functions and	functions. Mittag-	entire function (K)			filled-
Analytic	Leffler's theorem.	CSO 4.2: Describing Mittag-			in
Continuation	Principle of argument,	Leffler's theorem (K)			
	Rouche's theorem,	CSO 4.3: Application of			
	Examples, Analytic	Mittag-Leffler's theorem (A)			
	continuation, Power	CSO 4.4: Stating and proving			
	series methods of	p rinciple of argument and			
	analytic continuation,	Rouche's theorem (U)			
	Examples, Schwarz	CSO 4.5: Describing number of			
	refection principle.	Poles and zeros of meromorphic			
		function (K)			
		CSO 4.6: Applying Rouche's			
		theorem to find roots of			
		f(z)(A)			
		CSO 4.7: Defining the term			
		analytic continuation and it			
		examples (K)			
		CSO 4.8: Discussing analytic			
		continuation by means of power			
		series (U)			
		CSO 4.9: Solving problems			
		based on a nalytic continuation			
		by means of power series (A)			
		CSU 4.10: Deriving Schwarz			
	TT :0	refection principle (A)	10	20	NT
	Uniform convergence	CSU 5.1: Defining Uniform	12	20	Not to
Uniform	or sequence and	convergence of complex			be
Convergence	series, Weierstrass's	sequence and series (K)			filled-
of sequence	M test, Examples,	CSU 5.2: Discussing necessary			1 n
and series	Infinite products,	and sufficient condition for			
	Convergence of	complex sequence and series to			
	minue product,	be uniformly convergent (U)			

Eve	mnlag	CSO 52. Decemining	
Exa	inpies,	USU 5.5: Describing	
Wei	erstrass's product	Weierstrass's M test (K)	
theo	orem, Gamma	CSO 5.4: Solving problems on	
func	ction and its	uniform convergent of sequence	
prop	perties, Canonical	and series of complex variable	
prod	luct.	(A)	
1		CSO 5.5: Defining infinite	
		product and convergence of	
		infinite product (K)	
		CSO 5.6 Discussing general	
		principle of convergence of	
		infinite and here (L)	
		infinite product (U)	
		CSO 5.7: Solving problems on	
		convergence of infinite product	
		(A)	
		CSO 5.8: Defining gamma	
		function (K)	
		CSO 5.9: Discussing the	
		properties of gamma function	
		(II)	
		CSO 5 10: Defining canonical	
		product (K)	
		CSU 5.11: Applications of	
		canonical product (A)	

- 1. S. Kumaresan, *Topology of Metric Spaces*, 2nd Ed., Narosa Publishing House, 2011
- 2. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill, 2004.
- 3. James Ward Brown and Ruel V. Churchill, *Complex Variable and Applications*, 8th Ed., McGraw Hill International Edition, 2009.
- 4. Satish Shirali and Harikishan L. Vasudeva, *Metric Spaces*, Springer Verlag, London, 2006.
- 5. S. Ponnusamy, Foundations of Complex Analysis, Narosa Publishing House, 2nd Ed., 2011.

: RING THEORY (MTC 6.2)

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Ring Theory**:

:04

:60

CO 1:	To provide a comprehensive understanding of Rings, including their definitions, properties and its characteristics.
CO 2:	To possess the knowledge and concept of ideals, factor ring, prime ideal, maximal ideal and operations on a ring.
CO 3:	To provide a comprehensive understanding of Ring homomorphisms and Isomorphism. Also learn to construct field of quotients.
CO 4:	To provide a comprehensive understanding of Polynomial rings. Also learn about tests for irreducibility for polynomial rings.
CO 5:	To understand the concept of Unique factorization domain, and explore Divisibility in integral domains and Euclidean domains.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Definition and	CSO 1.1: to define Rings and	12	20	Not to
Introduction to	examples of rings,	illustrate with examples			be
Rings and	properties of rings,	(K+U)			filled-
Characteristic of	subrings, integral	CSO 1.2: to discuss the			in
Rings	domains and fields,	properties of Rings (U)			
	characteristic of a	CSO 1.3: to define Subrings			
	ring.	and see various examples of			
		Subring of a ring. (K+A)			
		CSO 1.4: to define Units and			
		Zero Divisors (K)			
		CSO 1.5: to define Integral			
		Domain and discuss its			
		properties and examples.			
		(K+U)			
		CSO 1.6: to define Field and			
		prove that every field is an			
		Integral Domain but not the			
		converse. (K+A)			
		CSO 1.7: to define			
		Characteristic of a ring (K)			
		CSO 1.8: to determine the			
		characteristic of a ring. (A)			
UNIT 2	Ideal, ideal generated	CSO 2.1: to define right	12	20	Not to
Ideals	by a subset of a ring,	Ideal, left Ideal and Ideal. (K)			be
	factor rings,	CSO 2.2: to illustrate with			filled-
	operations on ideals,	examples (U)			in
	prime and maximal	CSO 2.3: to define Factor			
	ideals.	rings (K)			
		CSO 2.4: to discuss various			
		operations on Ideals (U)			

		CSO 2.5: to define Prime			
		Ideals and Maximal Ideals			
		(K)			
		CSO 2.6: to discuss and			
		determine various properties			
		and theorems of Prime Ideal			
		and maximal Ideal $(U+A)$			
LINIT 3	Ring	CSO 31 : to define Ring	12	20	Not to
Ring	homomorphisms	homomorphism (K)	12	20	he
Homomorphisms	properties of ring	CSO 3.2: to discuss the			filled-
and	homomorphisms	properties of ring			in
Isomornhisms	Isomorphism	homomorphisms (II)			
isomor pinsins	theorems I II and III	CSO 3.3. to state and prove			
	field of quotients	first isomorphism theorem			
	field of quotients.	$(K \perp \Lambda)$			
		(NTA) CSO 3.4. to state and prove			
		second isomorphism theorem			
		$(K+\Delta)$			
		CSO 3.5. to state and prove			
		third isomorphism theorem			
		$(K \perp \Lambda)$			
		(NTA)			
		quotients (K)			
	Polynomial rings	CSO 41 to define	12	20	Not to
Polynomial	over commutative	Polynomial rings (K)	12	20	he
l'orynomial Dings	ringe division	CSO 12 to discuss			filled
Kings	algorithm and	course and the course of the c			in
	argoriumi anu	commutative rings (U)			111
	principal ideal	CSO 43 to state and prove			
	domains	division algorithm theorem			
	factorization of	and discuss its consequences			
	nolynomials	$(\mathbf{K} + \mathbf{\Delta} + \mathbf{I})$			
	reducibility tests	CSO 4 4 • to define Principal			
	irreducibility tests,	Ideal and Principal Ideal			
	Eisenstein criterion	Domain (PID) (K)			
	Lisenstein eriterion.	CSO 45 to discuss the			
		properties of PID and			
		determine whether the			
		polynomial rings is a PID.			
		(U+A)			
		CSO 4.6: to define			
		irreducible polynomial and			
		reducible polynomial (K)			
		CSO 4.7: to discuss			
		reducibility tests,			
		irreducibility tests, Eisenstein			
		criterion and apply it. (U+A)			
UNIT 5	Unique factorization	CSO 5.1: to define	12	20	Not to
Unique	in Z[x]. Divisibility	irreducible element. (K)			be
Factorization	in integral domains,	CSO 5.2: to define Prime			filled-
and Euclidean	irreducibles, primes,	element (K)			in
Domains	unique factorization	CSO 5.3: to illustrate with			
	domains, Euclidean	examples to understand			
	domains.	irreducible and prime			
		element (U)			
		CSO 5.4: to define Euclidean			

Domain and Unique
factorization Domain (K)
CSO 5.5: to discuss Unique
factorization in Z[x]
CSO 5.6: to explain
Divisibility in integral
domains (U)

1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.

2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.

3. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa Publishing House, 1999.

4. Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence, *Linear Algebra, 4th Ed.*, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.

5. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

6. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

7. S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999.

8. Kenneth Hoffman & Ray Alden Kunze, *Linear Algebra, 2nd Ed.*, Prentice-Hall of India Pvt. Ltd., 1971.

9. S.H. Friedberg, A.L. Insel and L.E. Spence, *Linear Algebra*, Prentice Hall of India Pvt. Ltd., 2004.

: OPERATION RESEARCH (MTC 6.3)

:04

: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Operation Research**:

CO 1:	To make the students in understanding assignment problems and algorithm, optimum solutions and unbalanced assignment problems.
CO 2:	To make the students in understanding Game theory, maximin and minimax principle, domination property and graphical method. Problems based on all the above.
CO 3:	To make the students in understanding Queueing theory and its system and characteristics, its symbols and Notations, and problems-based solutions
CO 4:	To make the students in understanding multi-channel Queueing Models problems
CO 5:	To make the students in understanding inventory control and types of inventories and cost. EOQ and production problems with and without shortages and EOQ with price breaks.

Unit &	Unit Contonta	Course Specific Objective (CSOs)	Looturo	Monka	ΙOg
Title	Unit Contents	Course specific Objective (CSOS)	Hours	IVIAI'KS	LUS
UNIT 1 Assignment Problems	Assignment Problems – Assignment algorithm – optimum solutions – Unbalanced Assignment Problems.	 CSO 1.1: Find mini cost value from Assignment Problems (K) CSO 1.2: Discussed about balance and unbalanced problem. (U) CSO 1.3: application of algorithm. (A) 	12	20	Not to be filled- in
UNIT 2 Game Theory	Game Theory – Two- person zero sum game – The Maximin – Minimax principle – problems - Solution of 2 x 2 rectangular Games – Domination Property – (2 x n) and (m x 2) graphical method – Problems.	 CSO 2.1: Identify the importance of stocks the reasons for holding stock in an organization, determine the optimal order quantity for models. M. (K) CSO 2.2: Apply game theory concepts to articulate real-world situations by identifying, analyzing and practicing strategic decisions. (K) CSO 2.3: Solution of 2 x 2 rectangular Games (U) CSO 2.4: Domination Property – (2 x n) and (m x 2) graphical method – Problems. (A) 	12	20	Not to be filled- in
UNIT 3 Queueing Theory	Queueing Theory – Introduction – Queueing system – Characteristics of Queueing system – Symbols and Notations	CSO 3.1: Classifications of queues Problems in $(M/M/1)$ (∞ /FIFO) (K) CSO 3.2: Introduction – Queueing system – (U) CSO 3.3: Expanding the varies	12	20	Not to be filled- in

UNIT 4 Multi- Channel Queueing Models	- Classifications of queues - Problems in $(M/M/1) : (\infty/FIFO)$ Multi-Channel Queueing Models - Problems in (M/M/1):(N/FIFO); $(M/M/C) : (\infty/FIFO);$ $(M/M/C) : (\infty/FIFO);$	model. (A) CSO 4.1: : Apply and extend queueing models to analyze real world systems (K) CSO 4.2: Problems in (M/M/1):(N/FIFO); (M/M/C) : (m/M/C) :	12	20	Not to be filled- in
	Models.	Models. (U)			
UNIT 5 Inventory control	Inventory control – Types of inventories – Inventory costs – EOQ Problem with no shortages – Production problem with no shortages – EOQ with shortages – Production problem with shortages – EOQ with price breaks.	CSO 5.1: : Explain the various costs related to inventory system. (K) CSO 5.2: Production problem with shortages – EOQ with price breaks. (U) CSO 5.3: Production problem with no shortages (A)	12	22	Not to be filled- in

1. Kanti Swarup, P. K. Gupta, *Operations Research*, Man Mohan S. Chand & Sons Education Publications, New Delhi, 12th Revised edition, 2003.

2. Prem Kumar Gupta, D. S. Hira, *Operations Research*, S. Chand & Company Ltd, Ram Nagar, New Delhi, 2014.

3. S. Dharani Venkata Krishnan, *Operations Research Principles and Problems*, Keerthi publishing house PVT Ltd., 1994.

4. Hamdy Taha, Operations Research: An Introduction, Pearson Education Inc.

5. Pradeep Prabhakar Pai, *Operations Research: Principles and Practice*, Oxford Higher Education, Oxford University press.

6. Ravindran Phillips and Solberg, Operations Research: Principles and Practice, Wiley India Edition.

7. P Mariappan, Operations Research, Pearson.

8. A M Natarajan, P Balasubramani, A Tamilarasi, Operations Research, Pearson Education Inc.

9. H N Wagner, Operations Research, Prentice hall.

10. Ronald Rardin, Optimization in Operations Research, Pearson Education Inc.

11. R. Paneerselvam, Operations Research, Prentice Hall of India Pvt. Ltd.

12. N D Vohra, Quantitative Techniques in Management, Tata McGraw-Hill.

Number of Hours of Lecture

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Probability and Statistics:**

:04

:60

CO 1:	To help the students in understanding Sample space, probability axioms, real random variables, cumulative distribution function, probability mass function, mathematical expectation, moments and moment generating function, characteristic function and problem-based solutions.
CO 2:	To help the students in understanding discrete and continuous distributions and its properties, joint density functions, marginal and conditional distributions and problem-based solutions.
CO 3:	To help the students in understanding expectation of functions of two variables, conditional expectations, independent random variables, Bivariate normal distribution, correlation coefficient, joint moment generating function and calculation of covariance, linear regression for two variables and problem-based solutions.
CO 4:	To help the students in understanding Chebyshev's inequality, statement and interpretation of law of large numbers and strong law of large numbers, Central Limit theorem for independent and identically distributed random variables with finite variance and problem-based solutions.
CO 5:	To help the students in understanding Markov Chains, Chapman-Kolmogorov equations, classification of states.

Unit &	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Sample space,	CSO 1.1: Learn about	12	20	Not to
	probability axioms, real	probability density and			be
Probability	random variables	moment generating			filled-
_	(discrete and	functions. (K)			in
	continuous), cumulative	CSO1.2: knowning			
	distribution function,	moments, moment			
	probability mass/density	generating function,			
	functions, mathematical	characteristic function. (U)			
	expectation, moments,	CSO 1.3: Leaning Basic			
	moment generating	probability properties. (A)			
	function, characteristic				
	function.				
UNIT 2	Discrete distributions:	CSO 2.1: Know about	13	22	Not to
Discrete	uniform, binomial,	various univariate			be
Probability	Poisson, geometric,	distributions such as,			filled-
distributio	negative binomial,	Binomial, geometric and			in
ns	continuous distributions:	Poisson distributions. (K)			
	uniform, normal,	CSO 2.2: Learn about			
	exponential. Joint	distributions to study the			
	cumulative distribution	joint behavior of two			
	function and its	random variables. (K)			
	properties, joint	CSO 2.3: Joint cumulative			

	probability density functions, marginal and conditional distributions.	distribution function and its properties, joint probability density functions, marginal and conditional distributions. (U)			
UNIT 3 Mathemati cal Expectatio n	Expectation of function of two random variables, conditional expectations, independent random variables. Bivariate normal distribution, correlation coefficient, joint moment generating function (jmgf) and calculation of covariance (from jmgf), linear regression for two variables.	CSO 3.1: Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. (K) CSO 3.2: Expectation of function of two random variables, conditional expectations, independent random variables. (U)	13	22	Not to be filled- in
UNIT 4 Continuous Probability distributio ns	Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers, Central Limit theorem for independent and identically distributed random variables with finite variance.	CSO 4.1: Understand central limit theorem, which helps to understand the remarkable fact that: the empirical frequencies of so many natural populations, exhibit a bell-shaped curve, i.e., a normal distribution. (K) CSO 4.2: Spealing the definition law of large numbers and strong law of large numbers, Central Limit theorem for independent and identically distributed random variables with finite variance. (U)	12	20	Not to be filled- in
UNIT 5 Stochastic Probability	Markov Chains, Chapman-Kolmogorov equations, classification of states.	CSO 5.1: Find stochastic matrices values (K) CSO 5.2: Finding its classification of states (U) CSO 5.3: Scecking Markov Chains, Chapman- Kolmogorov equations. (A)	10	16	Not to be filled- in

- 1. Robert V. Hogg, Joseph W. McKean and Allen T. Craig, *Introduction to Mathematical Statistics*, Pearson Education, Asia, 2007.
- 2. Irwin Miller and Marylees Miller, John E. Freund, *Mathematical Statistics with Applications, 7th Ed.*, Pearson Education, Asia, 2006.
- 3. Sheldon Ross, Introduction to Probability Models, 9th Ed., Academic Press, Indian Reprint, 2007.
- 4. Alexander M. Mood, Franklin A. Graybill and Duane C. Boes, *Introduction to the Theory of Statistics, 3rd Ed.,* Tata McGraw-Hill, Reprint 2007

: METRIC SPACE (MTC 7.1)

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Metric Space:

:04

:60

CO 1:	By introducing "Basic Notations on Metric Spaces", the students shall enable to identify whether a given function is a metric or not, open or not, closed or not in the given metric space.
CO 2:	To learn the concept of "Continuity" in metric space with the help of sequential criterion and also continuity in closed and open sets. Further, the idea of continuity is extended to discuss uniform continuity.
CO 3:	To understand "Connectedness" and connected subsets of \mathbb{R} , path connectedness, local connectedness, problem-based solutions and prove of Intermediate value theorem.
CO 4:	Understanding "Compactness" and their properties through continuous functions on compact spaces, characterisation of compact metric spaces, locally compact spaces and problem-based solutions.
CO 5:	To discuss "Complete Metric Space" by introducing Cauchy sequence, sequence and its convergence with examples, and also prove of Cantor's Intersection Theorem and Baire's Category Theorem.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Definition and	CSO 1.1: Defining metric	12	20	Not to
Basic	examples of metric	function and metric space (K)			be
Notations on	spaces, Sequences in	CSO 1.2: Discussing the			filled-
Metric Spaces	Metric Spaces, Open	examples of metric spaces			in
	and closed balls,	using metric such as usual			
	Neighbourhood, Open	metric, discrete metric,			
	set, Interior of a set,	Euclidean metric etc. (U)			
	Limit point of a set,	CSO 1.3: Defining open ball			
	Closed set, Subspaces,	and closed ball (K)			
	dense sets and	CSO 1.4: Defining			
	Separable spaces.	neighbourhood of a point (K)			
		CSO 1.5: Defining open sets			
		(K)			
		CSO 1.6: Proving theorems on			
		open (U)			
		CSO 1.7: Defining interior			
		point, exterior point, frontier			
		point (K)			
		CSO 1.8: Describing the			
		Properties of interior, exterior			
		and frontier sets (K)			
		CSO 1.9: Defining limit point,			
		Derived set, Closed set,			
		Closure of a set (K)			
		CSO 1.10: Finding limit point,			

UNIT 2	Continuous mappings,	Derived set and Closure of a set (A) CSO 1.11: Describing properties of closure of a set (K) CSO 1.12: Defining subspace, dense sets and separable space (K) CSO 1.13: Proving theorem on subspace of a metric space (U) CSO 1.14: Solving examples on everywhere dense, dense in itself and nowhere dense sets (A) CSO 2.1: Defining continuity	13	22	Not to
Continuity	sequential criterion and other characterization of continuity, Uniform continuity, Homeomorphism, Contraction mapping, Banach fixed point theorem.	of a function in metric space (K) CSO 2.2: Discussing sequential criterion for continuous function in metric space (U) CSO 2.3: Examining continuous functions using sequential criterion method (A) CSO 2.4: Describing theorems on open and closed sets of continuous functions (K) CSO 2.5: Elaborating equivalent definitions of continuity (U) CSO 2.6: Defining uniform continuity (K) CSO 2.7: Proving theorems on uniform continuity on a metric space (U) CSO 2.8: Defining homeomorphism and contraction mapping (K) CSO 2.9: Elaborating Banach fixed point theorem (U)			be filled- in
UNIT 3 Connectedness	Connectedness, Connected subsets of R, Examples, Path connectedness, local connectedness, Intermediate value theorem.	CSO 3.1: Defining separated sets, connectedness and disconnectedness of metric space (X, d) (K) CSO 3.2: Examining connected and disconnected sets (A) CSO 3.3: Discussing theorems based on connectedness and disconnectedness (U) CSO 3.4: Describing continuous image in view of connectedness (K) CSO 3.5: To define local connectedness and path	11	18	Not to be filled- in

		connectedness (K) CSO 3.6: Applications of local connectedness and path connectedness (A) CSO 3.7: Proving Intermediate			
UNIT 4 Compactness	Compact spaces and their properties, Continuous functions on compact spaces, Characterisation of compact metric spaces, Locally compact spaces.	CSO 4.1: Define open cover, open subcover, finite subcover and compactness (K) CSO 4.2: Illustration of sets which are compact (A) CSO 4.3: Describing theorems on compactness (K) CSO 4.3: Describing theorems on compactness (U) CSO 4.4: Discussing continuous image in view of compactness (U) CSO 4.5: To define relatively compact, sequentially compact, totally bounded sets (K) CSO 4.6: Elaborating that a metric space is sequentially compact iff the space has Bolzano-Weierstrass property (U) CSO 4.7: Elaborating that every compact metric space is sequentially compact (U) CSO 4.8: Discussing that a metric space is sequentially compact iff the space is sequentially compact (U) CSO 4.8: Discussing that a metric space is sequentially compact iff the space is complete and totally bounded (U) CSO 4.9: Define locally compact (K)	12	20	Not to be filled- in
UNIT 5 Complete metric spaces	Sequences in metric space, Cauchy Sequences, Complete metric spaces, Examples, Cantor's Intersection Theorem, Baire Category Theorem	CSO 5.1: To define sequence in metric space (K) CSO 5.2: Discussing convergence of sequence in metric space (U) CSO 5.3: To define Cauchy's sequence (K) CSO 5.4: Discussing how Cauchy's sequence converges. (U) CSO 5.5: Determining convergent sequence in metric space (A) CSO 5.6: To define complete metric space (K) CSO 5.7: Constructing Cauchy's sequence on ℓ_{∞} and ℓ_p space to show that the spaces are complete metric space under distance function 'd' (A) CSO 5.8: Discussing examples	12	20	Not to be filled- in

on complete metric choice (II)	
on complete metric space (0)	
CSO 5.9: To define diameter of	
a set (K)	
CSO 5.10: Describing Cantor's	
intersection theorem by	
constructing a sequence (x_n) in	
closed set F_n in the metric space	
(X, d) and showing that (X, d)	
is a complete metric space (K)	
CSO 5.11: Proving Baire	
Category Theorem (U)	

- 1. S. Kumaresan, *Topology of Metric Spaces, 2nd Ed.*, Narosa Publishing House, 2011
- 2. Satish Shirali and Harikishan L. Vasudeva, *Metric Spaces*, Springer Verlag, London, 2006.
- 3. R. R. Goldberg, *Methods of Real Analysis*, John Wiley & Sons, 1976.
- 4. G. F. Simmons, Introduction to Topology and Modern Analysis, Tata McGraw-Hill, 2013.

NAME OF THE PAPER (CODE)

: CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS (MTC 7.2) : 04 : 60

	-
Number of Credit	:
Number of Hours of Lecture	:

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Calculus of Variations and Integral Equations**:

CO 1:	To learn solving "Volterra Integral Equations" of first and second kind by methods of successive substitution and successive approximation, by finding iterated kernels/resolvent
CO 2:	To learn "Fredholm integral equations" of first and second kind by methods of successive approximation and successive substitution, by finding iterated kernels/resolvent
CO 3:	To impart the concept "Introduction to Calculus of Variation" by discussing of functionals and variation functionals
CO 4:	To let the students aware of "Functionals and its examples" by discussing functionals in first and higher order derivatives
CO 5:	To provide a comprehensive understanding of "Variational problems" in moving boundary, Transversality condition and solving variation problems of ordinary and partial differential equation

Unit &	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Introduction on linear	CSO 1.1: To define integral	12	20	Not to
Volterra	integral equations-	equation and kernel of integral			be
Integral	Volterra, Initial value	equation (K)			filled-
Equations	problems reduced to	CSO 1.2: To define Volterra			in
	Volterra integral	integral equation of first and			
	equation, Volterra	second kind (K)			
	integral equation of the	CSO 1.3: To solve problems on			
	first kind, Solution of	reducing the initial value			
	Volterra integral	problems to Volterra integral			
	equation of second	equation (U)			
	kind by methods of	CSO 1.4: To discuss the			
	successive substitution	solutions of Volterra integral			
	and successive	equation by successive			
	approximation,	substitution and successive			
	Volterra integral	approximation (U)			
	equation with iterated	CSO 1.5 To discuss the solution			
	kernels/Resolvent	of Volterra integral equation of			
	Kernels	first kind (U)			
		CSO 1.6: To describe how			
		Volterra integral equation of first			
		kind can be transformed to			
		Volterra integral equation of			
		second kind (K)			
		CSO 1.7: To discuss reducing an			
		integral equation to Volterra			
		integral equation of second kind			

UNIT 2 Fredholm Integral Equations	Introduction on Fredholm Integral equations, Boundary Value Problems reduced to Fredholm integral equations, Solution of Fredholm integral equations of second kind by methods of successive approximation and successive substitution, Fredholm integral equation with Iterated Kernels/Resolvent kernels, Fredholm's first, second and third theorem, Integral equations with degenerate kernels, Integral equation with symmetric kernel	and solving by Laplace method (U) CSO 1.8: Applying method of Iterated/Resolvent Kernel to solve the Volterra integral equation (A) CSO 2.1: To define Fredholm Integral equations of first and second kind (K) CSO 2.2: Solving problems to reduce boundary value problems to Fredholm integral equations (A) CSO 2.3: To discuss the solution of Fredholm integral equations by methods of successive approximation and successive substitution (U) CSO 2.4: To define resolvent/Iterated kernel (K) CSO 2.5: Solving Fredholm integral equation by finding resolvent kernel (A) CSO 2.6: Discussing Fredholm's first, second and third theorem (U) CSO 2.7: To define degenerate kernel (K) CSO 2.9: Describing Fredholm integral equation with symmetric kernel (K) CSO 2.10: Solving Fredholm integral equation by finding	14	24	Not to be filled- in
UNIT 3 Introduction to Calculus of Variation	Variation of a functional and its properties, Variational problems with fixed boundaries, Euler's equation, Fundamental lemma of calculus of variation, Functional in the form of integrals, Problems of finding shortest distance and minimum surface of resolution, Brachistochrone problem.	CSO 3.1:. To define functional and variation of a functional (K) CSO 3.2:. To discuss Euler's equation (U) CSO 3.3: Finding extremals of the functionals using Euler's equation (A) CSO 3.4: To describe fundamental lemma of calculus of variations which invokes from Euler-Lagrange's equation (K) CSO 3.5: Discussing Brachistochrone problem to find shortest time (U) CSO 3.6: Solving problem to find shortest distance (A)	12	20	Not to be filled- in
UNIT 4 Functionals and its examples	Functionals depending on several unknown functions and their first order derivatives, Functional involving	CSO 4.1: To describe functionals involving first order and higher order derivatives (K) CSO 4.2: To discuss variation problems involving several	12	20	Not to be filled- in

				1	
	higher derivatives, Euler Poisson equation, Examples, Functionals dependent on several independent variables, Ostrogradaskey equation, Variational problems in parametric form, Isoperimetric problem, Geodesic problem.	unknown functions (U) CSO 4.3: To find the extremal of several unknown functions (A) CSO 4.4: To discuss parametric form of variation functionals (U) CSO 4.5: To solve isoperimetric problems (A) CSO 4.6: To discuss variation problems involving more independent (U) CSO 4.7: To discuss Euler Poisson equation (K) CSO 4.8: To elaborate Euler- Ostrogradsky equation (K)			
UNIT 5	Variational problem	CSO 5.1: Discussing variational	10	16	Not to
Variational Problems	with moving boundaries, Moving boundary problem with more than one dependent variables, Transversality condition, Examples, Variational method of solving ordinary differential equation and partial differential equation by Rayleigh Ritz method.	 cso 5.1. Discussing variational problem with both the end points moving on two vertical lines (U) CSO 5.2: Discussing variational problem with one end points fixed and other end point moving on a vertical line (U) CSO 5.3: Discussing variational problem with one end points fixed and other moving on a certain curve (U) CSO 5.4: To find the Transversality condition for functionals (A) CSO 5.5: To define Rayleigh Ritz method (K) CSO 5.6: To describe variational method of solving ordinary differential equation by Rayleigh Ritz method (K) CSO 5.7: Solving ordinary differential equation to obtain approximate solution by Rayleigh Ritz method (A) CSO 5.8: Solving Laplace equation, Poisson equation by Rayleigh Ritz method (A) 			be filled- in

- 1. R. P. Kanwal, *Linear Integral Equations*, Theory and Techniques, Birkhauser, 1924.
- 2. J. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice Hall, New Jersey, 1963.
- 3. L. Elsgolts, Differential Equations and the Calculus of Variations, MIR Publishers, 1970.
- 4. A. S. Gupta, Calculus of Variations with Applications, PHI Learning, 2015.

: RESEARCH METHODOLOGY (RM)

: 04 : 60

Use of Calculator is allowed.

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Research Methodology**:

CO 1:	Understanding "Introduction to research methodology" by learning the objectives of research, types, approaches, significance, methods, process, Criteria of good research, Research problem and techniques
CO 2:	Understanding the need for "Research Design" through sampling design, features, basic principle, criteria, characteristics and types of design.
CO 3:	Understanding about "Data collection" by collection through different methods, and processing of data.
CO 4:	Understanding the "Statistics in Research" by learning measures of central data like mean median, mode, measures of dispersion like range, Quartile deviation, Mean deviation, Standard deviation, Karl Pearson's coefficient of correlation, Regression analysis, Association in case of attributes.
CO 5:	Understanding "Testing of Hypothesis" through basic concepts and procedure of testing of hypothesis

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Objectives of	CSO 1.1: To introduce	12	20	Not to
Introduction to	research, Types of	objectives of research and types			be
research	research, Research	of research (K)			filled-
methodology	approaches,	CSO 1.2: Discussing research			in
	Significance of	approach and the significance			
	research, Research	of research (U)			
	and scientific	CSO 1.3: To discuss on			
	methods, Research	methods of research (U)			
	process, Criteria of	CSO 1.4: Describing scientific			
	good research,	methods (K)			
	Research problem:	CSO 1.5: Discussing the steps			
	Selecting the research	of research or research process			
	problem, Necessity of	(U)			
	defining the research	CSO 1.6: Discussing the			
	problem, Techniques	criteria of good research (U)			
	involved in defining a	CSO 1.7: To define research			
	problem.	problem (K)			
		CSO 1.8: Examining the			
		importance of defining a			
		research problem (A)			
		CSO 1.9: Identifying the			
		research problem (K)			
		CSO 1.10: Examining the			
		techniques involved in defining			

		a research problem (A)			
LINIT 2	Need for research	CSO 2.1: To describe the	12	20	Not to
Research	design Features of	need for research design (K)	12	20	he
Design	good design	CSO 2.2 . Introducing different			filled-
Design	Different research	research designs (K)			in
	designs Basic	CSO 2 3. Discussing the basic			111
	principle of	principle of experimental			
	ovnorimental designs	designs (II)			
	Sompling Docign:	CSO 24: To define semple			
	Critaria of colocting	CSO 2.4. To define sample design (K)			
	cinteria or selecting a	CSO 25. To examine the			
	Characteristics of a	cso 2.5. To examine the			
	characteristics of a	procedure (A)			
	Different types of	CSO 26: Characteristics of a			
	Different types of,	CSO 2.0: Characteristics of a			
	sample design, now to	good sample design (K)			
	select a random	USO 2.7: Discussing different			
	sample?	CSO 28. Identifying how to			
		CSU 2.8: Identifying now to			
	Callestian of mimory	Select a faildoin sample? (K)	11	10	Not to
UNIT 5	dete Observation	CSU 5.1: 10 define the	11	18	hol to
Data	uata, Observation	Concept of data contection (K)			be filled
Collection	method, Interview	cs0 3.2: Classifying the types			inned-
	dete through	of data conection into primary			111
	data through	and secondary data (U)			
	questionnaires,	CSU 3.5: Describing the			
	through schedules	action such as Observation			
	Difference between	method Interview method			
	duestionneires and	questionnaires schedules (K)			
	questionnaires and	CSO_{24} To differentiate			
	of secondary data	cso 3.4 10 differentiate			
	Of secondary data,	(II)			
	data collection: Depth	CSO 35: Describing about			
	interviews content	secondary data collection (K)			
	analysis nantry	CSO 36 . Determining other			
	audits consumer	methods of data collection such			
	panels Processing of	as Depth interviews content			
	data: Editing Coding	analysis pantry audits			
	Classification	consumer panels (A)			
	Tabulation	CSO 3.7: To define data			
	i uo ui ui ioni	processing (K)			
		CSO 3.8: Explaining the steps			
		of Processing of data such as			
		editing, coding, classification.			
		tabulation (U)			
UNIT 4	Measures of central	CSO 4.1: To define mean.	11	18	Not to
Statistics in	tendency: Mean.	mode, median (K)			be
Research	Median, Mode.	CSO 4.2: Determining mean.			filled-
	Measures of	mode, median (A)			in
	dispersion: Range,	CSO 4.3: To elaborate range,			
	Quartile deviation,	quartile deviation, mean			
	Mean, deviation,	deviation, standard deviation			
	Standard deviation,	(U)			
	Karl Pearson's	CSO 4.4: To determine range,			
	coefficient of	quartile deviation, mean			
	correlation,	deviation, standard deviation			

	December and the	(\mathbf{A})			
	Regression analysis,	(A)			
	Association in case of	CSO 4.5: 10 define Karl			
	attributes.	Pearson's coefficient of			
		correlation (K)			
		CSO 4.6: Finding Karl			
		Pearson's coefficient of			
		correlation (A)			
		CSO 4.7: Discussing			
		regression analysis (U)			
		CSO 4.8: Discussing			
		association of attributes (U)			
UNIT 5	What is a hypothesis?	CSO 5.1: Defining the term	14	24	Not to
Testing of	Characteristics of a	hypothesis (K)			be
Hypothesis	hypothesis, Basic	CSO 5.2: Characteristics of a			filled-
	concepts concerning	hypothesis (U)			in
	testing of hypothesis:	CSO 5.3: Identifying null and			
	Null, and Alternate	alternate hypothesis (K)			
	hypothesis, Type I and	CSO 5.4: Identifying type I			
	II error, level of	and II error (K)			
	significance, Level of	CSO 5.5: To define level of			
	confidence, Decision	significance, level of			
	rule, Two tailed and	confidence, decision rule, two			
	One tailed test,	tailed and one tailed test (K)			
	Hypothesis testing for	CSO 5.6: Elaborating the steps			
	means, Hypothesis	of testing of hypothesis (U)			
	testing for difference	CSO 5.7: To calculate testing			
	between means,	of Hypothesis for means and			
	Hypothesis testing of	difference between means (A)			
	proportions,	CSO 5.8: To calculate testing			
	Hypothesis testing, for	of Hypothesis for proportions			
	difference between	and difference between			
	proportions,	proportions (A)			
	Hypothesis testing	CSO 5.9: To calculate testing			
	about a variance or	of hypothesis about a variance			
	standard deviation,	or standard deviation and			
	Hypothesis testing for	difference between two			
	difference, between	standard deviation (A)			
	two variances or				
	standard deviations				

- 1. C. R. Kothari, *Research Methodology: Methods and Techniques*, New Age International, 2004.
- 2. R. Kumar, *Research Methodology*, SAGE Publication Ltd., New Delhi, 4th Ed., 2014.
- 3. John W. Creswell and J. David Creswell, *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches*, SAGE Publications, 2018.

: TOPOLOGY (MTC 8.1)

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Topology**:

:04

:60

CO 1:	To learn the definition of "Topological spaces" and its concepts with examples.
CO 2:	Understanding "Countability and Separation Axioms", such as separable spaces and separability, Lindeloff space, T_0 , T_1 , T_2 , T_3 , T_4 spaces, regular spaces, normal space with some basic results.
CO 3:	To acquire the idea of "Compactness" by introducing sequentially, locally compact spaces, one point compactification, finite product of compact spaces with examples and some basic results.
CO 4:	To understand "Connectedness" with examples and some basic results, and also what is local path connectedness and Hausdorff spaces.
CO 5:	To understand the "Product topological space and Metrization theorem" by introducing projection mapping, Tychonoff spaces, metrizability, Urysohn's lemma, and Tietze's extension theorem.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
			Hours	20	NT
UNITI	Definition and	CSO 1.1: Defining topological	12	20	Not to
Topological	examples of	space (K)			be
Spaces	Topological spaces,	CSO 1.2: Discussing examples			filled-
	Intersection and	on topological space (U)			in
	Union of topologies,	CSO 1.3: Discussing			
	Closed sets,	properties on Intersection and			
	Neighbourhood,	Union of topologies (U)			
	Base, Limit point,	CSO 1.4: Defining			
	Adherent points,	neighbourhood and open sets			
	Derived sets, closure,	(K)			
	Interior, Exterior and	CSO 1.5: Determining			
	Frontier of a set,	neighbourhood of a point (A)			
	Relation between	CSO 1.6: Defining base, limit			
	Closure, Interior and	point, Adherent points, Derived			
	frontier sets,	sets, closure and closed sets			
	subspace topology,	(K)			
	product topology,	CSO 1.7: Finding base, limit			
	quotient topology	point, Adherent points, Derived			
	and quotient space.	sets, closure of a set (A)			
		CSO 1.8: Describing the			
		intersection and union of closed			
		sets and open sets (K)			
		CSO 1.9: Defining Interior			
		Exterior and Frontier of a set			
		(K)			
		CSO 110 . Discussing the			
		properties of Interior and			

UNIT 2 Countability and Separation Axioms	First countable spaces, Second countable spaces, Separable spaces and Separability, Lindeloff space, T_0 , T_1 , T_2 , T_3 , T_4 spaces, Regular spaces, Normal space.	Exterior of a set (U) CSO 1.11: Discussing the Relation between Closure, Interior and frontier sets (U) CSO 1.12: Defining subspace topology, relative topology, product topology, quotient topology (K) CSO 1.13: Finding base for the product topology and solving examples on subspace topology, relative topology (A) CSO 1.14: Defining quotient space (K) CSO 1.15: Proving the equivalence theorem of quotient space with closed mapping and open mapping (U) CSO 2.1: Defining First countable spaces, Second countable spaces, and Separable spaces with examples (K) CSO 2.2: Discussing first countability on discrete and metric space, subspace of first countable, co-countable topology is not first countable (U) CSO 2.3: Describing that every second countable space is first countable space is hereditary, open continuous image of second countable space is second countable space	13	22	Not to be filled- in
		such as every second countable space is separable, countable space is hereditarily separable, metric space is separable iff the space is second countable. (U) CSO 2.5: Defining Lindelof space (K)			
		CSO 2.6: Deriving that every second countable space is a Lindeloff space, metric space is Lindeloff iff the space is second countable (A) CSO 2.7: Constructing example that Lindeloff space is not a hereditary property (A) CSO 2.8: Defining T_0 , T_1 , T_2 , T_3 , T_4 spaces (K)			

		CSO 2.9 : Discussing examples			
		and theorem on T_0 , T_1 , T_2 , T_3 ,			
		T_4 spaces (U)			
UNIT 3	Compact spaces,	CSO 3.1: to define open cover,	11	18	Not to
Compactness	compact and	finite subcover and compact set			be
	sequentially compact	(K)			filled-
	spaces, locally	CSO 3.2: Describing theorem			in
	compact spaces, One	such as compact subset of a			
	point	Hausdorff space is closed,			
	compactification,	theorem on compact subspace,			
	finite product of	closed subsets of compact sets			
	compact spaces	are compact (K)			
		CSO 3.3: Constructing			
		examples of closed space			
		which is not Hausdorff (A)			
		CSO 3.4: Proving finite			
		intersection property of a			
		compact topological space (U)			
		CSO 3.5: Discussing			
		compactness in $\mathbb{R}(U)$			
		CSU 3.6: To define sequential			
		compact (K)			
		CSO 3.7: Elaborating on			
		theorems such as continuous			
		image of a sequentially			
		compact set is compact,			
		invoriant (L)			
		CSO 38 To define locally			
		compact (K)			
		CSO 3.0 . Proving that every			
		compact topological space is			
		locally compact every closed			
		subspace of a locally compact			
		space is locally compact (U)			
		CSO 3.10: To define compact			
		topological space (K)			
		CSO 3.11: Elaborating that the			
		space (X^*, τ^*) is a			
		compactification of the space			
		(X, τ) (U)			
		CSO 3.12: To define one point			
		compactification or			
		Alexandroff compactification			
		(K)			
		CSO 3.13: To discuss that the			
		space (X^*, τ^*) has properties			
		that satisfies one point			
		compactification (U)			
UNIT 4	Connected spaces,	CSO 4.1: To define separated	11	18	Not to
Connectedness	generation of	sets, connected sets,			be
	connected sets,	disconnected sets (K)			filled-
	components, path	CSO 4.2: Classifying			in
	connected spaces,	connected and disconnected			
	local connectedness,	sets (A)			

	11				
	local path	CSO 4.3: Discussing theorems			
	connectedness,	on connected and disconnected			
	Hausdorff spaces.	sets(U)			
		CSO 4.4: Describing on			
		continuity and connectedness			
		(K)			
		CSO 4.5: To define			
		components, local			
		connectedness. path			
		connectedness local path			
		connectedness (K)			
		CSO 46: Constructing			
		avamplas on space which is			
		examples on space which is			
		connected but not locally			
		connected and locally			
		connected but not connected			
		CSO 4.7: Discussing theorems			
		on components and locally			
		connectedness (U)			
UNIT 5	Product topological	CSO 5.1: To define product	13	22	Not to
Product	space, Projections	topology and product			be
topological	mappings, Tychonoff	topological space (K)			filled-
space and	theorem (Finite	CSO 5.2: Determining base			in
Metrization	product only),	and sub base for product			
theorem	Tychonoff spaces,	topology (A)			
	Urysohn's Lemma,	CSO 5.3: Discussing theorem			
	Metrizability,	on product topology (U)			
	Metrizability theorem,	CSO 5.4: To define projection			
	Tietze's extension	mapping (K)			
	theorem	CSO 5.5: Describing that			
		projection mapping is			
		continuous (K)			
		CSO 5.6: To define Tychonoff			
		topology (K)			
		CSO 5.7: Describing			
		Urvsohn's Lemma (K)			
		CSO 5.8: To define metrizable			
		(K)			
		CSO 5.9: Discussing			
		Urvsohn's Metrizability			
		theorem (II)			
		CSO 5.10:			
		Constructing metrizability of			
		spaces such as $(\mathbb{R} I)$ [0.1] ato			
		spaces such as $(\mathbf{I}_{\mathbf{X}}, \mathbf{U})$, $[\mathbf{U}, \mathbf{I}] \in \mathbb{C}$.			
		CSO 511. Proving Tietzo's			
		extension theorem (II)			
		extension mediem (U)			

- 1. J. R. Munkres, Topology: A First Course, Prentice Hall of India Ltd., New Delhi, 2000.
- 2. M. A. Armstrong, *Basic Topology*, Springer International Ed., 2005.
- 3. J. L. Kelley, *General Topology*, Springer Verlag, Newyork, 1990.
- 4. J. N. Sharma and J. P. Chauhan, *Topology*, Krishna Prakashan Media (P) Ltd., 48th Ed. Meerut, 2018.

2 Major Theory Papers in lieu of Research Project/Dissertation (For Honors Students not undertaking Research Projects)

NAME OF THE PAPER (CODE) : LINEAR PROGRAMMING AND THEORY OF GAMES (MTC 8.2)

Number of Credit	:04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Linear Programming and Theory of Games:

CO 1:	To help the students to understand simplex algorithm, M method algorithm and solving				
	the problems.				
CO 2:	To help the students to understand Relation of dual and primal problems using				
	corresponding algorithms.				
CO 3:	To help the students to understand types of Transportation problems (T.p) and				
	algorithms.				
CO 4:	To help the students to understand Hungarian methods for solving assignment problem				
	and algorithms.				
CO 5:	To help the students to understand type of game theory for example two person sum of				
	game with pure and mixed strategies, Graphical solution, linear programming etc				

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Introduction to linear	CSO 1.1: Find simplex	13	22	Not to
	programming problem,	table (K)			be
Linear	Theory of simplex	CSO 1.2: Find BIG-M table			filled-
Programming	method, optimality and	(K)			in
	unboundedness, the	CSO 1.3: Find two face			
	simplex algorithm,	method tabulate.(K)			
	simplex method in	CSO 1.4: study for			
	tableau format,	algorithm simplex. (A)			
	introduction to artificial				
	variables, two-phase				
	method, Big-M method				
	and their comparison.				
UNIT 2	Duality, formulation of	CSO 2.1: Tabulate duality	11	18	Not to
Linear	the dual problem, primal-	simplex (K)			be
Programming	dual relationships,	CSO 2.2: studying relation			filled-
	economic interpretation	between dual to primal			in
	of the dual.	relation (U)			
		CSO 2.3: clarity of			
		economic interpretation of			
		the dual. (U)			
UNIT 3	Transportation problem	CSO 3.1:Find mini cost	12	20	Not to
Transportatio	and its mathematical	from TP (K)			be
n problem	formulation, northwest-	CSO 3.2: check			filled-
	corner method least cost	mathematical formulation			in
	method and Vogel	(U)			
	approximation method	CSO 3.3: study			
	for determination of	NWC,LCM, VAM for			
	starting basic solution.	determination of starting			

		basic solution. (U)			
UNIT 4 Assignment problem	Algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.	 CSO 4.1: Study about TP Algorithm. (A) CSO 4.2: Solve assignment problem using by TP (U) CSO 4.3: Hungarian method for solving assignment problem. (K) 	12	20	Not to be filled- in
UNIT 5 Game theory	Game theory: formulation of two-person zero sum games, solving two- person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	CSO 5.1: How to apply two person zero sum game. (K) CSO 5.2: Tablate mixed strategies players. (U) CSO 5.3: Draw graphical solution. (A) CSO 5.4: Finding linear programming solution of games. (U)	12	20	Not to be filled- in

1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, *Linear Programming and Network Flows*, 2nd Ed., John Wiley and Sons, India, 2004.

2. F.S. Hillier and G.J. Lieberman, *Introduction to Operations Research*, 9th Ed., Tata McGraw Hill, Singapore, 2009.

3. Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006.

4. G. Hadley, *Linear Programming*, Narosa Publishing House, New Delhi, 2002.
: MECHANICS (MTC 8.3)

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Mechanics:

CO 1:	To aid the students in understanding the concepts of Structural Mechanics.
CO 2:	To assist the students in understanding laws and different types of Frictional forces.
CO 3:	To create an understanding of the concepts in Geometry and Structural Analysis.
CO 4:	To inculcate the students in understanding Energy Conservation and Dynamics.
CO 5:	To make the students familiar with particle Dynamics and reference frames.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Moment of a force	CSO 1.1: to define the term	13	22	Not to
Structural	about a point and an	moment of a force about a			be
Mechanics	axis, couple and	point with examples and some			filled-
	couple moment,	problem solutions. (K/U/A)			in
	Moment of a couple	CSO 1.2: to define moment of			
	about a line,	a force about an axis with			
	resultant of a force	examples and solve some			
	system, distributed	problems based on it. (K/U/A)			
	force system, free	CSO 1.3: to define the term			
	body diagram, free	couple and couple moment			
	body involving	with examples. (K/U)			
	interior sections,	CSO 1.4: to define moment of			
	general equations of	a couple about a line with			
	equilibrium, two-	examples and solve some			
	point equivalent	problems based on it.			
	loading, problems	(K/U/A)			
	arising from	CSO 1.5: to define resultant			
	structures, static	of a force system with some			
	indeterminacy.	examples. (K/U)			
		CSO 1.6: to define and			
		explain distributed force			
		system with examples and			
		tackle some problems based			
		on it. $(K/U/A)$			
		CSO 1.7: to explain and			
		define free body diagram with			
		examples. (K/U)			
		USU 1.8: to tackle some			
		problems based on free body			
		ulagram involving interior			
		sections. (U/A)			
		USU 1.9: to write down and			
		explain the general equations (\mathbf{V}, \mathbf{A})			
		of equilibrium. (K/A)			

		CSO 110: to solve some			
		replane based on two point			
		problems based on two-point			
		equivalent loadings. (U/A)			
		CSO 1.11: to solve some			
		problems arising from			
		structure and static			
		indeterminacy. (U/A)			
UNIT 2	Laws of Coulomb	CSO 2.1: to define and	11	18	Not to
Frictional	friction, application	explain Law of Coulomb			be
Forces	to simple and	friction with prove. (K/U)			filled-
	complex surface	CSO 2.2: to apply coulomb			in
	contact friction	friction to solve simple and			
	problems,	complex surface contact			
	transmission of	friction problems. (A/U)			
	power through belts.	CSO 2.3: to define and			
	screw jack, wedge.	explain the transmission of			
	first moment of an	powers through belts, scew			
	area and the	iack, wedge and tackle some			
	centroid, other	problems based on all of it.			
	centers	(K/A/U)			
	conterb.	CSO 2.4: to define first			
		moment (K)			
		CSO 2.5: to solve some			
		problems to find the first			
		moment of an area the			
		centroid and other centers (A)			
LINIT 3	Theorem of	CSO 31: to state and prove	12	20	Not to
Concents in	Pappus-Guldinus	Theorem of Pappus-Guldinus	12	20	he
Geometry and	second moments	(K/U)			filled-
Structural	and the product of	CSO 3.2: to define the term			in
Analysis	area of a plane area.	second moment. (K)			
	transfer theorems.	CSO 3.3: to explain the			
	relation between	product of area of a plane area			
	second moments	and tackle some problems			
	and products of	based on it. (U/A)			
	anaa nalan mamant				
	area, polar moment	CSO 3.4: to state and prove			
	of area, principal	CSO 3.4: to state and prove transfer theorems. (K/A)			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area.			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U)			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A)			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems			
	of area, principal axes.	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A)			
UNIT 4	Conservative force	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define	12	20	Not to
UNIT 4 Energy	Conservative force field, conservation	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define Conservative force field with	12	20	Not to be
UNIT 4 Energy Conservation	Conservative force field, conservation for mechanical	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define Conservative force field with examples. (K/U)	12	20	Not to be filled-
UNIT 4 Energy Conservation and Dynamics	Conservative force field, conservation for mechanical energy, work energy	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define Conservative force field with examples. (K/U) CSO 4.2: to define	12	20	Not to be filled- in
UNIT 4 Energy Conservation and Dynamics	Conservative force field, conservation for mechanical energy, work energy equation, kinetic	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define Conservative force field with examples. (K/U) CSO 4.2: to define conservation for mechanical	12	20	Not to be filled- in
UNIT 4 Energy Conservation and Dynamics	Conservative force field, conservation for mechanical energy, work energy equation, kinetic energy and work	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define Conservative force field with examples. (K/U) CSO 4.2: to define conservation for mechanical energy with examples. (K/U)	12	20	Not to be filled- in
UNIT 4 Energy Conservation and Dynamics	Conservative force field, conservation for mechanical energy, work energy equation, kinetic energy and work kinetic energy	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define Conservative force field with examples. (K/U) CSO 4.2: to define conservation for mechanical energy with examples. (K/U) CSO 4.3: to explain work	12	20	Not to be filled- in
UNIT 4 Energy Conservation and Dynamics	Conservative force field, conservation for mechanical energy, work energy equation, kinetic energy and work kinetic energy expression based on	CSO 3.4: to state and prove transfer theorems. (K/A) CSO 3.5: to explain the relation between second moment and product of area. (K/U) CSO 3.6: to define polar moment of area and workout problems based on it. (K/A) CSO 3.8: to explain principal axes and workout problems based on it. (U/A) CSO 4.1: to define Conservative force field with examples. (K/U) CSO 4.2: to define conservation for mechanical energy with examples. (K/U) CSO 4.3: to explain work energy equation and workout	12	20	Not to be filled- in

	in and the f	CEO 1 1. to $1-f$ to 1^{-1}			
	moment of	CSU 4.4: to define kinetic			
	momentum equation	energy. (K)			
	for a single particle	CSO 4.5: to define work			
	and a system of	kinetic energy expression			
	particles, translation	based on center of mass and			
	and rotation of rigid	workout problems based on it.			
	bodies.	(K/U/A)			
		CSO 4.6: to define moment of			
		momentum equation for a			
		single particle and a system of			
		particles and solve some			
		problems based on it. $(K/A/U)$			
		CSO 4.7: to define and			
		explain translation and			
		rotation of rigid bodies with			
		examples (K/II)			
LINIT 5	Chasles' theorem	CSO 51: to state and prove	12	20	Not to
Dantiele	chastes theorem,	Charles' theorem (V/U)	12	20	hot to
		Ciasies theorem. (K/U)			
Dynamics	between time	CSO 5.2: to explain the			inned-
And	derivatives of a	general relationship between			1 n
Reference	vector for different	time derivatives of a vector			
Frames	references,	for different references with			
	relationship between	prove and examples. (U)			
	velocities of a	CSO 5.3: to explain the			
	particle for different	relationship between			
	references,	velocities of a particle for			
	acceleration of	different references with			
	particle for different	prove and examples. (U)			
	references.	CSO 5.4: to explain the			
		acceleration of particle for			
		different references with			
		prove and example. (U)			

1. I.H. Shames and G. Krishna Mohan Rao, *Engineering Mechanics: Statics and Dynamics*, (4th

Ed.), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2009.

2. R.C. Hibbeler and Ashok Gupta, *Engineering Mechanics: Statics and Dynamics*, 11th Ed., Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi.

MINOR PAPERS

NAME OF THE PAPER (CODE)	: CALCULUS (MTM 1)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Calculus:			
CO 1:	To aid the students in understanding the foundations of calculus.		
CO 2:	To assist the students in the understanding of derivatives of hyperbolic and trigonometric functions.		
CO 3:	To create an understanding of Analytical geometry.		
CO 4:	To inculcate the students in understanding Analytical techniques.		
CO 5:	To make the students aware of the applications of double and triple integration.		

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Mark	LOs
			Hours	S	
UNIT 1	Definition of the	CSO 1.1: to define the term limit of a	9	20	Not
Foundations	limit of a function (function (K)			to be
of Calculus	$\varepsilon - \delta$) form.	CSO 1.2: to solve some functions to			fille
	Continuity- Types of	check its limit with the help of the			d-in
	discontinuities,	definition. (U)			
	Properties of	CSO 1.3: to define the term			
	continuous functions	continuity of a function. (K)			
	on a closed interval.	CSO 1.4: to solve some functions to			
	Differentiability,	check its continuity with the help of			
	Differentiability	the definition. (U)			
	implies continuity-	CSO 1.5: to write and discuss the			
	converse not true.	types of discontinuity. (K/U)			
	Rolle's Theorem.	CSO 1.6: to write and discuss the			
	Evaluation of limits	properties of continuous functions on			
	by L'Hospital's rule.	a closed interval. (K/U)			
		CSO 1.7: to define and discuss			
		differentiability and solve some			
		problems based on the definition.			
		(K/U/A)			
		CSO 1.8: to state and prove			
		Differentiability implies continuity-			
		converse not true. (K/U)			
		CSO 1.9: to state Rolle's Theorem			
		and apply it to solve some problems.			
		(K/A)			
		CSO 1.10: to explain L'Hospital's			
		rule and apply it to solve some			
		problems. (U/A)			
UNIT 2	Hyperbolic	CSO 2.1: to define hyperbolic	9	20	Not
Differentiati	tunctions. Identities	functions and some properties. (K)			to be
on	and its derivatives.	CSO 2.2: to find the derivatives of the			fille
	Inverse hyperbolic	hyperbolic functions and inverse			d-in
	functions.	hyperbolic functions. (A/U)			

	Derivatives. Higher	CSO 2.3: to define higher order			
	order derivatives.	derivatives and solve some problems.			
	Leibnitz's theorem	(K/A)			
	and its applications.	CSO 2.4: to explain Leibniz rule and			
	Differentiation of	its applications to problems. (U/A)			
	homogenous	CSO 2.5: to apply Leibnitz rule to			
	functions Total	solve some problem types (A)			
	derivative	CSO 2.6 to explain Differentiation			
	Differentiation of	of homogenous functions and solve			
	implicit and	some questions based on it (II/A)			
	composite functions	CSO 27 • to define implicit and			
	composite runctions.	composite function (K)			
		CSO 2 8: to differentiate implicit and			
		composite functions			
LINIT 3	Sub tangent and sub	CSO 31 : to define sub tangent and	0	20	Not
Analytical	normal Polar	sub normal (K)	,	20	to be
Geometry	coordinate angles	CSO 3 2 to solve some problems to			fille
Geometry	between the	find sub tangent and sub normal (A)			d_in
	tangents Slope of	$CSO 3 3 \cdot to explain Polar coordinate$			u-III
	the tangent I ength	angles between the tangents and how			
	of arc Evolutes	to find the angle (II)			
	Δ symptotes	CSO 34 to define slope of the			
	Methods of finding	tangent and find the slope of the			
	asymptotes of	tangent by solving some problems			
	Algebraic curves	(K/Λ)			
	Aigeoraic curves.	CSO 3.5. to define length of arc and			
		find the length of arc by solving some			
		problems (K/Δ)			
		CSO 36 to define evolutes and			
		asymptotes (K)			
		CSO 3.8 to apply the methods of			
		finding asymptotes of algebraic			
		curves on some problems (U/A)			
LINIT 4	Volumes and	CSO 41: to explain volumes and	9	20	Not
Analytical	surfaces of	surface of revolution (II)	,	20	to be
Techniques	revolution	CSO 4 2: to solve problems to find			fille
reemiques	Reduction formula	the volume and surface of revolution			d-in
	Beta and Gama	(A)			u m
	functions Properties	CSO 4.3: to explain reduction			
	and problems.	formulae and solve some problems			
		using the formulae. (U/A)			
		CSO 4.4: to define beta and gamma			
		function. (A)			
		CSO 4.5: to write down the properties			
		of beta and gamma function and			
		explain them. (U)			
		CSO 4.6: to solve problems based on			
		beta and gama functions. (A)			
		CSO 4.7: to explain volume by			
		parametric equations. (U)			
		CSO 4.8: to solve problems to find			
UNIT 5	Double integrals.	CSO 5.1: to explain double integrals	9	20	Not
Double	Change of order of	and solve some problems based on it.			to be
	integration. Triple	(U/A)			fille
	integrals.	CSO 5.2: to explain change of order			d-in
	Applications to area.	of integration and solve some			

Triple Integrati	Surface Area and Volume.	 problems based on it. (U/A) CSO 5.3: to explain triple integration and solve some problems based on it. (U) CSO 5.4: to explain the applications of double and triple integration to find area and volume respectively. (U) CSO 5.5: to apply double and triple integration to find surface area and volume to solve some problems. (U) 		
---------------------	-----------------------------	--	--	--

NAME OF THE PAPER (CODE)	: CALCULUS (MTM 1) (Practical)
Number of Credit	: 01
Number of Hours of Lecture	: 30

List of Practical's (using any software)

- 1. Practical based on tracing curves (trigonometric functions, inverse function, exponential function, logarithmic function and hyperbolic function)
 - a. Draw the graph of sinx,cosx,tanx,cotx,secx,cosecx.
 - b. Draw the graph of $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x, \cot^{-1} x, \sec^{-1} x, \cos ec^{-1} x$.
 - c. Draw the graph of sinhx, coshx, tanhx, cothx.
 - d. Draw the graph of $\log_a x, a_x$.
 - e. Draw the graph of cardioids and asteroid.
- 2. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.
- 3. Practical based on integral and reduction formula, summation of the series, surface and volume.
- 4. Practical based on successive differentiation.
 - a. Find the nth derivative of the given function at a given point.
 - b. Application of Leibnitz's theorem.
- 5. Evaluation of limits by L'Hospital's rule.
- 6. Application of reduction formula for integration.
- 7. Application of series using integration.
- 8. Application of volume revolution.

- 1. K.C.Maity, R.Ghosh, Differential Calculus (7th Edition), New Central Book Agency, 2004.
- 2. K.C.Maity, R.Ghosh, Integral Calculus (7th Edition), New Central Book Agency, 2004.
- 3. Tom. M. Apostol, Calculus -Volume I and II.

NAME OF THE PAPER (CODE)	: DIFFERENTIAL EQUATIONS (MTM 2)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Differential equation**:

CO 1:	To introduce and understand the concept of Differential Equations.
CO 2:	To learn the different methods to solve first order ODEs, and how to reduce to exact equations and linear equations.
CO 3:	To introduce second order ODEs and using Abel's formula to find other linear independent solutions.
CO 4:	To learn the different methods to solve different types of second order ODEs.
CO 5:	To understand mathematical modelling and apply these techniques to solve and analyze various mathematical models.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Differential Equation,	CSO 1.1: Understanding the	8	18	Not to
	Solutions of first order	concept of Differential			be
Introduction	ODEs, Homogeneous	Equation (DE). (U)			filled-
to Differential	Equations, Total	CSO 1.2: Define Differential			in
Equations	differential, Exact	Equation and classify different			
	Equations.	types of Differential Equations			
		(K)			
		CSO 1.3: Discuss various types			
		of solutions (K)			
		CSO 1.4: Define			
		Homogeneous functions and			
		Homogeneous equations (K)			
		CSO 1.5: Solve the			
		homogeneous equations using			
		method of separation of			
	variables. (A)				
		CSO 1.6: Define Total			
		Differential and Exact			
		equations (K)			
		CSO 1.7: Criteria to check			
		exactness and Solve Exact			
		equations (A)			
UNIT 2	Solution methods for	CSO 2.1: Solve by the method	8	18	Not to
	first order ODEs,	of exact differential equations.			be

Approaches	Reducible to Exact	(A)			filled-
to First order	Equations Integrating	CSO 2.2: Define Integrating			in
ODEs and	factors.	Factor (K)			
special	Linear first order	CSO 2.3: How to apply			
equations	ODE. Reducible to	integrating factor to Non-exact			
1	linear equations.	equations and solve. (U+A)			
	Bernoulli's Equation.	CSO 2.4: Define Linear DE of			
	1	first order (K)			
		CSO 2.5: Solve the linear			
		differential equation (A)			
		CSO 2.6: Reducing the DE to			
		linear DE and solve (K+A)			
		CSO 2.7: Define Bernoulli's			
		DE (K)			
		CSO 2.8: Solve by the method			
		of Bernoulli's equation (A)			
UNIT 3	Introduction to	CSO 3.1: Understanding	9	20	Not to
	Second order ODEs,	higher order linear DE (U)			be
Introduction	Properties of solutions	CSO 3.2: to discuss properties			filled-
to Second	of second order	of solutions for second order			in
Order ODE	homogeneous ODEs,	homogeneous ODEs (K)			
	Abel's formula to find	CSO 3.3: to define Linear			
	the other linear	dependence and independence,			
	independent solution,	understand with examples			
	Abel's Formula-	(K+U)			
	Demonstration with	CSO 3.4: Define Wronskian			
	examples.	and it's properties (K)			
		CSO 3.5: Discuss the criterion			
		for the linearly independent			
		solutions (U)			
		CSO 3.5: to explain Abel's			
		formula to find other linear			
		independent solution. $(U+A)$			
		CSO 3.6: to demonstrate			
		Abel's Formula with examples.			
	Second order ODE's	(A)	10	22	Not to
Types of	with constant	for second order linear DE with	10	22	he
second order	coefficients Fuler-	constant coefficients $(K+U)$			filled-
ODE and	Cauchy equation	CSO 4.2: Define Particular			in
Non-	Non-homogeneous	Integrals and methods to find a			
homogeneous	ODEs-Variation of	particular integrals for some			
ODEs	parameters, Method of	cases (K+U)			
	undetermined	CSO 4.3: Define Cauchy-Euler			
	coefficients,	equation (K)			
	Demonstration of	CSO 4.4: Solve by the method			
	Method of	of Euler's Cauchy equation			
	undetermined	CSO 4.5: to apply and			
	coefficients.	demonstrate Variation of			

		parameters Method of			
		undetermined coefficients to			
		non homogeneous ODEs (A)			
LINIT 5	Mathematical	CSO 5 1: Define compartment	10	22	Not to
0111 3	modelling	model (K)	10	22	ho
Mathamatical	Comportmontal	CSO 52: Define belonce low			filled
madalling	model exponential	(K)			in
modening	model-exponential	(\mathbf{K})			111
	growin and decay	CSO 5.5 : Concept of			
	af nonvision and	model (U)			
	of population and	CSO 54: Maka madal			
	himited growin with	CSO 3.4: Make model			
	narvesting,	CSO 55: Earmulate			
	intermetation of the	differential equation of			
	nucrpretation of the	annerential equation of			
	prove model and its	model and solve (A)			
	prey model and its	CSO 56: Solve for limited			
	model of influenze	growth of population and			
	and its analysis	growth of population and			
	and its analysis.	(A)			
		(A)			
		CSO S.7: Define equilibrium			
		CSO 5 8: Find the aquilibrium			
		points of the given system of			
		equation			
		CSO 5 9 . Define interpretation			
		of phase plane (K)			
		CSO 5.10: Obtain and sketch			
		the phase plane curves and			
		draw the direction vector for			
		trajectories. (U)			
		CSO 5.11: Make Model			
		assumptions, departmental			
		diagram and word equations for			
		predatory prey model,			
		epidemic model. (K)			
		CSO 5.12: Formulate			
		differential equation for			
		predatory prey model and			
		epidemic model, solve and			
		discuss its analysis. (U+A)			

NAME OF THE PAPER (CODE)	: DIFFERENTIAL EQUATIONS (MTM 2) (Practical)
Number of Credit	: 01
Number of Hours of Lecture	: 30

List of Practicals (using any software):

- 1. Plotting of second order solution family of differential equation.
- 2. Plotting of third order solution family of differential equation.
- 3. Growth model (exponential case only).
- 4. Decay model(exponential case only).
- 5. Limited growth of population (with and without harvesting).
- 6. Predatory prey model (basic volterra model, with density dependence, effect of DDT, two prey one predator).
- 7. Epidemic model of influenza (basic epidemic model, contagious for life disease with carriers).
- 8. Battle model (basic battle model, jungle warfare, long range weapons).

- 1. Shepley L. Ross, *Differential Equations*, 3rd Ed., John Wiley and Sons, 1984.
- 2. Belinda Barnes and Glenn R. Fulford, *Mathematical Modelling with Case Studies, A Differential Equations Approach using Maple and Matlab, 2nd Ed.*, Taylor and Francis group, 2009.
- 3. Martha Labell, James P Braselton, *Differential Equations with Mathematica*, 3rd Ed., Elsevier Academic Press, 2004.
- 4. C.H. Edwards and D.E. Penney, *Differential Equations and Boundary Value Problems:* Computing and Modeling, Pearson Education, 2005.
- 5. George F. Simmons, *Differential equation with applications and historical notes*, McGraw Hill, 1991.

NAME OF THE PAPER (CODE)	: PDE AND SYSTEMS OF ODE (MTM 3)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper PDE and Systems of ODE:

CO 1:	To introduce the basic concepts of partial differential equations. To Construct, interpret geometrically, form and classify the first order PDE. To obtain the general solution of PDE.
CO 2:	To provide a comprehensive understanding of method of separation of variables for first order linear PDEs and the derivation, classification and, solution of second order PDEs.
CO 3:	To particularly focus more on the application of PDEs in solving Cauchy and boundary value problems related to wave propagation.
CO 4:	To equip students with the necessary skills and knowledge to tackle PDEs with non- homogeneous boundary conditions, focusing on practical applications in wave propagation and heat conduction
CO 5:	To provide a comprehensive understanding of systems of linear differential equations, and their solution methods, with a focus on practical applications and numerical techniques.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Partial Differential	CSO 1.1: to define PDE (K)	9	20	Not to
Introduction	Equations – Basic	CSO 1.2: to discuss basic			be
to Partial	concepts and	concepts of partial differential			filled-
Differential	Definitions,	equations. (U)			in
Equations	Mathematical	CSO 1.3: to classify, Construct			
	Problems. First-Order	and give geometrical			
	Equations:	interpretation of first order			
	Classification,	PDE (U)			
	Construction and	CSO 1.4: to form PDE by			
	Geometrical	eliminating constants (U)			
	Interpretation. Method	CSO 1.5: to find the general			
	of Characteristics for	solution of first order linear			
	obtaining General	PDE. (A)			
	Solution of Quasi	CSO 1.6: to explain the method			
	Linear Equations.	of canonical form of first order			
	Canonical Forms of	linear equations (U)			
	First-order Linear	CSO 1.7: to Reduce the linear			
	Equations.	PDE to canonical form and			
		obtain the general solution. (A)			
UNIT 2	Method of Separation	CSO 2.1: to explain Method of	9	20	Not to
Method of	of Variables for	Separation of Variables (U)			be
Separation of	solving first order	CSO 2.2: to apply Method of			filled-
Variables and	partial differential	Separation of Variables to			in
Classification	equations. Derivation	solve first order PDEs. (A)			
of second	of Heat equation,	CSO 2.3: to explain and derive			

order linear equations	Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order Linear Equations to canonical forms.	Heat, Wave and Laplace Equation (U+A) CSO 2.4: to Classify second order linear equations hyperbolic, parabolic or elliptic (U) CSO 2.5: to explain the method of canonical form of second order PDE(U) CSO 2.6: to reduce second order Linear Equations to canonical forms (A) CSO 2.7: to explain Secant method and its derivative. (U)			
UNIT 3 Solving Cauchy problem and Boundary Value Problems	The Cauchy problem, the Cauchy- Kowaleewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems, Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end.	 CSO 3.1: to define Cauchy problem with problems (K+U) CSO 3.2: to give the statement for Cauchy-Kowaleewskaya theorem (K) CSO 3.3: to apply method of separation of variables to solve Initial Boundary Value Problems. (A) CSO 3.4: to explain Semi-Infinite String with a fixed end, Semi-Infinite String with a Free end. (U) CSO 3.5: to solve various problems on Semi-Infinite String with a fixed end, Semi-Infinite String with a Free end (A) 	9	20	Not to be filled- in
UNIT 4 Solving non- homogeneous equations with boundary conditions using separation of variables	Equations with non- homogeneous boundary conditions, Non-Homogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String Problem, Solving the Heat Conduction problem.	CSO 4.1: to derive the equations of non-homogeneous boundary conditions. (K+A) CSO 4.2: to Solve the non-homogeneous wave equation. (A) CSO 4.3: to apply method of separation of variables to derive vibrating string problem.(A) CSO 4.4: to solve the Vibrating String Problem (A) CSO 4.5: to derive the Heat Conduction problem by method of separation of variables (K+A) CSO 4.6: to solve by the method of heat conduction (A)	9	20	Not to be filled- in
UNIT 5 Systems of linear	Systems of linear differential equations, types of linear	CSO 5.1: to understand the concept of systems of linear differential equations (K+U)	9	20	Not to be filled-

differential	systems, differential	CSO 5.2: to explain types of		in
equations	operators, an operator	linear systems (U)		
	method for linear	CSO 5.3: to understand the		
	systems with constant	concept of differential		
	coefficients, Basic	operators (U)		
	Theory of linear	CSO 5.4: to use the operator		
	systems in normal	method to find the general		
	form, homogeneous	solution of the given linear		
	linear systems with	systems. (A)		
	constant coefficients:	CSO 5.5: to understand the		
	Two Equations in two	concept of basic theory of		
	unknown functions,	linear system in normal form		
	The method of	(U)		
	successive	CSO 5.6: to illustrate with		
	approximations, the	examples (U)		
	Euler method, the	CSO 5.7: to define		
	modified Euler	homogeneous linear system.		
	method, The Runge-	(K)		
	Kutta method.	CSO 5.8: to define non-		
		homogeneous linear system (K)		
		CSO 5.9: to find Solutions of		
		homogeneous and non-		
		homogeneous linear system.		
		(A)		
		CSO 5.10: to explain method		
		of successive approximations,		
		the Euler method, the modified		
		Euler method, The Runge-		
		Kutta method. (U)		
		CSO 5.11: to apply the		
		methods to systems of linear		
		differential equations. (A)		

NAME OF THE PAPER (CODE)	: PDE AND SYSTEMS OF ODE (MTM 3) (Practical)
Number of Credit	: 01
Number of Hours of Lecture	: 30

List of Practicals (using any software)

(i) Solution of Cauchy problem for first order PDE.

(ii) Finding the characteristics for the first order PDE.

(iii) Plot the integral surfaces of a given first order PDE with initial data.

(iv) Solution of wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ for the following associated conditions

- e) $u(x,0) = \phi(x), \ u_t(x,0) = \psi(x), x \in \mathbb{R}, t > 0$
- f) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), u(0,t) = 0, x \in (0,\infty), t > 0$
- g) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), u_x(0,t) = 0, x \in (0,\infty), t > 0$
- h) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), u(0,t) = 0, u(l,t) = 0, 0 < x < l, t > 0$

(v) Solution of heat equation $\frac{\partial u}{\partial t} = K^2 \frac{\partial^2 u}{\partial x^2}$ for the following associated conditions

- a) $u(x,0) = \phi(x)$, u(0,t) = a, u(l,t) = b, 0 < x < l, t > 0b) $u(x,0) = \phi(x)$, u(0,t) = a, $x \in (0,\infty)$, $t \ge 0$
- c) $u(x, 0) = \phi(x), u(0, t) = a, x \in \mathbb{R}, 0 < t < T$

Suggested Readings:

1. Tyn Myint-U and Lokenath Debnath, *Linear Partial Differential Equations for Scientists* and *Engineers, 4th edition*, Springer, Indian reprint, 2006.

2. S.L. Ross, Differential equations, 3rd Ed., John Wiley and Sons, India, 2004.

3. Martha L Abell, James P Braselton, *Differential equations with MATHEMATICA*, *3rd Ed.*, Elsevier Academic Press, 2004.

NAME OF THE PAPER (CODE)	: LINEAR ALGEBRA (MTM 4)
Number of Credit	: 04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper LINEAR ALGEBRA:

CO 1:	To develop a thorough understanding of system of linear equations and their representation using Augmented matrices, enabling them to interpret and analyze the real world problems in mathematical framework.
CO 2:	To provide a comprehensive understanding of matrices and its properties, determinant calculation, Cramer's rule, Rank of matrix, Characteristics roots and eigenvectors, diagonalization, Jordan blocks and Jordan form.
CO 3:	To provide a comprehensive understanding of Vector Spaces, and methods to finding basis of a vector space.
CO 4:	To provide a comprehensive understanding of Linear Transformation, the concept of rank and nullity of linear transformation, and learn techniques for computing them, including the use of Matrix representation.
CO 5:	To provide a comprehensive understanding of Inner Product Spaces, also learn techniques for constructing Orthonormal bases using Gram-Schmidt process.

Unit & Titlo	Unit Contonts	Course Specific Objective	Locturo	Morks	IOc
Unit & Thie	Unit Contents	(CSOs)	Hours	1 VIAI K 5	LUS
UNIT 1	System of linear	CSO 1.1: to understand the	10	16	Not to
Introduction to	equations,	system of linear equations (U)			be
System of linear	Augmented matrix.	CSO 1.2: to define and			filled-
equations	Gaussian elimination	understand with examples			in
• • • • • • • • • • • • • • • • • • • •	with back	systems of linear equations			
	substitution Gauss	and Augmented matrix			
	Iordan elimination	(K+U)			
	Solving	CSO 1 3. to understand Gauss			
	homogeneous system	Iordan elimination (II)			
	of linear equation	CSO 1 4 • to solve systems of			
	of mean equation.	linear equations using Gauss			
		Iordan elimination (A)			
		CSO 15: to define and			
		understand homogeneous			
		system of linear equation with			
		examples (II)			
		CSO 16: to solve			
		homogeneous system of linear			
		equations (A)			
UNIT 2	Matrices, Elementary	CSO 2.1: to understand	14	24	Not to
Matrices	properties of	matrices and its elementary			be
	matrices.	properties (U)			filled-
	Determinant of a	CSO 2.2: to explain on how to			in
	square matrix,	find determinant of matrix (A)			
	Properties of	CSO 2.3: to explain properties			
	determinants,	of determinants and apply			
	Cramer's rule, Rank	them. (U+A)			
	of matrix,	CSO 2.4: to define Cramer's			
	Characteristics roots,	rule (K)			
	characteristics value	CSO 2.5: to apply Cramer's			
	and vectors of square	rule (A)			
	matrix, Cayley	CSO 2.6: to define rank of a			
	Hamilton theorem,	matrix and find the rank of a			
	Diagonalization,	matrix (K+A)			
	Jordan blocks and	CSO 2.7: to define			
	Jordan form.	Characteristics roots and			
		eigenvectors (K)			
		CSO 2.8: to find the			
		Characteristics roots and			
		eigenvectors of a matrix (A)			
		Coulou Line it and prove			
		Cayley Hamilton theorem $(K + A)$			
		$(\mathbf{X}+\mathbf{A})$ $(\mathbf{C}\mathbf{S}\mathbf{O} + 2)10$, to define			
		diagonalization of a matrix			
		and understand if a matrix is			
		and understand it a matrix is diagonalizable $(\mathbf{V} \mid \mathbf{U})$			
		CSO 211, to understand			
		Lordan blocks and Lordan form			
		(II)			

UNIT 3	Vector Spaces.	CSO 3.1: to define vector	12	20	Not to
Vector Spaces	General Properties of	spaces and understand the			he
	vector spaces.	general properties of vector			filled-
	addition and scalar	spaces (K+U)			in
	multiplication of	CSO 3.2: to define and			
	vectors internal and	understand addition and scalar			
	external composition	multiplication of vectors with			
	null space vector	examples $(K+I)$			
	subspace linear	CSO 3 3 • to define null space			
	combination of	(K)			
	voctors linear span	(\mathbf{R})			
	lineer dependence	understand linear combination			
	and independence of	of voctors linear open linear			
	and independence of	dependence and independence			
	Dimension Einding	of vectors $(K + U)$			
	Dimension, Finding	of vectors. $(\mathbf{K}+\mathbf{U})$			
	basis of a vector	USU 3.5: to define basis and			
	space.	$\frac{\text{dimension}(\mathbf{K})}{\mathbf{CSO}^2}$			
		CSU 3.0: to find the basis of a			
	Lincor	CSO 41. to define lines	12	20	Not to
UNII 4 Lincor	transformation	transformation and linear	12	20	ho
Linear Transformation	Linear operators	$C_{\rm relation} = C_{\rm relation} = C_{\rm$			be filled
	Dropantias of linear	CSO 12 : to diagonal the			ineu-
	troperties of linear	CSO 4.2: to discuss the			111
	Alasha of linear	properties of fillear			
	Algebra of fillear	CSO 43 to understand the			
	operators, Kange and	CSO 4.5: to understand the			
	transformations	transformation (U)			
	Donk and pullity of	CSO 4 4: to understand rank			
	lineer	and pullity of linear			
	transformation Dank	transformation (II)			
	nullity theorem	CSO 45: to state and prove			
	numity meorem.	CSO 4.5. to state and prove Pank nullity theorem $(K \mid A)$			
		CSO 4.6: to find the reak and			
		rullity of a linear			
		transformation (A)			
LINIT 5	Inner product	CSO 51 : to define and	12	20	Not to
Inner Product	Length	understand Inner Product and	12	20	he
Snaces	Orthogonal	Inner product space with			filled-
spaces	vectors Triangle	examples $(K \perp I)$			in
	inequality	CSO 52 to define			111
	Cauchy-	Orthogonal vectors (K)			
	Schwarz	CSO 53 to determine			
	inequality	Orthogonal vectors in an Inner			
	Orthonormal	Product Space (A)			
	(Orthogonal	CSO 5.4: to understand			
	Basis). Gram	Triangle inequality and			
	Schmidt	Cauchy-Schwarz inequality			
	Process.	(U)			
		CSO 5.5: to define			
		Orthonormal vectors (K)			
		CSO 5.6: to understand Gram			
		Schmidt Process (U)			
		CSO 5.7: to apply the Gram			
		Schmidt Process to find			
		orthonormal bases (A)			

- 1. K. Hoffman and R. Kunze, *Linear Algebra*, Prentice Hall, 1972.
- 2. I. N. Herstein, Topics in Algebra, Wiley Eastern, 1987.
- 3. N. Jacobson, Basic Algebra, Vols. I & II, Hindustan Pub. Co., 1984.
- 4. J. N. Sharma and A. R. Vasista, Linear Algebra, Krishna Prakashan Mandir, Meerut.
- 5. Stephen H. Friedberg et al., *Linear Algebra*, Prentice Hall of India Pvt. Ltd., 4th Ed., 2007.

NAME OF THE PAPER (CODE)	: GROUP THEORY (MTM 5)
Number of Credit	: 04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Group Theory**:

CO 1:	To provide a comprehensive understanding of Group Theory, focusing on the definition and examples of Groups.
CO 2:	To provide a comprehensive understanding of subgroups and Cyclic groups. Also explore techniques to identify and classify subgroups.
CO 3:	To enhance critical thinking skills by analyzing and interpreting Permutation structures and their implications for problem solving in diverse contexts. Also learn the concept of Cosets and Lagrange's theorem including its use in proving Fermat's little theorem.
CO 4:	To provide an in depth understanding of advanced topics in Group Theory, focusing on the External direct products, Normal subgroups and Factor groups.
CO 5:	To provide a comprehensive understanding of Group Homomorphism, Isomorphism and its properties, understand its First, Second and Third Theorem. Also learn about Symmetries of a Square and Dihedral groups.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Definition and	CSO 1.1: To define	11	18	Not to
Introduction to	examples of groups	groups(K)			be
Groups	including	CSO 1.2: Illustration of			filled-
	permutation groups	groups with examples. (U)			in
	and quaternion	CSO 1.3: to define			
	groups (illustration	Permutation Groups and			
	through matrices),	Quaternion Groups (K)			
	elementary	CSO 1.4: to Illustrate			
	properties of groups.	Permutation Groups and			
		Quaternion Groups with			
		matrices (U)			
		CSO 1.5: to discuss the			
		elementary properties of			
		groups (K+U)			
UNIT 2	Subgroups and	CSO 2.1: to define	12	20	Not to
Subgroups and	examples of	subgroups and understand			be
Cyclic groups	subgroups, product	with the help of examples			filled-
	of two subgroups,	(K+U)			in

	center of a group	CSO 22 : to define and			
	controlizer	prove that two subgroups			
	normalizar	of a group G is a product of			
	Droportion of qualia	G a group of G ($K + A$)			
	roperties of cyclic	CSO 23 to define			
	groups, classification	CSO 2.5: to define			
	of subgroups of	centralizer, normalizer and			
	cyclic groups.	center of a group. (K)			
		CSO 2.4: to prove that			
		centralizer, normalizer and			
		center of a group is a			
		subgroup of a group (A)			
		CSO 2.5: to define cyclic			
		groups (K)			
		CSO 2.6: to learn the			
		properties of a cyclic group			
		(U)			
		CSO 2.7: to classify			
		subgroups of cyclic groups			
		(U)			
UNIT 3	Cycle notation for	CSO 3.1: Define cycle	12	20	Not to
Permutation	permutations,	permutation.(K)			be
Groups, Cosets	properties of	CSO 3.2: to Illustrate with			filled-
and Lagrange's	permutations, even	examples (U)			in
Theorem	and odd	CSO 3.3: to find different			
	permutations,	powers of a cycle and its			
	alternating group,	order. (A)			
	properties of cosets,	CSO 3.4: to learn the			
	Lagrange's theorem	properties of permutations			
	and consequences	(K) CSO 3.5: to define			
	including Fermat's	even and odd permutation.			
	Little theorem.	(K)			
		CSO 3.6: to Illustrate with			
		examples. (U)			
		CSO 3.7: to define			
		alternating group and to			
		show that the set of all even			
		permutation is a normal			
		subgroup. (K+A)			
		CSO 3.8: to define and			
		understand cosets and its			
		properties. (K+U)			
		CSO 3.9: to state and prove			
		Lagrange's theorem.			
		(K+A)			
		CSO 3.10: to state and			
		prove Fermat's little			
TINIT 4	External l'art	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	10	20	Net to
UNII 4 Extornal dimant	External direct	direct product (V)	12	20	he
nroducts	product of a filling	CSO 12 ; to prove that			filled
Normal	normal subgroups,	external direct product is a			ined-
subaroung and	factor groups,	$(I \downarrow A)$			111
Factor groups	Cauchy's theorem	$CSO 4 3 \cdot to define normal$			
racior groups	for finite abalian	subgroups Illustrate with			
	groups	an example $(K \perp II)$			
	5.00 ps.	CSO 4.4: to define Factor			

		group. Illustrate Factor group with an example. (K+U) CSO 4.5: to Prove that every quotient group of a cyclic group is cyclic. (A) CSO 4.6: to Prove that a subgroup of a group G is normal in G iff the product of two right cosets is again a right coset of H in G. (K+U) CSO 4.7: to state and prove Cauchy theorem for finite abelian group (K+A)			
UNIT 5 Group homomorphisms, isomorphisms and Some special groups	Group homomorphism s, properties of homomorphism s, Cayley's theorem, properties of isomorphisms, First, Second and Third isomorphism theorems,Symm etries of a square, Dihedral groups	CSO 5.1: to define group homomorphism. Illustrate with examples. (K+U) CSO 5.2: to understand the Properties of homomorphism. (U) CSO 5.3: to define group isomorphism. Illustrate with examples. (K+U) CSO 5.4: to understand the Properties of isomorphism. (U) CSO 5.5: to state and prove Cayley's theorem. (K+A) CSO 5.6: to state and prove First, Second and Third theorem of isomorphism. (K+A) CSO 5.7: To understand Symmetries of a square of how they form Group under composition (U) CSO 5.8: To learn about Dihedral Groups, understand its properties.	13	22	Not to be filled- in

1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.

2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.

3. Joseph A. Gallian, *Contemporary Abstract Algebra, 4th Ed.*, Narosa Publishing House, New Delhi, 1999.

4. Joseph J. Rotman, An Introduction to the Theory of Groups, 4th Ed., Springer Verlag, 1995.

5. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, India, 1975.

NAME OF THE PAPER (CODE)	: NUMERICAL METHODS (MTM 6)
Number of Credit	: 03
Number of Hours of Lecture	: 45

Use of Scientific Calculator is allowed.

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Numerical Methods:

CO 1:	To make the students aware of the numerical methods and basic concepts of algorithm, convergence and errors.
CO 2:	To aid the students in the understanding of transcendental and polynomial equations and help them to solve the equations by using different methods, and analyse its convergence.
CO 3:	To create an understanding among the students, the system of linear algebraic equations and how to solve it and analyse its convergence.
CO 4:	To inculcate and create interest among students in the understanding of interpolation.
CO 5:	To assist the students in the understanding of Numerical integration.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Algorithms,	CSO 1.1: to define the term	8	18	Not
Introduction to	Convergence,	Algorithm (K)			to be
Numerical	Errors: Relative,	CSO 1.2: to construct an Algorithm			filled-
Methods	Absolute, Round	for a sequence to find mean and			in
	off and	standard deviation. (U)			
	Truncation	CSO 1.3: to apply the Algorithm to			
		find mean and standard deviation. (A)			
		CSO 1.4: to construct an Algorithm to			
		find an integral of a function using			
		trapezoidal rule. (U)			
		CSO 1.5: to apply the Algorithm to			
		find an integral. (A)			
		CSO 1.6: to define the term			
		convergence. (K)			
		CSO 1.7: to understand the rate of			
		convergence and order of			
		convergence. (U)			
		CSO 1.8: to evaluate rate of			
		convergence and order of convergence			
		of some functions. (A)			
		CSO 1.9: to define the term error. (K)			
		CSO 1.10: to write and define the			
		different types of errors. (K)			
		CSO 1.11: to find the value of the			
		different errors by solving some			
		questions. (A)			
UNIT 2	Transcendental	CSO 2.1: to define Transcendental	9	20	Not
Transcendental	and Polynomial	equation. (K)			to be
and Polynomial	equations:	CSO 2.2: to define polynomial			filled-

Equations	Bisection	equation. (K)			in
-1	method.	CSO 2.3: to explain Bisection Method			
	Newton's	and its derivative. (U)			
	method. Secant	CSO 2.4: to apply Bisection Method			
	method. Rate of	to solve some Transcendental and			
	convergence of	polynomial equations. (A)			
	these methods	CSO 2.5: to explain Newton's method			
		and its derivative. (U)			
		CSO 2.6: to apply Newton's method			
		to solve some Transcendental and			
		polynomial equations. (A)			
		CSO 2.7: to explain Secant method			
		and its derivative. (U)			
		CSO 2.8: to apply Secant method to			
		solve some Transcendental and			
		polynomial equations. (A)			
		CSO 2.9: to analyse the rate of			
		convergence for Newton's method.			
		(A)			
		CSO 2.10: to analyse the rate of			
		convergence for Bisection method.			
		(A)			
		CSO 2.11: to analyse the rate of			
		convergence for Secant method. (A)			
UNIT 3	System of linear	CSO 3.1: to define system of linear	9	20	Not
System of	algebraic	algebraic equation. (K)			to be
Linear	equations:	CSO 3.2: to explain Gaussian			filled-
Algebraic	Gaussian	Elimination method and its derivative.			in
Equations	Elimination and	(U)			
	Gauss Jordon	CSO 3.3: to apply Gaussian			
	methods, Gauss	Elimination method to solve some			
	Jacobi method,	system of linear algebraic equations.			
	Gauss Seidel	(A)			
	method and their	CSO 3.4: to explain Gauss Jordon			
	convergence	method and its derivative. (U)			
	analysis	CSO 3.5: to apply Gauss Jordon			
		method to solve some system of linear			
		algebraic equations. (A)			
		CSU 3.6: to explain Gauss Jacobi			
		method and its derivative. (U)			
		CSO 5.7: to apply Gauss Jacobi			
		algebraic equations (A)			
		CSO 3.8: to explain Gauss Seidel			
		method and its derivative (II)			
		CSO 3.9 • to apply Gauss Seidel			
		method to solve some system of linear			
		algebraic equations (A)			
		CSO 3.10: to analyse the rate of			
		convergence for Gaussian Elimination			
		method. (A)			
		CSO 3.11: to analyse the rate of			
		convergence for Gauss Jordon			
		method. (A)			
		CSO 12: to analyse the rate of			
		convergence for Gauss Jacobi method.			

		(A)			
		CSO 3.13: to analyse the rate of			
		convergence for Gauss Seidel method.			
		(A)			
UNIT 4	Interpolation:	CSO 4.1: to define Interpolation. (K)	9	20	Not
Interpolation	Lagrange and	CSO 4.2: to explain Lagrange			to be
	Newton's	method. (U)			filled-
	methods, Error	CSO 4.3: to apply Lagrange method			in
	bounds. Finite	to solve some questions. (A)			
	difference	CSO 4.4: to explain Newton's			
	operators,	method. (U)			
	Gregory forward	CSO 4.5: to apply Newton's method			
	difference	to solve some questions. (A) $CSO(4.6)$ to define error bound (K)			
	interpolation	CSO 4.7: to analyse the error bound			
	interpolation.	of some problems (A)			
		CSO 4.8: to define finite difference			
		operators. (K)			
		CSO 4.9: to solve problems using the			
		finite difference operators. (A)			
		CSO 4.10: to explain Gregory			
		forward Interpolation. (U)			
		CSO 4.11: to apply Gregory forward			
		Interpolation to solve some problems.			
		(A) CSO 4 12: to explain Realized			
		difference Interpolation (II)			
		CSO 4.13: to apply Backward			
		difference Interpolation to solve some			
		problems. (A)			
UNIT 5	Numerical	CSO 5.1: to define Numerical	10	22	Not
Numerical	Integration:	Integration. (K)			to be
Integration	Trapezoidal	CSO 5.2: to explain Trapezoidal rule.			filled-
	rule, Simpson's				in
	$\frac{1}{3}$ rule, Simpsons $\frac{3}{4}$	CSO 5.5: to apply Trapezoidal rule to			
	rule Boole's	(Δ)			
	rule. Midpoint	CSO 5.4: to explain Simpson's $1/3^{rd}$			
	rule, Composite	rule. (U)			
	Trapezoidal	CSO 5.5: to apply Simpson's 1/3 rd			
	rule, Composite	rule to find the integration of some			
	Simpson's rule,	equations. (A)			
	Ordinary	CSO 5.6: to explain Simpson's 3/8 th			
	Differential	rule. (U) $CSO 5.7$ to some $2 2/2$ th			
	Equations:	CSU 5.7: to apply Simpson's 3/8 th			
	Runge-Kutta	equations (A)			
	Methods of	CSO 5.8: to explain Boole's rule (II)			
	orders two and	CSO 5.9: to apply Boole's rule to find			
	four.	the integration of some equations. (A)			
		CSO 5.10: to explain Midpoint rule.			
		(U)			
		CSO 5.11: to apply Midpoint rule to			
		solve some equations. (A)			
		USU 5.12: to explain composite			
		Trapezoidai fule. (U)	1	1	1

NAME OF THE PAPER (CODE)	: NUMERICAL METHODS (MTM 6) (Practical)
Number of Credit	: 01
Number of Hours of Lecture	: 30

List of Practicals (using any software)

(i) Calculate the sum 1/1+1/2+1/3+1/4+...+1/N

(ii)To find the absolute value of an integer.

(iii) Enter 100 integers into an array and sort them in an ascending order.

(iv) Bisection Method.

(v) Newton Raphson Method.

(v) Secant Method.

(vi) Regula Falsi Method.

(vii)LU decomposition Method.

(ix) Gauss-Jacobi Method.

(x) SOR Method or Gauss-Siedel Method.

(xi) Lagrange Interpolation or Newton Interpolation.

(xii) Simpson's rule.

Suggested Readings:

1. Brian Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007.

2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, *Numerical Methods for Scientific and Engineering Computation, 6th Ed.*, New age International Publisher, India, 2007.

3. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Education, India, 2008.

4. Uri M. Ascher and Chen Greif, A First Course in Numerical Methods, 7th Ed., PHI Learning Private Limited, 2013.

5. John H. Mathews and Kurtis D. Fink, *Numerical Methods using Matlab*, 4th Ed., PHI Learning Private Limited, 2012.

: REAL ANALYSIS (MTM 7.1)

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Real Analysis**:

:04

:60

CO 1:	To learn "Countability of sets and the real number system" and gaps in the rational numbers.
CO 2:	To acquire the knowledge of "Topology of real numbers" by learning completeness axiom and denseness in \mathbb{R} . The student shall be able to find limit points of set and define closed set with this concept.
CO 3:	The students shall aware of the "Sequence of real numbers" and its convergence. The idea of monotone sequence and its convergence theorem is also introduced.
CO 4:	To impart the knowledge of "Subsequence" to identify monotone subsequence and its convergence, divergence subsequence.
CO 5:	To help students understand "Infinite series and its convergence" by using various convergence test.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Rational	CSO 1.1: To understand the	13	22	Not to
Countability of	numbers and its	rational number system and its			be
sets and the	properties, gaps	gap (K)			filled-
real number	in the rational	CSO 1.2: To discuss the			in
system	numbers,	algebraic and order properties of			
	Review of	$\mathbb{R}\left(\mathrm{U} ight)$			
	algebraic and	CSO 1.3: Defining			
	order	neighbourhood of point (K)			
	properties of \mathbb{R} -	CSO 1.4: Theorems on			
	neighbourhood	neighbourhoods of a point (U)			
	of a point in \mathbb{R} ,	CSO 1.5 Finding			
	Idea of	neighbourhood of a point (A)			
	countable sets,	CSO 1.6: To introduce the			
	uncountable sets	concept of countable and			
	and	uncountable sets (K)			
	uncountability of	CSO 1.7: Theorems on union of			
	\mathbb{R} . Bounded	countable sets, infinite subsets			
	above sets,	of countable sets, uncountability			
	Bounded below	of \mathbb{R} (U)			
	sets, Bounded sets,	CSO 1.8: Defining bounded			
	Unbounded sets,	sets, unbounded sets, (K)			
	Suprema and	CSO 1.9: To find the upper			
	Infima	bound and lower bound of sets			
		(A)			
		CSO 1.10: Defining suprema			
		and infima of a set (K)			
		CSO 1.11: To find suprema and			
		infima of a set (A)			

UNIT 2 Topology of real numbers	The completeness property of \mathbb{R} , The Archimedean property, Density of rational and irrational numbers in \mathbb{R} , Intervals. Limit points of a set, Isolated points, Illustration of Bolzano-Weierstrass theorem for bounded sets	CSO 2.1: Describing the concept of completeness axiom (K) CSO 2.2: Theorems on completeness axiom (U) CSO 2.3: Describing the concept of Archimedean property of real numbers (K) CSO 2.4: Theorems based on Archimedean property of real numbers (U) CSO 2.5: To discuss denseness in \mathbb{R} (U) CSO 2.6: to understand the idea of intervals(K) CSO 2.7: to define limit point and isolated point of a set(K) CSO 2.8: Finding limit point and isolated point of a set (A) CSO 2.9: Illustration of Bolzano Weierstrass theorem for bounded sets (A)	11	18	Not to be filled- in
UNIT 3 Sequence of real numbers	Sequences, Bounded sequence, Convergent sequence, Limit of a sequence. Limit theorems, Monotone sequence, Monotone convergence theorem	CSO 3.1:. To define sequence of real numbers (K) CSO 3.2:. To define bounded sequence and unbounded sequence (K) CSO 3.3:. To define limit of a sequence (K) CSO 3.4 To discuss the convergence of a sequence (U) CSO 3.5: Finding the limit of a sequence and determining its convergence (A) CSO 3.6: To describe the algebra of limits (K) CSO 3.7: Theorem on limits (U) CSO 3.8: To define monotone sequence (K) CSO 3.9: To discuss monotone convergence theorem (U) CSO 3.10: To determine monotone sequence (A)	12	20	Not to be filled- in
UNIT 4 Subsequence	Subsequence, Divergence criteria, Monotone subsequence theorem (statement only), Bolzano-Weierstrass theorem for sequences. Cauchy sequence, Cauchy's convergence criterion	CSO 4.1: Defining subsequence of a sequence (K) CSO 4.2: To discuss the convergence and divergence concept of subsequence (U) CSO 4.3: Discussing the divergence criteria of a subsequence (U) CSO 4.4: Solving problem based on convergence and divergence of sequence (A) CSO 4.5: To describe monotone	12	20	Not to be filled- in

		subsequence theorem (K) CSO 4.6: To discuss Bolzano Weierstrass theorem for sequences (U) CSO 4.7: Defining Cauchy's sequence (K) CSO 4.8: Describing Cauchy's Convergence Criterion (K) CSO 4.9: Determining Cauchy's sequence (A)		
UNIT 5 Infinite series and its convergence	Infinite series, convergence and divergence of infinite series, Cauchy criterion, Tests for convergence: Comparision test, Ration test, Cauchy's nth root test, Integral test, Alternating series, Leibnitz's test, Absolute and conditional convergence	CSO 5.1: Defining infinite series (K) CSO 5.2: Discussing Cauchy's criterion of convergence of infinite series (U) CSO 5.3: Discussing some properties on infinite series (U) CSO 5.4: Defining Comparison test (K) CSO 5.5: Applying Comparison test on infinite series (A) CSO 5.6: Defining limit comparison test (K) CSO 5.7: Applying comparison test on infinite series (A) CSO 5.8: Defining ratio test (K) CSO 5.9: Applying ratio test on infinite series (A) CSO 5.10: Defining Cauchy's nth root test (K) CSO 5.11: Applying Cauchy's nth root test (A) CSO 5.12: Defining integral test (K) CSO 5.13: Applying integral test (K) CSO 5.13: Applying integral test on infinite series (A) CSO 5.14: Introducing Alternate series (U) CSO 5.15: Testing convergence of infinite series (A) CSO 5.16: Defining Leibnitz's test (U) CSO 5.17: Testing convergence of alternate series by using Leibnitz's test (A) CSO 5.18: Discussing the convergence of absolute and conditional convergence (U)	20	Not to be filled- in

- R. G. Bartle and D. R. Sherbert, *Introduction to Real Analysis*, 3rd Ed., John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- 2. Gerald G. Bilodeau, Paul R. Thie, G. E. Keough, An Introduction to Analysis, 2nd Ed., Jones & Bartlett, 2020.

- 3. Brian S. Thomson, Andrew M. Bruckner and Judith B. Bruckner, *Elementary Real Analysis*, Prentice Hall, 2001.
- 4. S. K. Berberian, A First Course in Real Analysis, Springer Verlag, New York, 1994.

NAME OF THE PAPER (CODE)	: DISCRETE MATHEMATICS (MTM 7.2)
Number of Credit	: 04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Discrete Mathematics**:

CO 1:	To create an understanding of the concept of Logic.
CO 2:	To assist the students in understanding Lattices.
CO 3:	To aid students in understanding Boolean algebra.
CO 4:	To inculcate the students in understanding Graph theory and how it works.
CO 5:	To make the students familiar with Graph Algorithms.

Unit &	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Statements, truth	CSO 1.1: to define statement and	13	22	Not to
Logic	value and truth table,	types of statements with examples.			be
	logical connectives,	(K/U)			filled-
	logical equivalence,	CSO 1.2: to define truth value and			in
	tautologies and	truth table with examples. (K/U)			
	contradictions,	CSO 1.3: to workout problems			
	arguments,	based on truth table. (A)			
	propositional logic,	CSO 1.4: to explain logical			
	applications of	connectives with examples. (K/U)			
	propositional logic	CSO 1.5: to define and explain			
	to everyday	logical equivalence and solve			
	reasoning, predicate,	some problems based on it.			
	quantifiers,	(K/U/A)			
	applications of	CSO 1.6: to define tautologies and			
	predicate logic to	contradictions with examples.			
	everyday reasoning	(K/U)			
		CSO 1.7: to define an argument			
		with an example. (K/U)			
		CSO 1.8: to define propositional			
		logic and apply it to solve			
		problems to everyday reasoning.			
		(K/U/A)			
		CSO 1.9: to define predicates and			
		quantifiers with examples. (K/U)			
		CSO 1.10 : to apply predicate logic			
		to everyday reasoning problems.			
		(A)			
UNIT 2	Partial order	CSO 2.1: to define and explain	11	18	Not to
Lattices	relations, lattices -	partial order relations with			be
	definitions,	examples. (K/U)			filled-
	examples, properties	CSO 2.2: to define lattices with			in
	of lattices, properties	examples. (K/U)			
	of complete lattice,	CSO 2.3: to write down and			
	bounded lattice,	explain the properties of lattices.			

	complemented	(\mathbf{K}/\mathbf{I})			
	lattice and	CSO 2.4: to define and explain the			
	distributive lattices.	properties of complete lattice.			
		(K/U)			
		CSO 2.5: to define and explain			
		bounded lattices. (K/U)			
		CSO 2.6: to define and explain			
		complemented lattice and			
		distributive lattices with examples.			
		(K/U)			
		CSO 2.7: to workout problems			
		based on all the above. (Å)			
UNIT 3	Boolean algebras -	CSO 3.1: to define Boolean	12	20	Not to
Boolean	Boolean sub	algebras and sub algebra with			be
algebra	algebra, basic	examples. (K/U)			filled-
	properties Boolean	CSO 3.2: to write down the basic			in
	homomorphism,	properties of Boolean			
	Boolean algebra as	homomorphism and example it			
	lattices, Boolean	with examples. (K/U)			
	expressions and	CSO 3.3: to explain about			
	Boolean functions,	Boolean algebra as lattices and			
	sum of product,	workout problems. (U/A)			
	product of sum, min	CSO 3.4: to define Boolean			
	term, max term,	expressions and Boolean functions			
	minimization of	with examples. (K/U)			
	Boolean functions,	CSO 3.5: to explain sum of			
	Karnaugh map	product and product of sum with			
	method.	examples and workout problems. (V,U,L)			
		(K/U/A)			
		CSO 3.6: to define find term and may term with examples (K/I)			
		max term with examples. (K/U)			
		of Boolean functions and workout			
		problems (K/Δ)			
		CSO 3.8. to explain Karnaugh			
		map method and solve some			
		problem based on it (U/A)			
UNIT 4	Basic concepts	CSO 4.1: to define graph with	12	20	Not to
Graph	definitions and	examples. (K/U)			be
Theory	examples, degree of	CSO 4.2: to define degree of a			filled-
v	vertex, sub graphs,	vertex and solve some problems			in
	complete graph,	based on it. (K/A)			
	connected graph,	CSO 4.3: to define sub graph,			
	walk, path, cycles,	complete graph and connected			
	matrix representation	graph with examples. (K/U)			
	of graph, adjacency	CSO 4.4: to define walk, path and			
	matrix, incidence	cycles with examples. (K/U)			
	matrix, path matrix.	CSO 4.5: to explain matrix			
		representation of graph with			
		examples. (K/U)			
		USU 4.0: to define and explain			
		aujacency matrix, incidence			
		maurix and path matrix with examples (\mathbf{K}/\mathbf{U})			
		$CSO 4.7 \cdot to tackle problems based$			
		on all the above topics (Δ)			
	1				

				-	
UNIT 5	Warshall's	CSO 5.1: to define and explain	12	20	Not to
Graph	algorithm, planar	Warshall's algorithm and tackle			be
Algorithms	graph, Eulerian path,	problems based on it. (K/U/A)			filled-
	tournament and	CSO 5.2: to define planar graph			in
	Hamiltonian path.	and solve problems based on it.			
	Directed graphs, in	(K/A)			
	degree and out	CSO 5.3: to define and explain			
	degree of a vertex,	Eulerian path, tournament and			
	weighted undirected	Hamiltonian path and workout			
	graphs, Dijkstra's	problems based on all three			
	algorithm.	topics. (K/U/A)			
	-	CSO 5.4: to define directed graph,			
		in degree and out degree of a			
		vertex and tackle problems based			
		on it. (K/U/A)			
		CSO 5.5: to define weighted			
		undirected graphs with examples			
		and tackle problems based on it.			
		(K/U/A)			
		CSO 5.6: to define and explain			
		Dijkstra's algorithm and workout			
		problems based on it. (K/U/A)			

- 1. C.T. Liu, *Elements of Discrete Mathematics*, Tata Mcgraw-Hill Pub. Co. ltd., 2000.
- 2. J. P. Tremblay & R. Manohar, *Discrete Mathematical Structures with Appl. to Computer Science*, McGraw Hill Book Co., 1977.
- 3. J. Truss, Discrete Mathematics for Computer Scientists, Pearson Education, 3rd Ed., 2002.
- 4. R. Johnsonbaugh, Discrete Mathematics, Pearson Education Asia, 5th ed., 2003.
- 5. T. Veerarajan, *Discrete Mathematics with Graph Theory and Combinatorics*, Tata McGraw Hill Pub. Co. ltd, 2007.

NAME OF THE PAPER (CODE): PROBABILITY AND STATISTICS (MTC 6.4)Number of Credit: 04Number of Hours of Lecture: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Probability and Statistics:**

CO 1:	To help the students in understanding Sample space, probability axioms, real random variables, cumulative distribution function, probability mass function, mathematical expectation, moments and moment generating function, characteristic function and problem-based solutions.
CO 2:	To help the students in understanding discrete and continuous distributions and its properties, joint density functions, marginal and conditional distributions and problem-based solutions.
CO 3:	To help the students in understanding expectation of functions of two variables, conditional expectations, independent random variables, Bivariate normal distribution, correlation coefficient, joint moment generating function and calculation of covariance, linear regression for two variables and problem-based solutions.
CO 4:	To help the students in understanding Chebyshev's inequality, statement and interpretation of law of large numbers and strong law of large numbers, Central Limit theorem for independent and identically distributed random variables with finite variance and problem-based solutions.
CO 5:	To help the students in understanding Markov Chains, Chapman-Kolmogorov equations, classification of states.

Unit &	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Sample space,	CSO 1.1: Learn about	12	20	Not to
	probability axioms, real	probability density and			be
Probability	random variables	moment generating			filled-
-	(discrete and	functions. (K)			in
	continuous), cumulative	CSO1.2: knowning			
	distribution function,	moments, moment			
	probability mass/density	generating function,			
	functions, mathematical	characteristic function. (U)			
	expectation, moments,	CSO 1.3: Leaning Basic			
	moment generating	probability properties. (A)			
	function, characteristic				
	function.				
UNIT 2	Discrete distributions:	CSO 2.1: Know about	13	22	Not to
Discrete	uniform, binomial,	various univariate			be
Probability	Poisson, geometric,	distributions such as,			filled-
distributio	negative binomial,	Binomial, geometric and			in
ns	continuous distributions:	Poisson distributions. (K)			
	uniform, normal,	CSO 2.2: Learn about			
	exponential. Joint	distributions to study the			
	cumulative distribution	joint behavior of two			
	function and its	random variables. (K)			

	properties, joint probability density functions, marginal and conditional distributions.	CSO 2.3: Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. (U)			
UNIT 3 Mathemati cal Expectatio n	Expectation of function of two random variables, conditional expectations, independent random variables. Bivariate normal distribution, correlation coefficient, joint moment generating function (jmgf) and calculation of covariance (from jmgf), linear regression for two variables.	CSO 3.1: Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. (K) CSO 3.2: Expectation of function of two random variables, conditional expectations, independent random variables. (U)	13	22	Not to be filled- in
UNIT 4 Continuous Probability distributio ns	Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers, Central Limit theorem for independent and identically distributed random variables with finite variance.	CSO 4.1: Understand central limit theorem, which helps to understand the remarkable fact that: the empirical frequencies of so many natural populations, exhibit a bell-shaped curve, i.e., a normal distribution. (K) CSO 4.2: Spealing the definition law of large numbers and strong law of large numbers, Central Limit theorem for independent and identically distributed random variables with finite variance. (U)	12	20	Not to be filled- in
UNIT 5 Stochastic Probability	Markov Chains, Chapman-Kolmogorov equations, classification of states.	CSO 5.1: Find stochastic matrices values (K) CSO 5.2: Finding its classification of states (U) CSO 5.3: Scecking Markov Chains, Chapman- Kolmogorov equations. (A)	10	16	Not to be filled- in

- 1. Robert V. Hogg, Joseph W. McKean and Allen T. Craig, *Introduction to Mathematical Statistics*, Pearson Education, Asia, 2007.
- 2. Irwin Miller and Marylees Miller, John E. Freund, *Mathematical Statistics with Applications, 7th Ed.*, Pearson Education, Asia, 2006.
- 3. Sheldon Ross, Introduction to Probability Models, 9th Ed., Academic Press, Indian Reprint, 2007.
- 4. Alexander M. Mood, Franklin A. Graybill and Duane C. Boes, *Introduction to the Theory of Statistics, 3rd Ed.*, Tata McGraw-Hill, Reprint 2007.

1 Minor Theory Papers in lieu of Research Project/Dissertation (For Honors Students not undertaking Research Projects)

NAME OF THE PAPER (CODE) : LINEAR PROGRAMMING AND THEORY OF GAMES (MTC 8.2)

Number of Credit	:04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Linear Programming and Theory of Games:

CO 1:	To help the students to understand simplex algorithm, M method algorithm and solving
	the problems.
CO 2:	To help the students to understand Relation of dual and primal problems using
	corresponding algorithms.
CO 3:	To help the students to understand types of Transportation problems (T.p) and
	algorithms.
CO 4:	To help the students to understand Hungarian methods for solving assignment problem
	and algorithms.
CO 5:	To help the students to understand type of game theory for example two person sum of
	game with pure and mixed strategies, Graphical solution, linear programming etc

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Introduction to linear	CSO 1.1: Find simplex	13	22	Not to
	programming problem,	table (K)			be
Linear	Theory of simplex	CSO 1.2: Find BIG-M table			filled-
Programming	method, optimality and	(K)			in
	unboundedness, the	CSO 1.3: Find two face			
	simplex algorithm,	method tabulate.(K)			
	simplex method in	CSO 1.4: study for			
	tableau format,	algorithm simplex. (A)			
	introduction to artificial				
	variables, two-phase				
	method, Big-M method				
	and their comparison.				
UNIT 2	Duality, formulation of	CSO 2.1: Tabulate duality	11	18	Not to
Linear	the dual problem, primal-	simplex (K)			be
Programming	dual relationships,	CSO 2.2: studying relation			filled-
	economic interpretation	between dual to primal			in
	of the dual.	relation (U)			
		CSO 2.3: clarity of			
		economic interpretation of			
		the dual. (U)			
UNIT 3	Transportation problem	CSO 3.1:Find mini cost	12	20	Not to
Transportatio	and its mathematical	from TP (K)			be
n problem	formulation, northwest-	CSO 3.2: check			filled-
	corner method least cost	mathematical formulation			in
	method and Vogel	(U)			
	approximation method	CSO 3.3: study			

UNIT 4 Assignment problem	for determination of starting basic solution. Algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.	NWC,LCM, VAM for determination of starting basic solution. (U) CSO 4.1: Study about TP Algorithm. (A) CSO 4.2: Solve assignment problem using by TP (U) CSO 4.3: Hungarian method for solving assignment problem. (K)	12	20	Not to be filled- in
UNIT 5 Game theory	Game theory: formulation of two-person zero sum games, solving two- person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	CSO 5.1: How to apply two person zero sum game. (K) CSO 5.2: Tablate mixed strategies players. (U) CSO 5.3: Draw graphical solution. (A) CSO 5.4: Finding linear programming solution of games. (U)	12	20	Not to be filled- in

1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, *Linear Programming and Network Flows, 2nd Ed.*, John Wiley and Sons, India, 2004.

2. F.S. Hillier and G.J. Lieberman, *Introduction to Operations Research*, 9th Ed., Tata McGraw Hill, Singapore, 2009.

3. Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006.

4. G. Hadley, *Linear Programming*, Narosa Publishing House, New Delhi, 2002.

SKILL ENHANCEMENT COURSES (SEC)

NAME OF THE PAPER (CODE)	: LOGIC AND SETS (MTS 1)
Number of Credit	: 02
Number of Hours of Lecture	: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Logic and Sets:

CO 1:	To create an understanding of the foundations of Logic.
CO 2:	To assist the students in understanding the basic concept of Set theory.
CO 3:	To aid students in understanding Set theory and its relations.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Introduction,	CSO 1.1: to define propositions	11	19	Not to
Logic	propositions, truth	with examples. (K/U)			be
	table, negation,	CSO 1.2: to define truth value			filled-
	conjunction and	and truth table with examples.			in
	disjunction.	(K/U)			
	Implications,	CSO 1.3: to workout problems			
	biconditional	based on truth table. (A)			
	propositions,	CSO 1.4: to define negation,			
	converse, contra	conjunction and disjunction.			
	positive and inverse	(K)			
	propositions and	CSO 1.5: to define			
	precedence of logical	Implications and biconditional			
	operators.	propositions. (K)			
	Propositional	CSO 1.6: to define contra			
	equivalence: Logical	positive and inverse			
	equivalences.	Propositions with examples.			
	Predicates and	(K/U)			
	quantifiers:	CSO 1.7: to define and write			
	Introduction,	down the precedence of logical			
	Quantifiers, Binding	operators. (K)			
	variables and	CSO 1.8: to define logical			
	Negations.	equivalences and apply it to			
		solve problems. (K/A)			
		CSO 1.9: to define predicates			
		and quantifiers with examples.			
		(K/U)			
		CSO 1.10 : to define binding			
		variables and Negations. (K)			
UNIT 2	Sets, subsets, Set	CSO 2.1: to define sets and	8	12	Not to
Set Theory	operations and the	subsets with examples. (K/U)			be
-	laws of set theory and	CSO 2.2: to explain the set			filled-
	Venn diagrams.	operations. (U)			in
	Examples of finite and	CSO 2.3: to write down and			
	infinite sets. Finite	explain the laws of set theory			
	sets and counting	and venn diagrams with			

		1 (*** (***)			
	principle. Empty set,	examples. (K/U)			
	properties of empty	CSO 2.4: to tackle some			
	set. Standard set	problems based on the set			
	operations	theory and venn diagrams.			
		(U/A)			
		CSO 2.5: to write down the			
		examples of finite and infinite			
		sets. (K)			
		CSO 2.6: to explain Finite sets			
		and counting principle with			
		examples. (U)			
		CSO 2.7: to define empty set.			
		(K)			
		CSO 2.8: to write down and			
		explain the properties of empty			
		set. (K/U)			
		CSO 2.9: to write down and			
		explain Standard set operations.			
		(K/U)			
UNIT 3	Classes of sets.	CSO 3.1: to define the classes	11	19	Not to
Set Theory	Power set of a set.	of sets with examples. (K/U)			be
and	Difference and	CSO 3.2: to define power set of			filled-
Relations	Symmetric difference	a set with examples. (K/U)			in
	of two sets. Set	CSO 3.3: to define and explain			
	identities,	Difference and Symmetric			
	Generalized union	difference of two sets and			
	and intersections.	tackle problems based on it.			
	Relation: Product set,	(U/A)			
	composition of	CSO 3.4: to define set			
	relations. Dertitions	numbers have and workout \mathbf{r}			
	Equivalance	CSO 3.5: to explain			
	Polations with	Concretized union and			
	axample of	intersections and workout			
	example of	replame (K/U/A)			
	relation Partial	CSO 36 to define relations			
	ordering relations n	and its types with examples			
	array relations	(\mathbf{K}/\mathbf{I})			
	unuy relations.	CSO 3.7: to define Product set			
		and Composition of relations			
		with examples. (K/U)			
		CSO 3.8: to define partitions			
		with examples. (K/U)			
		CSO 3.9: to define and explain			
		Equivalence Relations with			
		example of congruence modulo			
		relation. (K/U)			
		CSO 3.10: to define Partial			
		ordering relations and n-array			
		relations and workout problems			
		based on them. (K/U/A)			

1. R.P. Grimaldi, Discrete Mathematics and Combinatorial Mathematics, Pearson Education, 1998.

2. P.R. Halmos, Naive Set Theory, Springer, 1974.

3. E. Kamke, *Theory of Sets*, Dover Publishers, 1950.

4. G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill, 1963.

NAME OF THE PAPER (CODE)	: LaTeX & HTML (MTS 2) (Practical)
Number of Credit	: 02
Number of Hours of Lecture	: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper LaTeX and HTML:

CO 1:	To discuss "Introduction to LaTeX" by typesetting a simple document, adding basic
	information to a document, Environments, Footnotes etc.
CO 2:	Understanding the "Mathematical Typesetting in LaTeX" like Subscript/ Superscript, Fractions, Roots, Ellipsis, Mathematical Symbols, Arrays, Delimiters, Multiline formulas, Spacing and changing style in math mode in different math environment
CO 3:	Understanding "Beamer Presentation and HTML "in LaTeX like Simple pictures using PS Tricks, Plotting of functions, Beamer presentation and Creating simple web pages, Images and links, Design of web pages in HTML

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	Los
		(CSOs)	Hours		
UNIT 1	Getting Started with	CSO 1.1: To introduce	9	15	Not to
Introduction to	LaTeX, Introduction	typesetting a simple document			be
LaTeX	to TeX and LaTeX,	in latex (K)			filled-
	typesetting a simple	CSO 1.2: Discussing on			in
	document, Adding	sectioning documents, sub-			
	basic information to a	sectioning, adding footnotes			
	document,	on document (U)			
	Environments,	CSO 1.3: Introducing			
	Footnotes, Sectioning	Bibliography in document (K)			
	and displayed	CSO 1.4: Write a document in			
	material.	latex involving two sections,			
		two sub-sections, and a			
		footnote with two			
		bibliography (K)			
UNIT 2	Mathematical	CSO 2.1: Introducing	12	20	Not to
Mathematical	Typesetting with	mathematical typesetting in			be
Typesetting in	LaTeX Accents and	LaTeX (K)			filled-
LaTeX	symbols,	CSO 2.2: Writing LaTeX			in
	Mathematical	code in equation environment			
	Typesetting	involving Subscript/			
	(Elementary and	Superscript, Fractions, Roots,			
	Advanced): Subscript/	delimiters (K)			
	Superscript, Fractions,	CSO 2.3: Writing LaTeX			
	Roots, Ellipsis,	code in align environment			
	Mathematical	involving Subscript/			
	Symbols, Arrays,	Superscript, Fractions, Roots,			
	Delimiters, Multiline	delimiters (K)			
	formulas, Spacing and	CSO 2.4: Writing LaTeX			
	changing style in math	code in multline environment			
	mode.	involving Subscript/			
		Superscript, Fractions, Roots,			
		delimiters (K)			
--------------	----------------------	--	---	----	---------
		CSO 2.5: Writing LaTeX			
		code in split environment			
		involving Subscript/			
		Superscript, Fractions, Roots,			
		delimiters (K)			
		CSO 2.6: Creating arrays in			
		LaTeX (U)			
		CSO 2.7: Creating table in			
		LaTeX (U)			
		CSO 2.8: Using case			
		environment in LaTeX (A)			
UNIT 3	Graphics and Beamer	CSO 3.1: Writing	9	15	Not to
Beamer	Presentation in	presentation using beamer			be
Presentation	LaTeX, Graphics in	class (K)			filled-
and HTML	LaTeX, Simple	CSO 3.2: To insert a picture in			in
	pictures using PS	Latex document (A)			
	Tricks, Plotting of	CSO 3.3: Introducing HTML			
	functions, Beamer	(K)			
	presentation. HTML	CSO 3.4: Creating simple web			
	basics, Creating	pages in HTML (U)			
	simple web, pages,	CSO 3.5: Inserting image on			
	Images and links,	the webpage in HTML (A)			
	Design of web pages.	CSO 3.6: Inserting hyperlinks			
		on web page in HTML (A)			

Suggested Readings:

 Bindner, Donald & Erickson, Martin., A Student's Guide to the Study, Practice, and Tools of Modern Mathematics, CRC Press, Taylor & Francis Group, LLC. 2011.
Lamport, Leslie, LaTeX: A Document Preparation System, User's Guide and Reference Manual 2nded., Pearson Education, Indian Reprint, 1994.

Practical/Lab work to be performed in Computer Lab. Practicals:

[1] Chapter 9 (Exercises 4 to 10), Chapter 10 (Exercises 1 to 4 and 6 to 9), Chapter 11 (Exercises 1, 3, 4, and 5), and Chapter 15 (Exercises 5, 6 and 8 to 11).

NAME OF THE PAPER (CODE)	: GRAPH THEORY (MTS 3)
Number of Credit	: 02
Number of Hours of Lecture	: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Graph Theory :				
CO 1:	To create an understanding of the basic concepts of graph and its properties.			
CO 2:	To assist the students in understanding graph connectivity.			
CO 3:	To aid students in understanding how to solve the shortest path problems.			

COURSE SPECIFIC OBJECTIVES (CSOs)

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Definition, examples	CSO 1.1: to define graph with	11	19	Not to
Graphs	and basic properties	examples. (K/U)			be
	of graphs, pseudo	CSO 1.2: to write and explain			filled-
	graphs, complete	the basic properties of graphs.			in
	graphs. Bi-partite	(K/U)			
	graphs, weighted	CSO 1.3: to define pseudo			
	graph, Isomorphism	graph and complete graph			
	of graphs, adjacency	with examples. (K/U)			
	matrix and incidence	CSO 1.4: to define Bi-partite			
	matrix.	graphs and weighted graphs			
		with examples. (K/U)			
		CSO 1.5: to workout			
		problems based on Bi-partite			
		and weighted graphs. (A)			
		CSO 1.6: to define			
		isomorphism graphs with			
		examples. (K/U)			
		CSO 1.7: to define and			
		explain adjacency matrix and			
		incidence matrix. (K)			
		CSO 1.8: to apply adjacency			
		matrix and incidence matrix			
		and workout problems. (A)			
UNIT 2	Connected graph and	CSO 2.1: to define connected	8	12	Not to
Connectivity	digraph, paths, circuits	graph and digraph with			be
	and cycles, Eulerian	examples. (K/U)			filled-
	circuits, Hamiltonian	CSO 2.2: to tackle some			in
	cycles.	problems based on digraph.			
		(A)			
		CSO 2.3: to define paths,			
		circuits and cycles with			
		examples. (K/U)			
		CSO 2.4: to define Eulerian			
		circuits and workout problems			
		based on it. (U/A)			
		CSO 2.5: to define			
		Hamiltonian cycles and tackle			

		problems based on it. (K/A)			
UNIT 3	The travelling	CSO 3.1: to explain the	11	19	Not to
Shortest Path	salesman's	travelling salesman's problem			be
Problems	problem. Shortest	and workout problems based			filled-
	path, Dijkstra's	on it. (K/U/A)			in
	algorithm, Floyd-	CSO 3.2: to define shortest			
	Warshall algorithm.	path with examples. (K/U)			
		CSO 3.3: to define and			
		explain Dijkstra's algorithm			
		and tackle problems based on			
		it. (K/U/A)			
		CSO 3.4: to define and			
		explain Floyd-Warshall			
		algorithm and workout			
		problems based on it. (K/U/A)			

Suggested Readings:

- 1. B.A. Davey and H.A. Priestley, *Introduction to Lattices and Order*, Cambridge University Press, Cambridge, 1990.
- 2. Edgar G. Goodaire and Michael M. Parmenter, *Discrete Mathematics with Graph Theory*, 2nd *Edition*, Pearson Education (Singapore) P. Ltd., Indian Reprint 2003.
- 3. Rudolf Lidl and Gunter Pilz, *Applied Abstract Algebra, 2nd Ed.*, Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.

NAME OF THE PAPER (CODE): LAPLACE AND FOURIER TRANSFORM (MTS 4)Number of Credit: 02Number of Hours of Lecture: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper Laplace and Fourier Transform:

CO 1:	To aid the students in understanding the Laplace transform, its existence and some elementary functions, Functions of exponential order, Shifting theorems, change of scale property.
CO 2:	To aid the students in understanding inverse Laplace transform, Null function, linearity property, change of scale property, inverse Laplace transforms of derivatives & integrals, Division by powers of p, Beta function, Convolution theorem.
CO 3:	To aid the students in understanding the Fourier transforms & inversion theorem.

COURSE SPECIFIC OBJECTIVES (CSOs)

Unit &	Unit Contents	Course Specific	Lecture	Marks	LOs
Title		Objective (CSOs)	Hours		
UNIT 1	The Laplace Transform	CSO 1.1: List the	10	17	Not to
The	Definition, Existence of Laplace	Laplace transforms of			be
Laplace	Transforms, Functions of	some standard functions,			filled-
Transform	exponential order, Laplace	understand conditions			in
	Transform of some, elementary	for its existence. (U)			
	functions, Shifting theorems,	CSO 1.2: Find the			
	change of scale property.	Laplace Transforms of			
	Laplace Transform of the	functions and implement			
	derivative of F(t), nth derivative	it in Convolution			
	of F(t), Laplace transform of	theorem and Heaviside			
	integrals, Multiplication by	theorem. (A)			
	powers of t & division by t,				
	Periodic function, Beta and				
	Gamma function.				
UNIT 2	Null function (definition only),	CSO 2.1: Learning	10	17	Not to
Inverse	linearity property, First and	The inverse Laplace			be
Laplace	second translation theorems,	transformation. (K)			filled-
Transform	Change of scale property, Use of	CSO 2.2: How to apply			in
	partial fractions, Inverse Laplace	convolution theorem in			
	transforms of derivatives &	Laplace transformation			
	integrals, Division by powers of	(U)			
	p, Beta function, Convolution	CSO 2.3: Concept			
	theorem.	applying in Differential			
		Equation.(A)	10	17	NT
UNIT 3	Fourier transforms,	CSO 3.1: Understand	10	17	Not to
Fourier	inversion theorem, Fourier sine	the basic concepts of			be Cilled
1 ransform	and cosine transform, inversion	Fourier Transforms,			filled-
	formula for sine and cosine	Fourier Sine and Cosine			1n
	transform, - linear properties,	Transforms. (U)			
	snifting properties, modulation	USU 3.2 : How to			
	tneorem	understanding the			
		snitting property (U)			

Suggested Readings:

1. Baidyanath Patra, An Introduction to Integral Transforms, Prentice Hall, 2009.

2. J.K. Goyal, K.P.Gupta, Integral Transforms, 16th edition, K.K. Mittal for Prakashan, 2013.

3. Erwin Kreyszig, Advanced Engineering Mathematics, 8th edition, Authorized reprint by Wiley Dreamtech India.