

ST. JOSEPH'S COLLEGE (AUTONOMOUS) JAKHAMA-NAGALAND

SYLLABUS (Outcome Based Education)

CURRICULUM AND CREDIT FRAMEWORK FOR UNDERGRADUATE PROGRAMMES (NEP-2020)

DEPARTMENT OF BOTANY

With effect from the Academic Year 2023-2024 (1st to 4thFYUGP)

Preamble

Today plant science is a fusion of the traditional components with the modern aspects of biochemistry, molecular biology and biotechnology. Over the years, plant science (Botany) has shown enormous gain in information and applications owing to tremendous inputs from research in all its aspects. With global recognition of the need for conservation, field plant biologists have contributed significantly in assessing plant diversity. Taxonomists have explored newer dimensions for the classification of plants. New insights have been gained in functional and structural aspects of plant development by utilizing novel tools and techniques for botanical research. Challenging areas of teaching and research have emerged in ecology and reproductive biology. Concern for ever increasing pollution and climate change is at its highest than ever before. Keeping these advancements in view, a revision of the curriculum at the undergraduate level is perfectly timed. From the beginning of 2021-2022 sessions, the Botany students across Indian Universities shall have the benefit of a balanced, carefullycrafted course structure taking care of different aspects of plant science, namely plant diversity, physiology, biochemistry, molecular biology, reproduction, anatomy, taxonomy, ecology, economic botany and the impact of environment on the growth and development of plants. All these aspects have been given due weightage over the six semesters. It is essential for the undergraduate students to acquaint themselves with various tools and techniques for exploring the world of plants up to the sub- cellular level. A paper on this aspect is proposed to provide such an opportunity to the students before they engage themselves with the learning of modern tools and techniques in plant science. Keeping the employment entrepreneurship in mind, applied courses have also been introduced. These courses shall provide the botany students hands on experience and professional inputs. On the whole, the curriculum is a source of lot of information and is supported by rich resource

materials. It is hoped that a student graduating in Botany with the new curriculum will be a complete botanist at Honors level.

Introduction

The framework of curriculum for the Bachelor's program in Botany aims to transform the course content and pedagogy to provide a multidisciplinary, student-centric, and outcome-based, holistic education to the next generation of students.

Aside from structuring the curriculum to be more in-depth, focused, and comprehensive with significant skill-set for all exit levels; keeping in mind the job prospects; the emphasis has been to maintain academic coherence and continuum throughout the program of study and help build a strong footing in the subject, thereby ensuring a seamless transition into their careers. Special attention is given to eliminate redundancy, discourage rote learning, and espouse a problem-solving, critical thinking, and inquisitive mindset among learners.

The curriculum embraces the philosophy that science is best learned through experiential learning, not limited to the confines of a classroom but rather through hands-on training, projects, field studies, industrial visits, and internships.

This updated syllabus, with modern technology, helps students stay informed on the leading edge developments in plant sciences and promotes curiosity, innovation, and a passion for research, that will serve them well in their journey into scientific adventure and discovery beyond graduation.

The goal is to equip students with holistic knowledge, competencies, professional skills, and a strong positive mindset that they can leverage while navigating the current stiff challenges of the job market.

B.Sc Botany Programme Outcomes as per NEP 2020 Discipline Core: Botany Year of implementation: 2023-2024

Program Outcomes

By the end of the program the students will be able to:

(Refer to literature on outcome based education (OBE) foe details on Program Outcomes)

PO1: Skill development for the proper description using botanical terms, identification, naming and classification of life forms especially plants and microbes.

PO2: Acquisition of knowledge on structure, life cycle and life processes that exist among plant and microbial diversity through certain model organism studies.

PO3: Understanding of various interactions that exist among plants and microbes; to develop the curiosity on the dynamicity of nature.

PO4: Understanding of the major elements of variation that exist in the living world through comparative morphological and anatomical study.

PO5: Ability to explain the diversity and evolution based on the empirical evidences in morphology, anatomy, embryology, physiology, biochemistry, molecular biology and life history.

PO6: Skill development for the collection, preservation and recording of information after observation and analysis- from simple illustration to molecular database development.

PO7: Making aware of the scientific and technological advancements- Information and Communication, Biotechnology and Molecular Biology for further learning and research in all branches of Botany.

PO8: Internalization of the concept of conservation and evolution through the channel of spirit of inquiry.

PO 9: To enable the graduates to prepare for national as well as international level competitive examinations like UGC-CSIR, UPSC etc.

PO10: To enable the students for practicing the best teaching pedagogy as a biology teacher including the latest digital modules.

PO 11: The graduates should be knowledgeable and competent enough to appropriately deliver on aspects of global importance like climate change, SDGs, green technologies etc at the right opportunity.

PO 12: The graduate should be able to demonstrate sufficient proficiency in the hands-on experimental techniques for their area of specialization within biology during research and in the professional career.

		Programm	ne Structure				
Semester	Major or Discipline Specific Core Paper (4 credits each)	Interdisciplinary Minor Paper (4 credits each)	Multidisciplinary course (4 credits each)	Skill Enhancement courses (SEC) OR Internship/ Apprenticeship/Project/Commu nity Outreach (2 credits each)	Ability enhancement courses (AEC) (2 credits each)	Value addition course (VAC) (2 credits each)	Total Credits
I	BTC 1.1: Phycology and microbiology (3) BTC 1.1(P): Phycology and microbiology (1) BTC 1.2: Cell Biology (3) BTC 1.2(P): Cell Biology (1)	BTM 1: Phycology and microbiology(3) BTM 1(P): Phycology and microbiology(1)	MDC-1: EVS(4)	BTS 1: Nursery and Gardening (2)	AEC-1: English Communication (2)	VAC-1: Constituitional Values (2)	22
II	BTC 2.1: Archegoniates (3) BTC 2.1(P): Archegoniates (1) BTC 2.2: Gymnosperms and Paleobotany (3) BTC 2.2(P): Gymnosperms and Paleobotany (1)	BTM 2: Mycology and Phytopathology (3) BTM 2(P): Mycology and Phytopathology (1)	MDC-2: Programming using Python(4)	BTS 2: Floriculture(2)	AEC-2: Basic Functional English(2)	VAC-2: Consumer Rights(2)	22
		Exit option with Undergraduate Ce	rtificate (44 Credits)				44
III	BTC 3.1: Morphology and Anatomy of angiosperms(3) BTC 3.1(P): Morphology and Anatomy of Angiosperms(1) BTC 3.2: Economic Botany(3) BTC 3.2(P): Economic Botany(1) BTC 3.3: Genetics(3) BTC 3.3(P): Genetics(1)	BTM 3: Morphology and Anatomy of angiosperms(3) BTM 3(P): Morphology and Anatomy of angiosperms(1)	MDC-3:Intellectual Property Rights(4)	BTS 3: Biofertilizers(2)			22
IV	BTC 4.1: Reproduction and embryology of Angiosperm(3) BTC 4.1(P): Reproduction and embryology of Angiosperm(1) BTC 4.2: Plant ecology and Phytogeography(3) BTC 4.2(P): Plant ecology and Phytogeography(1) BTC 4.3: Plant Systematics(3) BTC 4.3(P): Plant Systematics(1)	BTM 4: Plant Taxonomy(3) BTM 4(P): Plant Taxonomy(1)		BTS 4: Mushroom cultivation (2)	AEC-3: Poetry, Prose and Short Stories (2)	VAC-3: Work Ethics(2)	22
		Exit option with Undergraduate D	iploma (88 Credits)	•			88
v	BTC 5.1: Molecular Biology(3) BTC 5.1(P): Molecular Biology(1) BTC 5.2: Plant Physiology(3) BTC 5.2(P): Plant Physiology(1) BTC 5.3: Plant Biotechnology(3) BTC 5.3(P): Plant Biotechnology(1)	BTM 5: Plant Physiology(3) BTM 5(P): Plant Physiology (1)		BTS 5: Herbal Technology (2)	AEC-4: Novel and Drama (2)	VAC-4: India through the ages(2)	22
VI	BTC 6.1: Plant metabolism(3) BTC 6.1(P): Plant metabolism (1) BTC 6.2: Biomolecules (3) BTC 6.2(P): Biomolecules (1) BTC 6.3: Plant Diversity and Human Welfare (3) BTC 6.3(P): Plant Diversity and Human Welfare(1) BTC 6.4: Plant Breeding(3) BTC 6.4 (P): Plant Breeding(1)	BTM 6: Plant Metabolism(3) BTM 6(P): Plant Metabolism(1) Exit option with Bachelor of Science, B.Sc Bo		BTI 6: Internship (2)			22

Semester	Major or Discipline Specific Core Paper (4 credits each)	Interdisciplinary Minor Paper (4 credits each)	Multidisciplinary course (4 credits each)	Skill Enhancement courses (SEC) OR Internship/ Apprenticeship/Project/Commu nity Outreach (2 credits each)	Research Project/ Dissertation (12 Credits) OR 3 Theory Papers (12 Credits)	Total Credits
VII	BTC 7.1: Horticultural Practices and Post Harvest Technology (3) BTC 7.1(P): Horticultural Practices and Post Harvest Technology (1) BTC 7.2: Biostatistics and Bioinformatics(3) BTC 7.2(P): Biostatistics and Bioinformatics(1) RM 7: Research Methodology(3) RM 7(P): Research Methodology(1)	BTM 7.1: Horticultural Practices and Post Harvest Technology (3) BTM 7.1(P): : Horticultural Practices and Post Harvest Technology (1) BTM 7.2: Biostatistics and Bioinformatics(3) BTM 7.2(P): Biostatistics and Bioinformatics(1)			Research Project/ Dissertation will start	20
VIII	BTC 8.1: Microbiology, mycology and Plant Pathology(3) BTC 8.1(P): Microbiology, mycology and Plant Pathology(1)	BTM 8.1: Microbiology, mycology and Plant Pathology(3) BTM 8.1(P): Microbiology, mycology and Plant Pathology(1)			Research Project/Dissertation in major(12) OR BTM 8.2: Natural Resource Management (3) BTM 8.2(P): Natural Resource Management(1) BTC 8.2: Plant morphogenesis and Embryology(3) BTC 8.2(P): Plant morphogenesis and Embryology(1) BTC 8.3: Methods in Plant Sciences(3) BTC 8.3(P): Methods in Plant Sciences(1)	20
		Bachelor of Science, B.Sc Botany (Honours)	with Research (172 Cred	lits)		172

SEMESTER	PAPER	DISCIPLINE SPECIFIC COURSES (DSC) TITLE OF THE PAPER	CREDITS
SEMILSTER	CODE		CREDITS
Ι	BTC 1.1	Phycology and Microbiology	3
I	BTC 1.1 BTC 1.1(P)	Phycology and Microbiology	1
	BTC 1.1(1) BTC 1.2	Cell Biology	3
	BTC 1.2 (P)	Cell Biology	1
II	BTC 1.2 (F) BTC 2.1	Archegoniates	3
11		•	1
	BTC 2.1 (P) BTC 2.2	Archegoniates	1
		Gymnosperms and Paleobotany	3
TTT	BTC 2.2 (P)	Gymnosperms and Paleobotany	1
III	BTC 3.1	Morphology and Anatomy of Angiosperms	3
	BTC 3.1 (P)	Morphology and Anatomy of Angiosperms	1
	BTC 3.2	Economic Botany	3
	BTC 3.2 (P)	Economic Botany	1
	BTC 3.3	Genetics	3
	BTC 3.3 (P)	Genetics	1
IV	BTC 4.1	Reproduction and Embryology of Angiosperms	3
	BTC 4.1 (P)	Reproduction and Embryology of Angiosperms	1
	BTC 4.2	Plant Ecology and Phytogeography	3
	BTC 4.2 (P)	Plant Ecology and Phytogeography	1
	BTC 4.3	Plant Systematics	3
	BTC 4.3 (P)	Plant Systematics	1
V	BTC 5.1	Molecular Biology	3
	BTC 5.1 (P)	Molecular Biology	1
	BTC 5.2	Plant Physiology	3
	BTC 5.2 (P)	Plant Physiology	1
	BTC 5.3	Plant Biotechnology	3
	BTC 5.3 (P)	Plant Biotechnology	1
VI	BTC 6.1	Plant Metabolism	3
	BTC 6.1 (P)	Plant Metabolism	1
	BTC 6.2	Biomolecules	3
	BTC 6.2 (P)	Biomolecules	1
	BTC 6.3	Plant Diversity and Human Welfare	3
	BTC 6.3 (P)	Plant Diversity and Human Welfare	1
	BTC 6.4	Plant Breeding	3
	BTC 6.4 (P)	Plant Breeding	1
VII	BTC 7.1	Horticultural Practices and Post Harvest Technology	3
	BTC 7.1(P)	Horticultural Practices and Post Harvest Technology	1
	BTC 7.2	Biostatistics and Bioinformatics	3
	BTC 7.2(P)	Biostatistics and Bioinformatics	1
	RM 7	Research Methodology	3
	RM 7(P)	Research Methodology	1

DISCIPLINE SPECIFIC COURSES (DSC)

SEMESTER	PAPER	TITLE OF THE PAPER	CREDITS
	CODE		
VIII	BTC 8.1	Microbiology, Mycology and Plant Pathology	3
	BTC 8.1(P)	Microbiology, Mycology and Plant Pathology	1
		3 Theory Papers in lieu of Research	
		Project/Dissertation (For Honors Students not	
		undertaking Research Projects)	
	BTM 8.2	Natural Resource Management	3
	BTM 8.2(P)	Natural Resource Management	1
	BTC 8.2	Plant Morphogenesis and Embryology	3
	BTC 8.2(P)	Plant Morphogenesis and Embryology	1
	BTC 8.3	Methods in Plant Sciences	3
	BTC 8.3(P)	Methods in Plant Sciences	1

MULTIDISCIPLINARY/INTRODUCTORY COURSES

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	MDC-1	Environmental Studies	4
II	MDC-2	Programming using Python	4
III	MDC-3	Intellectual Property Rights (IPR)	4

MINOR PAPERS

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	BTM 1	Phycology and microbiology	3
	BTM 1(P)	Phycology and microbiology	1
II	BTM 2	Mycology and Phytopathology	3
	BTM 2(P)	Mycology and Phytopathology	1
III	BTM 3	Morphology and Anatomy of Angiosperms	3
	BTM 3(P)	Morphology and Anatomy of Angiosperms	1
IV	BTM 4	Plant Taxonomy	3
	BTM 4(P)	Plant Taxonomy	1
V	BTM 5	Plant Physiology	3
	BTM 5(P)	Plant Physiology	1
VI	BTM 6	Plant Metabolism	3
	BTM 6(P)	Plant Metabolism	1
VII	BTM 7.1	Horticultural Practices and Post Harvest Technology	3
	BTM 7.1(P)	Horticultural Practices and Post Harvest Technology	1
	BTM 7.2	Biostatistics and Bioinformatics	3
	BTM 7.2(P)	Biostatistics and Bioinformatics	1
VIII	BTM 8.1	Microbiology, Mycology and Plant Pathology	3
	BTM 8.1 (P)	Microbiology, Mycology and Plant Pathology	1
	BTM 8.2	Natural Resource Management	3
	BTM 8.2(P)	Natural Resource Management	1

SKILL ENHANCEMENT COURSES (SEC)

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	BTS 1	Nursery and Gardening	2
II	BTS 2	Floriculture	2
III	BTS 3	Biofertilizers	2
IV	BTS 4	Mushroom Cultivation	2
V	BTS 5	Herbal Technology	2

VALUE ADDED COURSES (VAC)

SEMESTER	PAPER CODE	TITLE OF THE PAPER	CREDITS
Ι	VAC 1	Constitutional Values	2
II	VAC 2	Consumer Rights	2
IV	VAC 3	Work Ethics	2
V	VAC 4	India through the ages	2

BOTANY SYLLABUS FOR B.Sc/ B.Sc Honours DISCIPLINE SPECIFIC CORE PAPERS

Semester-I

NAME OF THE PAPER (CODE)	: PHYCOLOGY AND MICROBIOLOGY (BTC 1.1)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **Phycology and Microbiology**:

CO 1	To be well versed in all the different organisms of the microbial world.
CO 2	To be well aware about viruses.
CO 3	To learn about the general bacterial world
CO 4	To know about the general account and classification of algae.
CO 5	To learn about the different life cycles of economically important algae
	and locally available species of algae

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Microbial nutrition,	CSO 1.1 : To define the	7	16	
Introduction to	growth and metabolism.	term micro-organisms.			
microbial world	Economic importance	(K)			
(CO 1)	of viruses with	CSO 1.2: To explain on			
	reference to their role in	microbial nutrition,			
	research and medicine.	growth and metabolism.			
	Economic importance	(U)			
	of bacteria with	CSO 1.3: To illustrate			
	reference to their role in	the economic importance			
	agriculture and industry	of viruses with reference			
	(fermentation and	to vaccine production,			
	medicine).	research and medicine.			
		(A)			
		CSO 1.4 : To explain the			
		diagnostics of micro-			
		organisms as causal			
		organisms of plant			
		diseases. (U)			
		CSO 1.5: To illustrate			
		the economic importance			
		of bacteria with reference			
		to agriculture and			
		industry. (A)			
UNIT 2	Discovery, general	CSO 2.1: To define	8	18	
Viruses (CO 2)	characteristics;	viruses. (K)			
	classification	CSO 2.2 : To explain the			
	(Baltimore); replication	discovery,			
	(general account),	physiochemical and			
	Structure of DNA virus	biological characteristics			
	(T-phage), lytic and	of viruses. (U)			

			1	· · · · ·	
	lysogenic cycle; RNA	CSO 2.3: To illustrate			
	virus (TMV), Retrovirus	about the classification,			
	(HIV).	general structure with			
		special reference to			
		viroids and prions. (A)			
		CSO 2.4 : To explain the			
		general account of			
		replication. (U)			
		CSO 2.5 : To illustrate			
		about DNA virus (T-			
		phage), lytic and			
		lysogenic cycle, RNA			
		virus (TMV), Retrovirus			
	D: 1	(HIV). (A)	0	10	
UNIT 3	Discovery, general	CSO 3.1 : To define	8	18	
Bacteria (CO 3)	characteristics; Types-	bacteria. (K)			
	archaebacteria,	CSO 3.2: To explain the			
	eubacteria; Cell	discovery and general			
	structure; shapes of	characteristics of			
	bacteria; classification	bacteria. (U)			
	of bacteria (Bergey's);	CSO 3.3: To explain the			
	Reproduction-	different types of			
	vegetative, asexual and	bacteria-archaebacteria,			
	recombination	eubacteria, wall-less			
	(conjugation,	forms (mycoplasma and			
	transformation and	spheroplasts). (U)			
	transduction).	CSO 3.4 : To explain the			
		detailed cell structure,			
		shapes, classification and			
		nutritional types of			
		bacteria. (U)			
		CSO 3.5 : To illustrate			
		the different modes of			
		reproduction in bacteria.			
		(A)			
UNIT 4	General characteristics;	CSO 4.1: To define	10	22	
Algae (CO 4)	Ecology and	algae. (K)			
=	occurrence; range of	CSO 4.2: To explain the			
	thallus organization;	general characteristics,			
	vegetative	ecology and distribution			
	structure and cell	of algae. (U)			
	components- cell wall,	CSO 4.3 : To illustrate			
	pigment system, reserve	the range of thallus			
	food (of only groups	organization, cell			
	represented in the	structure and			
	syllabus), flagella;	components; cell wall,			
	methods of	pigment system, reserve			
	reproduction;	food and flagella. (A)			
	Classification; criteria,	CSO 4.4 : To explain the			
		different methods of			
	system of Fritsch.				
	Economic importance	reproduction in algae.			
	of algae.	(U)			
	of algue.				
	of uigue.	CSO 4.5: To explain the			
	or algue.				

Cyanophyta, Xanthophyta, Chlorophyta, Charophyta, Phaeophyta and Rhodophyta. (CO 5)occu mor Rep cycl Vau Chla Chla Chla Chla Chla Chla Poly Evo sign	neral characteristics; urrence; phology; production and life- le of <i>Nostoc</i> , ucheria, amydomonas, wox, Oedogonium, ura, Ectocarpus, rus and ysiphonia. olutionary hificance of chloron.	criteria of algae. (U) CSO 4.6 : To explain the significant contributions of important phycologists and economic importance of algae. (U) CSO 5.1 : To explain the ecology, occurrence, range of thallus organization, cell structure, reproduction, morphology and life cycle of <i>Nostoc</i> and <i>Vaucheria</i> . (U) CSO 5.2 : To explain the general characteristics, occurrence, cell structure, reproduction, morphology and life cycle of <i>Chlamydomonas</i> , <i>Oedogonium</i> and <i>Chara</i> . (U) CSO 5.3 : To describe the evolutionary significance of <i>Prochloron</i> . (K) CSO 5.4 : To explain the general characteristics, occurrence, cell structure, reproduction, morphology and life cycle of <i>Prochloron</i> . (K) CSO 5.4 : To explain the general characteristics, occurrence, cell structure, reproduction, morphology and life cycle of <i>Ectocarpus</i> and <i>Fucus</i> . (U)	12	26	
---	---	--	----	----	--

Practicals Microbiology

- 1. Electron micrographs/Models of viruses T-Phage and TMV, Line drawings/ Photographs of Lytic and Lysogenic Cycle.
- 2. Types of Bacteria to be observed from temporary/permanent slides/photographs. Electron micrographs of bacteria, binary fission, endospore, conjugation, root Nodule.
- 3. Gram staining of gram positive and gram negative bacteria.
- 4. Endospore staining with malachite green using the (endospores taken from soil bacteria).

Phycology

- 1. Study of vegetative and reproductive structures of *Nostoc, Chlamydomonas* (electron micrographs), Volvox, *Oedogonium,Chara, Vaucheria, Ectocarpus, Fucus and Polysiphonia,Procholoron* through electron micrographs, temporary preparations and permanent slides.
- 2. Study of locally available algae species.

- 1. Lee, R.E. (2008). Phycology, Cambridge University Press, Cambridge. 4th edition.
- 2. Wiley JM, Sherwood LM and Woolverton CJ. (2013) Prescott's Microbiology. 9th Edition. McGrawHill International.
- 3. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West Press, Delhi.
- 4. Sahoo, D. (2000). Farming the ocean: seaweeds cultivation and utilization. Aravali International, New Delhi.
- Campbell, N.A., Reece J.B., Urry L.A., Cain M.L., Wasserman S.A. Minorsky P.V., Jackson R.B. (2008). Biology, Pearson Benjamin Cummings, USA. 8th edition.
- 6. Pelczar, M.J. (2001) Microbiology, 5th edition, Tata McGraw-Hill Co, New Delhi.

NAME OF THE PAPER (CODE)	: CELL BIOLOGY (BTC 1.2)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **CELL BIOLOGY**:

CO 1	To learn about cell, types of cell and origin.
CO 2	To be well versed in cell membrane and plasma membrane.
CO 3	To understand in detail the different cell organelles.
CO 4	To understand the endomembrane system.
CO 5	To inculcate the understanding of cell division.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 The Cell (CO 1)	Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic theory).	CSO 1.1: To define cell. (K) CSO 1.2: To explain cell as a unit of structure and function. (U) CSO 1.3: To explain and differentiate the characteristics of prokaryotic and eukaryotic cells. (U+A) CSO 1.4: To explain the origin of eukaryotic cell with reference to endosymbiotic theory. (U)	6	14	
UNIT 2 Cell Wall and Plasmamembrane (CO 2)	Chemistry, structure and function of Plant cell wall. Overview of membrane function; fluidmosaic model; Chemical composition of membranes; Membrane transport – Passive, active and facilitated transport, endocytosis and exocytosis.	CSO 2.1: To explain the chemistry, structure and function of plant cell wall. (U) CSO 2.2: To explain about membrane function. (U) CSO 2.3: To explain the fluid mosaic model. (U) CSO 2.4: To explain and identify the chemical composition of membranes. (U+A) CSO 2.5: To explain about Membrane transport – Passive, active andfacilitated transport. (U)	8	18	

	1		[
		CSO 2.6: To explain			
		and differentiate			
		between endocytosis			
		and exocytosis. (U+A)			
UNIT 3	Nucleus: Structure-	CSO 3.1: To explain	12	26	
Cell organelles (CO	nuclear envelope,	the structure of			
3)	nuclear pore complex,	nucleus, molecular			
	nuclear lamina,	organization of			
	molecularorganization	chromatin and			
	of chromatin; nucleolus.	nucleolus. (U)			
	Cytoskeleton: Role and	CSO 3.2: To explain			
	structure of	the role and structure of			
	microtubules,	microtubules,			
	microfilaments and	microfilaments and			
	intermediary filament.	intermediary filament.			
	Chloroplast,	(U)			
	mitochondria and	CSO 3.3: To explain			
	peroxisomes: Structural	the structure, function			
	organization, function;	and semiautonomous			
	and	nature of mitochondria			
	peroxisomes:	and chloroplast. (U)			
	Structural	CSO 3.4: To explain			
	organization;	and illustrate about			
	Function;	peroxisomes. (U+A)			
	Semiautonomous nature				
	of mitochondria and				
	chloroplast.				
UNIT 4	Endoplasmic Reticulum	CSO 4.1: To explain	10	22	
Endomembrane	– Structure, targeting	the structure, protein			
system (CO 4)	and insertion of proteins	targeting, protein			
system (CO I)	in the ER, protein	folding and processing			
	folding, processing;	of endoplasmic			
		reticulum. (U)			
	Smooth ER and lipid				
	synthesis, export of	CSO 4.2: To explain			
	proteins and lipids;	about smooth			
	Golgi Apparatus –	endoplasmic reticulum,			
	organization, protein	lipid synthesis and			
	glycosylation, protein	export of protein and			
	sorting and export from	lipids. (U)			
	Golgi Apparatus;	CSO 4.3: To explain			
	Lysosomes.	and illustrate the			
		organization, protein			
		glycosylation, protein			
		sorting and export from			
		Golgi apparatus and			
		lysosomes. (U+A)			
UNIT 5	Phases of eukaryotic cell	CSO 5.1: To explain	9	20	
Cell division (CO 5)	cycle, mitosis and	and elaborate on the	, ·	20	
$\operatorname{CO}(\operatorname{UV})$	meiosis; Regulation of	different phases of			
	-				
	cell cycle- checkpoints,	eukaryotic cell cycle.			
	role of protein kinases.	(U) CSO 5.2: To explain			

and differentiate between mitosis and meiosis. (U +A) CSO 5.3: To explain on	
the regulation of cell cycle- checkpoints, role of protein kinases. (U)	

NAME OF THE PAPER	: CELL BIOLOGY
Code	: BTC 1.2 (P)
Number of Credit	:01
Number of Hours of Lecture	: 30

- 1. Study of plant cell structure with the help of epidermal peel mount of Onion/*Rhoeo/Crinum*.
- 2. Demonstration of the phenomenon of protoplasmic streaming in Hydrilla leaf.
- 3. Measurement of cell size by the technique of micrometry.
- 4. Counting the cells per unit volume with the help of haemocytometer. (Yeast/pollen grains).
- 5. Study of cell and its organelles with the help of electron micrographs.
- 6. Cytochemical staining of: DNA- Feulgen and cell wall in the epidermal peel of onion using Periodic Schiff's (PAS) staining technique.
- 7. Study the phenomenon of plasmolysis and deplasmolysis.
- 8. Study the effect of organic solvent and temperature on membrane permeability.
- 9. Study different stages of mitosis and meiosis.

- 1. Karp, G. (2010). Cell Biology, John Wiley & Sons, U.S.A. 6th edition.
- 2. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc. U.S.A. 8th edition.
- Cooper, G.M. and Hausman, R.E. (2009) The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. (2009) The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco.

Semester-II

5011105101-11

NAME OF THE PAPER (CODE): ARCHEGONIATES (BTC 2.1)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **ARCHEGONIATES**:

CO 1	To develop in-depth knowledge on archegoniates.
CO 2	To learn and understand about bryophytes.
CO 3	To study and learn type studies of bryophytes.
CO 4	To learn and understand about pteridophytes.
CO 5	To study and learn type studies of pteridophytes.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Unifying features of	CSO 1.1: To define	4	10	
Introduction to	archegoniates;	the term archegoniate.			
Archegoniates	Transition to land	(K)			
	habit; Alternation of	CSO 1.2: To explain			
	generations.	about the unifying			
		features of			
		archegoniates. (U)			
		CSO 1.3: To explain			
		about the transition of			
		archegoniates to land			
		habit. (U)			
		CSO 1.4: To describe			
		and illustrate in detail			
		about alternation of			
		generation in			
		archegoniates. (K+A)			
UNIT 2	General	CSO 2.1: To explain	10	22	
Bryophyta (CO	characteristics;	the general			
2)	Adaptations to land	characteristics,			
	habit; classification (adaptations to land			
	up to Order; ICN),	habit and			
	range of thallus	classification of			
	organization, life	bryophytes. (U)			
	cycle of bryophyte;	CSO 2.2: To explain			
	Reproduction and	the range of thallus			
	evolutionary trends in	organization of			
	Riccia, Marchantia,	bryophytes. (U)			
	Anthoceros and	CSO 2.3: To explain			

	<i>Funaria</i> (developmental stages not included). Ecologicaland economic importance of bryophytes with special reference to	and illustrate the reproduction and evolutionary trends in <i>Riccia</i> , <i>Marchantia</i> , <i>Anthoceros</i> and <i>Funaria</i> . (U+A) CSO 2.4 : To explain the ecological and			
	Sphagnum.	economic importance of bryophytes eith special reference to <i>Sphagnum</i> . (U)			
UNIT 3 Type studies- Bryophyta (CO 3)	Hepaticopsida – Classification; Occurrence; Morphology, Anatomy and reproduction of <i>Marchantia and</i> <i>Riccia.</i> Anthocerotopsida - Classification; Occurrence; Morphology, Anatomy and reproduction of <i>Anthoceros.</i> Bryopsida - Classification; Occurrence; Morphology, Anatomy and reproduction of <i>Sphagnum</i> and <i>Funaria.</i>	CSO 3.1: To explain the classification, morphology, anatomy and reproduction of <i>Riccia.</i> (U) CSO 3.2: To explain the classification, morphology, anatomy and reproduction of <i>Marchantia.</i> (U) CSO 3.3: To explain the classification, morphology, anatomy and reproduction of <i>Pellia.</i> (U) CSO 3.4: To explain the classification, morphology, anatomy and reproduction of <i>Porella.</i> (U) CSO 3.5: To explain the classification, morphology, anatomy and reproduction of <i>Anthoceros.</i> (U) CSO 3.6: To explain the classification, morphology, anatomy and reproduction of <i>Anthoceros.</i> (U) CSO 3.6: To explain the classification, morphology, anatomy and reproduction of <i>Sphagnum.</i> (U) CSO 3.7: To explain the classification, morphology, anatomy and reproduction of <i>Sphagnum.</i> (U) CSO 3.7: To explain the classification, morphology, anatomy and reproduction of <i>Sphagnum.</i> (U)	10	22	

UNIT 4 Pteridophyta (CO 4)	General characteristics; Classification (up to Order; ICN); Life Cycle of Pteridophytes, Apogamy, Apospory, heterospory; Telome theory; Stelar evolution; Ecological and economic importance.	CSO 4.1: To explain the general characteristics and classification of pteridophytes. (U) CSO 4.2: To explain and illustrate the life cycle of pteridophytes. (U+A) CSO 4.3: To explain apogamy, apospory, and heterospory of pteridophytes. (U) CSO 4.4: To explain about Telome theory, stellar evolution, ecological and economic importance of pteridophytes. (U)	11	24	
UNIT 5 Type studies-	Psilophyta - Classification;	CSO 5.1 : To explain the classification,	10	22	
Pteridophyta	Occurrence;	morphology, anatomy			
(CO 5)	morphology, anatomy and reproduction of	and reproduction of <i>Psilotum</i> . (U)			
	Psilotum.	CSO 5.2: To explain			
	Lepidophyta – Classification;	the classification, morphology, anatomy			
	Occurrence;	and reproduction of			
	morphology, anatomy	Selaginella. (U)			
	and reproduction of <i>Selaginella</i> .	CSO 5.3 : To explain the classification,			
	Calamophyta -	morphology, anatomy			
	Classification;	and reproduction of			
	Occurrence; morphology, anatomy	Equisetum. (U)			
	and reproduction of	CSO 5.4 : To explain the classification,			
	Equisetum.	morphology, anatomy			
	Pterophyta -	and reproduction of			
	Classification; Occurrence;	Pteris. (U)			
	morphology, anatomy				
	and reproduction of				
	Pteris.				

NAME OF THE PAPER	: ARCHEGONIATES
Code	: BTC 2.1 (P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. *Riccia* Morphology of thallus.
- 2. *Marchantia* Morphology of thallus, whole mount of rhizoids & Scales, vertical section of thallus through Gemma cup, whole mount of Gemmae (all temporary slides), vertical section of Antheridiophore, Archegoniophore, longitudinal section of Sporophyte (all permanent slides).
- 3. *Anthoceros* Morphology of thallus, dissection of sporophyte (to show stomata, spores, pseudoelaters, columella) (temporary slide), vertical section of thallus (permanent slide).
- 4. *Sphagnum* Morphology of plant, whole mount of leaf (permanent slide only).
- 5. *Funaria* Morphology, whole mount of leaf, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridial and archegonial heads, longitudinal section of capsule and protonema.
- 6. *Psilotum* Study of specimen, transverse section of synangium (permanent slide).
- 7. *Selaginella* Morphology, whole mount of leaf with ligule, transverse section of stem, whole mount of strobilus, whole mount of microsporophyll and megasporophyll (temporary slides), longitudinal section of strobilus (permanent slide).
- 8. *Equisetum* Morphology, transverse section of internode, longitudinal section of strobilus, transverse section of strobilus, whole mount of sporangiophore, whole mount of spores (wet and dry) (temporary slide), transverse section of rhizome (permanent slide).
- 9. *Pteris* Morphology, transverse section of rachis, vertical section of sporophyll, wholemount of sporangium, whole mount of spores (temporary slides), transverse section of rhizome, whole mount of prothallus with sex organs and young sporophyte (permanent slide).

- 1. Vashistha, P.C., Sinha, A.K., Kumar, A. (2010). Pteridophyta. S. Chand. Delhi, India.
- 2. Parihar, N.S. (1991). An introduction to Embryophyta: Vol. I. Bryophyta. Central Book Depot. Allahabad.
- 3. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R. (2005). Biology. Tata McGraw Hill, Delhi.
- 4. Vanderpoorten, A. & Goffinet, B. (2009) Introduction to Bryophytes. Cambridge University Press.

NAME OF THE PAPER (CODE): GYMNOSPERMS AND PALEOBOTANY (BTC 2.2)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **GYMNOSPERMS AND PALEOBOTANY**:

CO 1	To learn in detail about gymnosperms.
CO 2	To understand gymnosperms through type studies.
CO 3	To develop basic concept about early land plants.
CO 4	To enable students gain knowledge about paleobotany.
CO 5	To enable students to be well versed with geological time scale.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	General	CSO 1.1: To explain	8	18	
Gymnosperms	characteristics,	the general			
(CO 1)	distribution,	characteristics,			
	classification (up to	distribution and			
	Genus), Phylogenetic	classification of			
	relationship of	gymnosperms. (U)			
	gymnosperm;	CSO 1.2: To explain			
	Affinities of	and relate the			
	Gymnosperm;	phylogenetic			
	Ecological and	relationship of			
	economic importance.	gymnosperms. (U+A)			
		CSO 1.3: To explain			
		the affinities of			
		gymnosperms. (U)			
		CSO 1.4: To explain			
		ecological and			
		economic importance			
		of gymnosperms. (U)			
UNIT 2	Cycadophyta- Salient	CSO 2.1: To explain	10	22	
Type studies of	features;	the salient features;			
gymnosperms	Classification,	Classification,			
(CO 2)	Occurrences,	Occurrences,			
	Morphology, anatomy	Morphology, anatomy			
	and reproduction of	and reproduction of			
	Cycas.	<i>Cycas.</i> (U)			
	(Developmental	CSO 2.2: To explain			
	details not to be	the salient features;			
	included).	Classification,			
	Coniferophyta –	Occurrences,			
	Salient features;	Morphology, anatomy			
	Classification,	and reproduction of			

	Occurrences, Morphology, Anatomy and Reproduction of <i>Pinus</i> and <i>Gnetum</i> (Developmental details not to be included).	<i>Pinus.</i> (U) CSO 2.3: To explain the salient features; Classification, Occurrences, Morphology, anatomy and reproduction of <i>Gnetum.</i> (U)			
UNIT 3 Early land plants (CO 3)	Morphology, Anatomy and Reproduction of <i>Cooksonia, Rhynia</i> and <i>Psilophyton.</i>	CSO 3.1: To explain the morphology, Anatomy and Reproduction of <i>Cooksonia</i> . (U) CSO 3.2: To explain the morphology, Anatomy and Reproduction of <i>Rhynia</i> . (U) CSO 3.3: To explain the morphology, Anatomy and Reproduction of <i>Psilophyton</i> . (U)	9	20	
UNIT 4 Paleobotany (CO 4)	Definition and scope of paleobotany; Fossil – Definition and Nomenclature; Types of fossils; Types of fossil plants; Fossilisation process; Mode of preservation; Importance of fossil.	CSO 4.1: To define paleobotany and explain the scope of paleobotany. (K+U) CSO 4.2: To define fossil and explain its nomenclature. (K+U) CSO 4.3: To explain about types of fossils and types of fossil plants. (U) CSO 4.4: To explain about fossilisation process; mode of preservation; Importance of fossil. (U)	8	18	
UNIT 5 Geological time scale (CO 5)	Introduction; Geological time scale with biological events, Timeline divisions; continental drift; The Gondwana System;	CSO 5.1: To explain about geological time scale with biological events. (U) CSO 5.2: To explain and illustrate about	10	22	

Gondwana flora; General account of dominant fossil flora of the ages; mass extinction.	timeline divisions and continental drift. (U+A) CSO 5.3 : To explain about Gondwana system and its flora. (U) CSO 5.4 : To explain about the dominant fossil flora of the ages and mass extinction. (U)
--	--

NAME OF THE PAPER	: GYMNOSPERMS AND PALEOBOTANY
Code	: BTC 2.2 (P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. *Cycas* Morphology (coralloid roots, bulbil, leaf), whole mount of microsporophyll, transverse section of coralloid root, transverse section of rachis, vertical section of leaflet, vertical section of microsporophyll, whole mount of spores (temporary slides), longitudinal section of ovule, transverse section of root (permanent slide).
- 2. *Pinus* Morphology (long and dwarf shoots, whole mount of dwarf shoot, male and female cones), transverse section of Needle, transverse section of stem, longitudinal section of / transverse section of male cone, whole mount of microsporophyll, whole mount of Microspores (temporary slides), longitudinal section of female cone, tangential longitudinal section & radial longitudinal sections stem (permanent slide).
- 3. *Gnetum* Morphology (stem, male & female cones), transverse section of stem, vertical section of ovule (permanent slide)
- 4. *Gingko biloba* Morphology (stem, male & female cones), transverse section of stem and leaf vertical section of ovule.
- 5. Study of early land plants Cooksonia, Rhynia and Psilophyton (Micrograph/ permanent slide)
- 6. Study of different types of fossils (micrograph/museum specimem)

- 1. Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, New Delhi, India.
- 2. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R. (2005). Biology. Tata McGraw Hill, Delhi.

Semester-III

NAME OF THE PAPER (CODE)

Number of Credit Number of Hours of Lecture :MORPHOLOGY AND ANATOMY OF ANGIOSPERMS (BTC 3.1) : 03 : 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **MORPHOLOGY AND ANATOMY OF ANGIOSPERMS**:

CO 1	To gain knowledge on the structures and development of different parts of
	the plant body.
CO 2	To learn about the tissue system in plants.
CO 3	To gain insights on meristematic tissues of plants.
CO 4	To be well versed with the vascular cambium, secondary growth and wood.
CO 5	To learn about adaptive and peotective system in plants.

Unit & Title	Unit Contents	Course Specific		Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Applications in	CSO 1.1: To explain	8	18	
Introduction,	systematics, forensics	the application of			
Structure and	and pharmacognosy.	angiosperms in			
Development	Internal organization of	systematic, forensics			
of Plant Body	plant body: The three	and pharmacognosy.			
(CO 1)	tissue systems, types of	(U)			
	cells and tissues.	CSO 1.2: To explain			
	Development of plant	and identify the internal			
	body: Polarity,	organization of plant			
	Cytodifferentiation and	body of angiosperms.			
	organogenesis during	(U+A)			
	embryogenic	CSO 1.3: To explain			
	development.	the tissue systems, types			
		of cells and tissues. (U)			
		CSO 1.4: To explain			
		and illustrate the			
		development of plant			
		body. (U+A)			
		CSO 1.5: To explain			
		about polarity,			
		cytodifferentiation and			
		organogenesis during			
		embryogenic			
		development. (U)			
UNIT 2	Classification of tissues;	CSO 2.1: To define	9	20	

Tissues (CO	Simple and complex	tissues. (K)			
2)	tissues (no phylogeny);	CSO 2.2 : To explain			
2)	cytodifferentiation of	the classification of			
	•				
	tracheary elements and	tisues, simple and			
	sieve elements; Pits and	complex tissues. (U)			
	plasmodesmata;	CSO 2.3: To explain			
	Ergastic substances.	cytodifferentiation of			
	Hydathodes, cavities,	tracheary elements and			
	lithocysts and laticifers.	sieve elements, pits and			
		plasmodesmata. (U)			
		CSO 2.4: To explain			
		about wall ingrowths			
		and transfer cells,			
		adcrustations and			
		incrustations and			
		ergastic substances. (U)			
		CSO 2.5: To explain on			
		hydathodes, cavities,			
		lithocysts and laticifers.			
		(U)			
UNIT 3	Evolution of concept of	-	12	26	
Apical	organization of shoot	the evolution of concept			
meristems	apex (Apical cell	of organization of shoot			
(CO 3)	theory, Histogen theory,	apex. (U)			
	Tunica Corpus theory);				
	Types of vascular	explain the types of			
	bundles; Structure of	vascular bundles.			
	dicot and monocot stem.	(K+U)			
	Diversity and structure	CSO 3.3: To explain			
	of monocot and dicot	the structure of dicot			
	leaf. Structure of dicot	and monocot stem. (U)			
	and monocot leaf,	CSO 3.4: To explain			
	Kranz anatomy.	the origin, development,			
	Organization of root	0			
	apex (Apical cell	diversity in size and			
	theory, Histogen theory,	shape of leaves. (U)			
	Korper-Kappe theory); Quiescent centre;	CSO 3.5 : To explain the structure of dicot			
	Quiescent centre; Rootcap; Structure of	and monocot leaf as			
	dicot and monocot root.	well as Kranz anatomy.			
		(U) (U)			
		CSO 3.6 : To explain			
		the organization of root			
		apex, quiescent centre			
		and root cap. (U)			
		CSO 3.7 : To explain			
		the structure of dicot			
	I				

		and managet rest (IT)			
		and monocot root. (U)			
		CSO 3.8: To explain			
		about endodermis,			
		exodermis and origin of			
		lateral root. (U)			
UNIT 4	Structure, function and	CSO 4.1: To explain	10	22	
Vascular	seasonal activity of	the structure, function			
Cambium and	cambium; Secondary	and seasonal activity of			
Wood (CO 4)	growth in root and stem.	cambium. (U)			
	Axially and radially	CSO 4.2: To explain			
	oriented elements;	and illustrate about			
	Types of rays and axial	secondary growth in			
	parenchyma; Sapwood	root and stem. (U+A)			
	and heartwood; Ring	CSO 4.3: To describe in			
	and diffuse porous	detail about axially and			
	wood; Early and late	radially oriented			
	wood, Larry and late wood, tyloses;	elements. (K)			
	Dendrochronology.	CSO 4.4 : To explain			
	L'endroennononogy.	the types of rays and			
		axial parenchyma. (U)			
		CSO 4.5 : To illustrate			
		on cyclic aspects and			
		reaction of wood. (A)			
		CSO 4.6 : To describe			
		about sapwood and			
		heartwood, ring and			
		diffuse porous wood,			
		early and late wood. (K)			
		CSO 4.7: To explain			
		about tyloses and			
		dendrochronology. (U)			
		CSO 4.8: To explain			
		about the development			
		and composition of			
		periderm, rhytidome			
		and lenticels. (U)			
UNIT 5	Epidermal tissue	CSO 5.1 : To explain on	6	14	
Adaptive and	system, cuticle,	the epidermal tissue			
Protective	epicuticular waxes,	system, cuticle,			
Systems (CO	trichomes (uni and	epicuticular waxes and			
5)	multicellular,	trichomes. (U)			
	glandularand non	CSO 5.2: To describe			
	glandular, two examples	about the classification			
	of each), stomata	of stomata. (K)			
	(classification);	CSO 5.3: To illustrate			
	Adcrustation and	on adcrustation and			
	incrustation;	incrustation. (A)			
	,				

Anatomical adaptations	CSO 5.4: To elucidate	
of xerophytes,	on anatomical	
hydrophytes and	adaptations of	
epiphytes.	xerophytes and	
	hydrophytes. (A)	

NAME OF THE PAPER

Code Number of Credit Number of Hours of Lecture

:MORPHOLOGY AND ANATOMY OF ANGIOSPERMS : BTC 3.1 (P) : 01

Practical

- 1. Apical meristem of root, shoot and vascular cambium.
- 2. Distribution and types of parenchyma, collenchyma and sclerenchyma.
- 3. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibers.

: 30

- 4. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
- 5. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibers.
- 6. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular. Root: monocot, dicot, secondary growth.
- 7. Stem: monocot, dicot primary and secondary growth; periderm; lenticels.
- 8. Adaptive Anatomy: xerophytes, hydrophytes, epiphytes
- 9. Secretory tissues: cavities, lithocysts and laticifers.

- 1. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 4. Evert, R.F. (2006) Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function and Development. John Wiley and Sons, Inc.

NAME OF THE PAPER (CODE)	: ECONOMIC BOTANY (BTC 3.2)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **ECONOMIC BOTANY**:

CO 1	To learn about the origin of cultivation and agroecosystem.
CO 2	To learn about important cereals, legumes, spices and beverages.
CO 3	To be well versed about plant sources of sugar, starch, oils and fats.
CO 4	To learn about natural rubber and fibers.
CO 5	To learn about drug-yielding and timber plants.

Unit & Title	Unit Contents	Course Specific Objectives (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 Origin of Cultivated Plants and agroecosystem (CO 1)	Concept of Centres of Origin, their importance with reference to Vavilov's work. Examples of major plant introductions; Crop domestication and loss of genetic diversity; Evolution of new crops/ varieties, importance of germplasm diversity. Agro-ecosystem in Nagaland: Jhum cultivation, terrace cultivation, water harvesting methods, irrigation methods and cropping system.	CSO 1.1: To explain on the concept of centres of origin of cultivated plants and their importance with reference to Vavilov's work. (U) CSO 1.2: To illustrate examples of major plant introductions, crop domestication and loss of genetic diversity, evolution of new crop or varieties. (A) CSO 1.3: To Illustrate the importance of germplasm diversity. (A) CSO 1.4: To define and explain about agro-ecosystem. (K+U) CSO 1.5: To explain illustrate on jhum cultivation, terrace cultivation, water harvesting methods, irrigation methods and cropping system with reference to Nagaland. (U+A)	9	20	
UNIT 2 Cereals, Legumes, Spices and Beverages (CO 2)	Cereals: Wheat and Rice (origin, morphology, processing & uses); Brief account of millets. Legumes: Origin, morphology and uses of Chick pea, Pigeon pea. Importance to man and ecosystem. Spices: Listing of important spices, their family and part used. Economic importance with special reference	CSO 2.1: To explain on the origin, morphology, processing and uses of wheat and rice. (U) CSO 2.2: To explain a brief account of millets. (U) CSO 2.3: To illustrate on the origin, morphology and uses of Chick pea, Pigeon pea and fodder legumes and their importance to man and ecosystem. (A) CSO 2.4: To create and study list of important spices, their family and parts used. (A) CSO 2.5: To explain economic importance with special reference to large cardamom, Ginger, Turmeric,	13	28	

	to large cardamom, Ginger, Turmeric, clove, King Chilli and black pepper Beverage: Tea, Coffee (morphology, processing & uses)	clove, King Chilli and black pepper. (U) CSO 2.6: To explain the morphology, processing and uses of tea and coffee. (U)			
UNIT 3 Sources of sugars and starches, Sources of oils and fats (CO 3)	Sugar: Morphology and processing of sugarcane, products and by-products of sugarcane industry. Starch: Potato – morphology, propagation & uses. Fats and oils: General description, classification, extraction, their uses and health implications of groundnut, coconut, soybean, mustard. Essential Oils: General account, extraction methods, comparison with fatty oils & their uses.	CSO 3.1: To explain the morphology and processing of sugarcane, products and by-products of sugarcane industry. (U) CSO 3.2: To describe the morphology, propagation and uses of potato. (K) CSO 3.3: To explain the general description, classification, extraction, uses and health implications of groundnut, coconut, soybean and mustard. (U) CSO 3.4: To describe essential oils, their general account and illustrate extraction methods, comparison with fatty oils and their uses. (K+A)	9	20	
UNIT 4 Natural Rubber and fibers (CO 4)	Para-rubber: tapping, processing and uses. Fibers: Classification based on the origin of fibers; Cotton, Coir and Jute (morphology, extraction and uses).	CSO 4.1: To explain on para-rubber, tapping, processing and uses. (U) CSO 4.2: To illustrate classification based on the origin of fibres. (A) CSO 4.3: To explain the morphology, extraction and uses of cotton, coir and jute. (U)	5	12	
UNIT 5 Drug-yielding plants, Natural dyes and Timber plants (CO 5)	Drug Yielding Plants: Therapeutic and habit- forming drugs with special reference to <i>Cinchona, Digitalis,</i> <i>Papaver</i> and <i>Cannabis</i> ; Tobacco (Morphology, processing, uses and health hazards). Timber: General account with special reference to teak, pine and <i>Terminalia</i> . Natural dyes: General account of <i>Hibiscus</i> <i>sabdarifa</i> and <i>Strobilanthes</i> <i>flaccidifolius</i> .	CSO 5.1: To explain on therapeutic and habit-forming drugs with special reference to <i>Cinchona</i> , <i>Digitalis</i> , <i>Papaver</i> and <i>Cannabis</i> . (U) CSO 5.2: To explain the morphology, processing, uses and health hazards of tobacco. (U) CSO 5.3: To draw a general account with special reference to teak, pine and <i>Terminalia</i> . (K) CSO 5.4: To explain on general account of <i>Hibiscus sabdarifa</i> and <i>Strobilanthes</i> <i>flaccidifolius</i> . (U)	9	20	

NAME OF THE PAPER	: ECONOMIC BOTANY
Code	: BTC 3.2 (P)
Number of Credit	:01
Number of Hours of Lecture	: 30

- 1. Cereals: Wheat and Rice (habit sketch, L. S/T.S. grain, starch grains, micro-chemical tests).
- 2. Legumes: Soybean, Groundnut, (habit, fruit, seed structure, micro-chemical tests).
- 3. **Sources of sugars and starches**: Sugarcane (habit sketch; cane juice- micro-chemical tests), Potato (habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, micro-chemical tests).
- 4. Spices: Habit of Black pepper, Ginger and Clove (sections).
- 5. Beverages: Tea (plant specimen, tea leaves), Coffee (plant specimen, beans).
- 6. Sources of oils and fats: Coconut, Mustard-plant specimen, seeds; tests for fats in crushed seeds.
- 7. **Essential oil-yielding plants**: Habit sketch of *Rosa*, *Vetiveria*, *Santalum* and *Eucalyptus* (Specimen/ photographs).
- 8. Rubber: Specimen, photograph/model of tapping, samples of rubber products.
- 9. Drug-yielding plants: Specimens of Digitalis, Papaver and Cannabis.
- 10. Tobacco: Specimen and products of Tobacco.
- 11. Woods: Tectona, Pinus: Specimen, Section of young stem.
- 12. **Fiber-yielding plants**: Cotton (specimen, whole mount of seed to show lint and fuzz; whole mount of fiber and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fiber).
- 13. Natural Dyes: *Hibiscus sabdarifa* and *Strobilanthes flaccidifolius* (specimen, parts of plant used as dye)

- 1. Kochhar, S.L. (2012). Economic Botany in Tropics, MacMillan & Co. New Delhi, India.
- 2. Wickens, G.E. (2001). Economic Botany: Principles & Practices. Kluwer Academic Publishers, The Netherlands.
- 3. Chrispeels, M.J. and Sadava, D.E. (1994).Plants, Genes and Agriculture. Jones & Bartlett _Publishers.

NAME OF THE PAPER (CODE)	: GENETICS (BTC 3.3)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **GENETICS**:

CO 1	To learn about Mendelian genetics and its extension.
CO 2	To learn about extrachromosomal inheritance.
CO 3	To gain knowledge about linkage and chromosome mapping.
CO 4	To learn about the structure of gene and mutation.
CO 5	To be sensitized about population and evolutionary genetics.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Mendelism: History;	CSO 1.1: To explain	10	22	
Mendelian genetics	Principles of	the history and			
and its extension	inheritance;	Principles of			
(CO 1)	Chromosome theory	inheritance of			
	of inheritance;	Mendelism. (U)			
	Autosomes and sex	CSO 1.2: To explain			
	chromosomes;	the chromosome			
	Probability and	theory of inheritance,			
	pedigree analysis;	autosomes and sex			
	Incomplete	chromosomes. (U)			
	dominance and	CSO 1.3 : To			
	codominance;	illustrate and work			
	Multiple alleles,	out probability and			
	Lethal alleles,	pedigree analysis.			
	Epistasis,	(A)			
	Pleiotropy,	CSO 1.4: To explain			
	Recessive and	on incomplete and			
	Dominant traits,	complete dominance,			
	Penetrance and	multiple alleles,			
	Expressivity,	lethal alleles,			
	Numerical;	epistasis and			
	Polygenic	pleiotropy. (U)			
	inheritance.	CSO 1.5 : To			
		describe recessive			
		and dominant traits,			
		penetrance and			
		expressivity. (K)			
		CSO 1.6 : To			
		estimate and evaluate			
		genetical numerical.			
		(A)			
		CSO 1.7: To explain			
		about polygenic			
		inheritance. (U)			

TINITO	Chlans 1		-	10	
UNIT 2	Chloroplast	CSO 2.1 : To	5	12	
	mutation:	illustrate chloroplast			
Extrachromosomal	Variegation in Four	mutation with			
Inheritance (CO 2)	o'clock plant;	reference to			
	mitochondrial	variegation in Four			
	mutations in yeast;	o'clock plant. (A)			
	Maternal effects-	CSO 2.2 : To explain			
	shell coiling in snail;	mitochondrial			
	Infective heredity-	mutation in yeast.			
	Kappa particles in	(U)			
	Paramecium.	• •			
	Paramecium.	CSO 2.3: To explain			
		maternal effects in			
		the shell coiling of			
		snail. (U)			
		CSO 2.4: To explain			
		on infective heredity			
		with reference to			
		Kappa particles in			
		Paramecium. (U)			
UNIT 3	Linkage and	CSO 3.1: To define	10	22	
Linkage, crossing	crossing over-	linkage and crossing			
over and	Cytological basis of	over. (K)			
chromosome	crossing over;	CSO 3.2 : To explain			
mapping (CO 3)	Recombination	cytological basis of			
mapping (CO 3)	frequency, two	crossing over. (U)			
		CSO 3.3: To work			
	_				
	factor crosses;	out and estimate			
	Interference and	recombination			
	coincidence;	frequencies, two			
	Numericals based on	factors and three			
	gene mapping; Sex				
	Linkage.	CSO 3.4: To explain			
		about interference			
		and coincidence. (U)			
		CSO 3.5 : To			
		estimate and work			
		out numerical based			
		on gene mapping and			
		explain on sex			
		linkage. (A)			
UNIT 4	Classical vs	CSO 4.1 : To make a	10	22	
Fine structure of		comparison between	10		
gene, Variation in	of gene; Cis-Trans	classical and			
chromosome	complementation				
	test for functional	1			
		of gene. (A)			
structure;Gene	allelism; Structure of	CSO 4.2: To explain			
mutations (CO 4)	Phage T4, rII Locus.	about cis-trans			
	Deletion,	complementation test			
	Duplication,	for functional			

	. .				
	Inversion,	allelism. (U)			
	Translocation,	CSO 4.3: To explain			
	Position effect,	the structure of			
	Euploidy and	Phage T4, rII Locus.			
	Aneuploidy	(U)			
	Types of mutations;	CSO 4.4: To			
	Molecular basis of	illustrate on deletion,			
	Mutations; Mutagens	duplication,			
	– physical and	inversion,			
	chemical (Base	translocation,			
	analogs,	position effect,			
	deaminating,	euploidy and			
	alkylating and	aneuploidy. (A)			
	intercalating agents);	CSO 4.5 : To explain			
	Detection of	the types of mutation			
	mutations: ClB	and molecular basis			
	method. Role of	of mutation. (U)			
	Transposons in	CSO 4.6 : To explain			
	mutation. DNA	on mutagens and			
	repair mechanisms.	detection methods of			
	repuir meenumisms.	mutations. (U)			
		CSO 4.7: To explain			
		the role of			
		transposons in mutation. (U)			
		CSO 4.8 : To			
		illustrate on DNA			
		repair mechanisms.			
		-			
	Allala fue averaging	(A)	10	22	
UNIT 5	Allele frequencies,	CSO 5.1 : To explain	10	22	
Population and	Genotype	on allele frequencies			
Evolutionary	frequencies, Hardy-	and genotype			
Genetics (CO 5)	Weinberg Law, role				
	of natural selection,	CSO 5.2: To			
	mutation, genetic	describe in detail			
	drift. Genetic	about Hardy-			
	variation and	Weinberg Law and			
	Speciation.	role of natural			
		selection. (K)			
		CSO 5.3: To explain			
		on mutation and			
		genetic drift. (U)			
		CSO 5.4 : To explain			
		about genetic			
		variation and			
		speciation. (U)			

NAME OF THE PAPER	: GENETICS
Code	: BTC 3.3 (P)
Number of Credit	:01
Number of Hours of Lecture	: 30

- 1. Meiosis through temporary squash preparation.
- 2. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-square.
- 3. Chromosome mapping using point test cross data.
- 4. Pedigree analysis for dominant and recessive autosomal and sex-linked traits.
- 5. Incomplete dominance and gene interaction through seed ratios (9:7, 9:6:1, 13:3, 15:1, 12:3:1, 9:3:4).
- 6. Blood Typing: ABO groups & Rh factor.
- 7. Study of aneuploidy: Down's, Klinefelter's and Turner's syndromes.
- 8. Photographs/Permanent Slides showing Translocation Ring, Laggards and Inversion Bridge.
- 9. Study of human genetic traits: Sickle cell anaemia, Xeroderma Pigmentosum, Albinism, redgreen Colour blindness, Widow's peak, rolling of tongue, Hitchhiker's thumb and attached ear lobe.

- 1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India. 8th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics, John Wiley & Sons Inc., India. 5th edition.
- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings, U.S.A. 9th edition.
- 4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.

Semester-IV

NAME OF THE PAPER (CODE) : REPRODUCTION AND EMBRYOLOGY OF ANGIOSPERMS (BTC 4.1)

: 03 : 45 Number of Credit Number of Hours of Lecture

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper REPRODUCTION AND **EMBRYOLOGY OF ANGIOSPERMS:**

CO 1	To learn the various reproductive and developmental biology of
	angiosperms.
CO 2	To study about anther and pollen biology.
CO 3	To gain in depth knowledge on ovules.
CO 4	To learn about pollination, fertilization and self incompatibility.
CO 5	To learn about embryo, endosperm, seed, polyembryony and apomixes.

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	History (contributions	CSO 1.1: To discuss on the	6	14	
Introduction to	of G.B. Amici, W.	history of reproductive biology			
Angiosperms;	Hofmeister, E.	with reference to the			
Reproductive	Strasburger, S.G.	contribution of some			
development	Nawaschin, P.	prominent personalities in the			
(CO 1)	Maheshwari, B.M.	field. (U)			
	Johri, W.A. Jensen, J.	CSO 1.2: To explain on the			
	Heslop-Harrison) and	scope of reproductive biology.			
	scope.	(U)			
	Induction of	CSO 1.3: To illustrate on the			
	flowering; flower as a	process of induction of			
	modified determinate	flowering and explain about			
	shoot, genetics and	flower as a modified			
	molecular aspect of	determinate shoot. (A)			
	flowering.	CSO 1.4: To discuss the			
		genetic and molecular aspects			
		of flower development. (U)			
UNIT 2	Anther wall: Structure	CSO 2.1: To describe about	9	20	
Anther and	and functions,	the structure and function of			
pollen biology	microsporogenesis,	anther wall. (K)			
(CO 2)	callose deposition and	CSO 2.2: To explain about			
	its significance.	microsporogenesis, callose			
	Microgametogenesis;	deposition and its significance.			
	Pollen wall structure;	(U)			
	Palynology and scope	CSO 2.3: To illustrate on the			

		1			,
	(a brief account);	process of			
	Pollen wall proteins;	microgametogenesis. (A)			
	Pollen viability,	CSO 2.4: To explain about			
	storage and	pollen wall structure, male			
	germination;	germ unit and NPC system.			
	Abnormal features:				
	Pseudomonads,	CSO 2.5: To elucidate on			
	polyads, massulae,	palynology and its scope. (U)			
	pollinia.	CSO 2.6 : To explain about			
		pollen wall proteins, pollen			
		viability, storage and			
		germination. (U)			
		CSO 2.7 : To explain about			
		abnormal features such as			
		pseudomonads, polyads,			
UNIT 3	Ctmpotures T	massulae and pollinia. (U)	E	1 /	
	Structure; Types;	CSO 3.1 : To explain about the	6	14	
Ovule (CO 3)	Special structures– endothelium,	structure and types of ovules. (U)			
	,				
	obturator, aril, caruncle and	CSO 3.2 : To describe special structures like endothelium,			
	hypostase; Female	obturator, aril, caruncle and			
	gametophyte–	hypostase. (K)			
	megasporogenesis	CSO 3.3 : To explain about			
	(monosporic, bisporic	female gametophyte,			
	and tetrasporic) and	megasporogenesis and			
	megagametogenesis	megagametogenesis. (U)			
	(details of <i>Polygonum</i>	CSO 3.4 : To illustrate on the			
	type).	organization and ultra structure			
		of mature embryo sac. (A)			
UNIT 4	Pollination types and	CSO 4.1 : To explain the types	12	26	
Pollination and	significance;	of pollination and its			
fertilization,	adaptations; structure	significance. (U)			
Self	of stigma and style;	CSO 4.2: To describe about			
incompatibility	path of pollen tube in	the adaptations involved in			
(CO 4)	pistil; double	pollination and the structure of			
	fertilization; Methods	stigma and style. (K)			
	to overcome self-	CSO 4.3: To illustrate on the			
	incompatibility:	path of pollen tube in pistil and			
	mixed pollination,	double fertilization. (A)			
	bud pollination, stub	CSO 4.4: To discuss basic			
	pollination; Intra-	concepts on interspecific,			
	ovarian and in vitro	intraspecific, homomorphic,			
	pollination;	heteromorphic, GSI and SSI. (U)			
	Modification of	CSO 4.5 : To explain about the			
	stigma surface,	different methods to overcome			
	parasexual	self incompatibility. (U)			
	hybridization.	CSO 4.6 : To discuss about			
		mixed pollination, bud			

		pollination, stub pollination, intra-ovarian and <i>in vitro</i> pollination. (U) CSO 4.7 : To illustrate on modification of stigma surface, parasexual hybridization, cybrids and <i>in vitro</i> fertilization. (A)			
UNIT 5 Embryo, Endosperm and Seed; Polyembryony and apomixes (CO 5)	Structure and types; General pattern of development of dicot and monocot embryo and endosperm; Suspensor: structure and functions; Embryo development in <i>Paeonia</i> . Seed structure, importance and dispersal mechanisms. Introduction; Classification; Causes and applications.	CSO 5.1: To explain on the structure and types of embryo. (U) CSO 5.2: To describe the general pattern of development of dicot and monoct embryo and endosperm. (K) CSO 5.3: To illustrate the structure and function of suspensor and embryo-endosperm relationship. (A) CSO 5.4: To discuss about the nutrition of embryo, unusual features and embryo development in <i>Paeonia</i> . (U) CSO 5.5: To explain the structure, importance and dispersal mechanisms of seeds. (U) CSO 5.6: To define polyembryony and apomixes and discuss its classification, causes and applications. (K+U)	12	26	

NAME OF THE PAPER	:REPRODUCTION ANGIOSPERMS	AND	EMBRYOLOGY	OF
Code	: BTC 4.1(P)			
Number of Credit	:01			
Number of Hours of Lecture	: 30			

- 1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular) through photographs and schematic representation.
- 2. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs, fresh material), ultrastructure of pollen wall (micrograph); Pollen viability: Tetrazoliumtest.germination: Calculation of percentage germination in different media using hanging drop method.
- 3. Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous; Special structures: Endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/photographs).
- 4. Female gametophyte through permanent slides/ photographs: Types, ultrastructure of mature egg apparatus.
- 5. Endosperm: Dissections of developing seeds for endosperm with free-nuclear haustoria.
- 6. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.

- 1. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms, Vikas Publishing House. Delhi. 5th edition.
- 2. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands. Johri, B.M. 1 (1984). Embryology of Angiosperms, Springer-Verlag, Netherlands.

NAME OF THE PAPER (CODE)

: PLANT ECOLOGY AND PHYTOGEOGRAPHY (BTC 4.2) : 03 : 45

COURSE OBJECTIVES (COs)

Number of Hours of Lecture

Number of Credit

The following are the Course Objectives (COs) for the paper **PLANT ECOLOGY AND PHYTOGEOGRAPHY**:

CO 1	To learn the basic concepts and importance of soil and water to plant
	ecology.
CO 2	To gain knowledge about light, temperature and biotic interactions.
CO 3	To be well versed in population ecology and plant communities.
CO 4	To learn the concept of ecosystem and its functional aspects.
CO 5	To understand the concept of phytogeography.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Definition; Basic	CSO 1.1: To explain	10	22	
Introduction;	concepts; Levels of	the basic concepts,			
Soil and Water	organization; Inter-	levels of organization,			
(CO 1)	relationships between	inter-relationships			
	the living world and	between the living			
	the environment,	world and the			
	homeostasis.	environment. (U)			
	Soil: Origin;	CSO 1.2: To explain			
	Formation;	on the components			
	Composition;	and dynamism of			
	Physical; Chemical	ecology and			
	and Biological	homeostasis. (U)			
	components; Soil	CSO 1.3: To illustrate			
	profile.	on the importance,			
	Water: States of water	origin, formation,			
	in the environment;	composition, physical,			
	Precipitation types	chemical and			
	(rain, fog, snow, hail,	biological components			
	dew); Hydrological	of soil. (A)			
	Cycle; Water table.	CSO 1.4: To discuss			
		about soil profile and			
		role of climate in soil			
		development. (U)			
		CSO 1.5: To explain			
		the importance of			
		water and states of			
		water in the			
		environment. (U)			
		CSO 1.6 : To describe			
		about atmospheric			

		•			
		moisture and			
		precipitation types.			
		(K)			
		CSO 1.7: To explain			
		about hydrological			
		cycle, water in soil			
		and water table. (U)			
UNIT 2	Adaptations of plants	CSO 2.1: To define	7	16	
Light,	to light, temperature	abiotic and biotic			
temperature;	and fire variation;	factors. (K)			
Biotic	Theory of tolerance;	CSO 2.2: To explain			
interactions	Basic source of	about the variations,			
(CO 2)	energy, autotrophy,	adaptations of plants			
(00)	heterotrophy;	to their variation. (U)			
	symbiosis,	CSO 2.3: To discuss			
	commensalism,	about trophic			
	parasitism.	organization, basic			
	parasitism.	source of energy in			
		ecology. (U)			
		CSO 2.4 : To explain			
		about autotrophy,			
		heterotrophy,			
		symbiosis,			
		commensalism and			
		parasitism. (U)			
		CSO 2.5: To discuss			
		on food chains and			
		webs, ecological			
		pyramids, biomass and			
		standing crop. (U)			
UNIT 3	Characteristics of	CSO 3.1: To explain	12	26	
Population	Population Ecology,	the characteristics and			
ecology and	Ecological Speciation;	dynamics of			
Plant	Habitat and niche;	population ecology.			
communities	Ecotone and edge	(U)			
(CO 3)	effect; Characters:	CSO 3.2: To illustrate			
	analytical and	on ecological			
	synthetic; Dynamics:	speciation and concept			
	succession –	of ecological			
	processes, types,	amplitude. (A)			
	climax community.	CSO 3.3: To define			
		and explain habitat			
		and niche. (K+U)			
		CSO 3.4: To explain			
		the analytical and			
		synthetic characters of			
		habitat. (U)			
		CSO 3.5 : To explain			
		and define ecotone and			
	l				

		edge effect. (K+U) CSO 3.6: To discuss			
		succession and climax			
		concepts. (U)			
UNIT 4	Trophic organisation;	CSO 4.1 : To explain	10	22	
Ecosystems and	Food chains and Food	the structure and	10		
Functional	webs; Ecological	processes of			
aspects of		ecosystem and trophic			
ecosystem (CO	standing crop.	organisation. (U)			
4)	Principles and models	CSO 4.2: To discuss			
,	of energy flow;				
	Production and	webs and ecological			
	productivity;	pyramids. (U)			
	Ecological	CSO 4.3: To explain			
	efficiencies;	the principles and			
	Biogeochemical	models of energy,			
	cycles; Cycling of	production and			
	Carbon, Nitrogen and	productivity and			
	Phosphorus.	ecological efficiencies.			
		(U)			
		CSO 4.4: To define			
		biogeochemical cycles			
		and explain on cycling			
		of carbon, nitrogen			
		and phosphorus.			
UNIT 5	Dringinlage	(K+U) CSO 5.1 : To define	6	14	
UNIT 5	Principles;		0	14	
Phytogeography	Phytogeographical division of India; Brief	phytogeography and explain its principles.			
(CO 5)	description of major	(K+U)			
(000)	terrestrial biomes (one	CSO 5.2: To discuss			
	each from tropical,				
	temperate & tundra);	theory of tolerance and			
	Endemism, Local	endemism. (U)			
	Vegetation.	CSO 5.3: To give a			
		brief description of			
		major terrestrial			
		biomes. (K)			
		CSO 5.4: To discuss			
		on phytogeographical			
		division of India and			
		local vegetation. (U)			

NAME OF THE PAPER	: PLANT ECOLOGY AND PHYTOGEOGRAPHY
Code	: BTC 4.2(P)
Number of Credit	:01
Number of Hours of Lecture	: 30

- 1. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter.
- 2. Determination of pH of various soil and water samples (pH meter, universal indicator/Lovibond comparator and pH paper)
- 3. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.
- 4. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.
- 5. (a). Study of morphological adaptations of hydrophytes and xerophytes (four each).
 (b). Study of biotic interactions of the following: Stem parasite (*Cuscuta*), Root parasite (*Orobanche*) Epiphytes, Predation (Insectivorous plants).
- 6. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).
- 7. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer's frequency distribution law.
- 8. Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.
- 9. Field visit to familiarise students with ecology of different sites.

- 1. Odum, E.P. (2005). Fundamentals of ecology. Cengage Learning India Pvt. Ltd., New Delhi. 5th edition.
- 2. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya Publications, New Delhi, India.
- 3. Sharma, P.D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
- 4. Wilkinson, D.M. (2007). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford University Press. U.S.A.
- 5. Kormondy, E.J. (1996). Concepts of ecology. PHI Learning Pvt. Ltd., Delhi, India. 4th edition.

NAME OF THE PAPER (CODE)	: PLANT SYSTEMATICS (BTC 4.3)
Number of Credit	: 03
Number of Hours of Lecture	: 45

The following are the Course Objectives (COs) for the paper **PLANT SYSTEMATICS**:

CO 1	To understand to the basics of plant taxonomy and significance of plant
	systematic.
CO 2	To learn about taxonomic hierarchy and Botanical Nomenclature.
CO 3	To be well versed on the different systems of classifications.
CO 4	To learn about numerical taxonomy.
CO 5	To gain knowledge on phylogeny of angiosperms.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Introduction to	CSO 1.1: To define	12	26	
Significance of	systematics; Plant	plant systematic and			
Plant	identification,	explain on plant			
systematic	Classification,	identification,			
(CO 1)	Nomenclature.	classification and			
	Evidences from	nomenclature. (K+U)			
	palynology, cytology,	CSO 1.2: To illustrate			
	phytochemistry and	on the evidences from			
	molecular data.	palynology, cytology,			
	Functions of	phytochemistry and			
	Herbarium; Important	molecular data. (A)			
	herbaria and	CSO 1.3: To explain			
	botanical gardens of	about field inventory			
	the world and India;	and functions of			
	Virtual herbarium; E-	herbarium. (U)			
	flora; Documentation:	CSO 1.4: To discuss			
	Flora, Monographs,	on important herbaria			
	Journals; Keys:Single	and botanical gardens			
	access and Multi-	of the world and India			
	access.	as well as on virtual			
		herbarium and e-flora.			
		(U)			
		CSO 1.5: To illustrate			
		on taxonomic			
		documentation and			
		taxonomic keys. (A)			
UNIT 2	Concept of taxa	CSO 2.1: To explain	8	18	
Taxonomic	(family, genus,	the concept of taxa,			
hierarchy and	species); Categories	categories and			
Botanical	and taxonomic	taxonomic hierarchy.			
Nomenclature		(U)			

UNIT 3 Systems of classification (CO 3)Classification systems of Bentham and Hooker (upto series) and Engler and Pranti (upto series); Brief reference of Angiosperm Phylogeny Group (APG III) classification.CSO 3.1: To discuss on the major contributions of Theophrastus, Bauhin, Tournefort, Linnaeus, Adanson, A.P. de Candolle. Bessey, Hutchinson, Takhtajan and Cronquist. (U) CSO 3.2: To illustrate on classification systems of Bentham and Hooker and Engler and Prantl. (A) CSO 3.3: To outline in brief the Angiosperm Phylogeny Group (APG III) classification.18UNIT 4 Biometrics, numerical taxonomy and cladistics (CO 4)Characters; Variations; OTUs, character weighting and coding; Cluster and ysis; Phenograms, cladograms (definitions and differences).CSO 4.1: To explain on the character analysis, phenograms and18	(CO 2)	hierarchy; Species concept (taxonomic, biological, evolutionary). Principles and rules (ICN); Ranks and names; Typification, author citation, valid publication, rejection of names, principle of priority and its limitations; Names of hybrids.	CSO 2.2: To explain about the species concept. (U) CSO 2.3: To illustrate on the principles and rules of ICN. (A)			
UNIT 4 Biometrics, numerical taxonomy and cladistics (CO 4)Characters; Variations; OTUs, character weighting and coding; Cluster analysis; Phenograms, cladograms (definitions and differences).CSO 4.1: To explain on the characters and variations of numerical taxonomy. (U) CSO 4.2: To illustrate on OTUs, character weighting and coding. (A)18	Systems of classification	of Bentham and Hooker (upto series) and Engler and Prantl (upto series); Brief reference of Angiosperm Phylogeny Group (APG III)	on the major contributions of Theophrastus, Bauhin, Tournefort, Linnaeus, Adanson, A.P. de Candolle. Bessey, Hutchinson, Takhtajan and Cronquist. (U) CSO 3.2 : To illustrate on classification systems of Bentham and Hooker and Engler and Prantl. (A) CSO 3.3 : To outline in brief the Angiosperm Phylogeny Group (APG III)	8	18	
UNIT 5Terms and conceptsCSO 5.1: To explain920	Biometrics, numerical taxonomy and cladistics (CO 4)	Variations; OTUs, character weighting and coding; Cluster analysis; Phenograms, cladograms (definitions and differences).	CSO 4.1: To explain on the characters and variations of numerical taxonomy. (U) CSO 4.2: To illustrate on OTUs, character weighting and coding. (A) CSO 4.3: To explain on cluster analysis, phenograms and cladograms. (U)			

Dhylogony of	(primitive and	the terms and concents
	-	1
Angiosperms	advanced, homology	±
(CO 5)	and analogy,	advanced characters,
	parallelism and	homology and analogy,
	convergence,	parallelism and
	monophyly,	convergence,
	Paraphyly, polyphyly	monophyly, paraphyly,
		polyphyly and clades.
	and evolution of	(U)
	angiosperms; Co-	CSO 5.2: To discuss
	evolution of	on the origin and
	angiosperms and	evolution of
	animals.	angiosperms. (U)
		CSO 5.3: To explain
		the co-evolution of
		angiosperms and
		animals. (U)
		CSO 5.4: To work out
		on methods of
		illustrating
		evolutionary
		relationship. (A)

NAME OF THE PAPER	: PLANT SYSTEMATICS
Code	: BTC 4.3(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

1. Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker's system of classification):

Ranunculaceae	-	Ranunculus,	Delphinium	
Brassicaceae	-	Brassica, Alyssum	/ Iberis	
Myrtaceae	-	Eucalyptus,	Callistemon	
Umbelliferae	-	Coriandrum /Anethum /	/Foeniculum	
Asteraceae	-	Sonchus/Launaea, Verno	onia/Ageratum, Eclipta/Tridax	
Solanaceae	-	Solanum nigrum/Withar	nia	
Lamiaceae	-	Salvia/Ocimum		
Euphorbiaceae	-	Euphorbia hirta/E.milii	, Jatropha	
Liliaceae	-	Asphodelus/Lilium/Alliu	ит	
Poaceae	-	Triticum/Hordeum/Aven	na	
visit (local) Subje	act to are	ont of funds from the univ	vareity	

- 2. Field visit (local) Subject to grant of funds from the university.
- 3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book).

- 1. Singh, (2012). *Plant Systematics:* Theory and Practice Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition.
- 2. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 4. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi.
- 5. Radford, A.E. (1986). Fundamentals of *Plant Systematics*. Harper and Row, New York.

Semester-V

NAME OF THE PAPER (CODE) : MOLECULAR BIOLOGY (BTC 5.1) Number of Credit

Number of Hours of Lecture : 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper MOLECULAR BIOLOGY:

:03

CO 1	To learn about nucleic acids, DNA, RNA, Central dogma and genetic code.
CO 2	To understand the replication of DNA.
CO 3	To learn the detailed transcription process.
CO 4	To be sensitized on the processing and modification of RNA.
CO 5	To gain knowledge and understanding on translation process.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Historical perspective;	CSO 1.1: To discuss the	11	24	
Nucleic acids:	DNA as the carrier of	historical perspective of			
Carriers of	genetic information	e			
genetic	(Griffith's, Hershey &				
information;	Chase). DNA	1			
The	Structure: Watson and	about DNA as the carrier			
Structures of	Crick model, Salient	of genetic information			
DNA and	features, Types of				
RNA / Genetic	DNA, Types of genetic				
Material;	material, RNA				
Central	Structure. Chromatin				
dogma and		according to Miescher and			
genetic code	Euchromatin,	Watson and Crick. (A)			
(CO 1)	Heterochromatin -	CSO 1.4: To explain the			
		historic perspective of			
	Facultative	DNA structure. (U)			
	heterochromatin.	CSO 1.5: To explain the			
	The Central Dogma				
	(Adaptor hypothesis	• 1			
	and discovery of	51 C			
	mRNA template),				
	Genetic code	renaturation and cot			
	(deciphering & salient				
	features)	CSO 1.6 : To illustrate the			
		organization of DNA in			
		prokaryotes, viruses and			
		eukaryotes (A).			
		CSO 1.7: To explain			

		about RNA structure, mitochondria and chloroplast DNA. (U) CSO 1.8 : To discuss in detail about nucleosome, chromatin structure, euchromatin and heterochromatin. (U) CSO 1.9 : To study about key experiments establishing the central dogma and learn the salient features of genetic code. (K+A)			
UNIT 2 The replication of DNA (CO 2)	Chemistry of DNA synthesis (Kornberg's discovery); General principles – bidirectional, Semiconservative and semi discontinuous replication; Various models of DNA replication, including rolling circle, θ (theta) mode of replication, replication of linear ds-DNA; Enzymes involved in DNA replication.	CSO 2.1: To explain the chemistry of DNA synthesis. (U) CSO 2.2: To discuss the general principles of bidirectional, semi conservative and semi discontinuous replication and RNA priming. (U) CSO 2.3: To explain about various models of DNA replication including rolling circle, theta mode of replication,	10	22	
UNIT 3 Transcription (CO 3)	Transcriptioninprokaryotesandeukaryotes.Principlesoftranscriptionalregulation;Prokaryotes:Regulation of lactosemetabolismmetabolismandtryptophan synthesis in <i>E.coli.</i> Eukaryotes:transcriptionfactors,heatshockproteins,	CSO 3.1:Toexplaintranscriptioninprokaryotesandeukaryotes. (U0CSO 3.2:CSO 3.2:Toexplain theprinciplesoftranscriptionalregulation.(U)CSO 3.3:ToCSO 3.3:Todiscusstheregulationoftheregulationofandand	8	18	

	standida and mentil				
	steroids and peptide				
	hormones.	CSO 3.4 : To illustrate on			
		transcription factors, heat			
		shock proteins, steroids			
		and peptide hormones.			
		(A)			
		CSO 3.5: To explain			
		about gene silencing. (U)			
UNIT 4	Split genes-concept of	CSO 4.1: To explain	8	18	
Processing	introns and exons,	about split genes, concept			
and	removal of introns,	of introns and exons,			
modification	Splicing pathways,	removal of introns. (U)			
of RNA (CO	group I and group II				
4)	intron splicing,	spliceosome machinery,			
- /	alternative splicing,	1			
	eukaryotic mRNA				
	processing (5' cap, 3'	splicing. (A)			
	polyA tail);	CSO 4.3 : To discuss on			
	Ribozymes; RNA				
	. .	1 0			
	editing and mRNA	2			
	transport.	processing. (U)			
		CSO 4.4: To explain on			
		ribozymes, RNA editing			
		and mRNA transport. (U)			
UNIT 5	Ribosome structure	CSO 5.1: To explain	8	18	
Translation	and assembly, mRNA;	about structure and			
(CO 5)	Charging of tRNA,	assembly of ribosome and			
	aminoacyltRNA	mRNA. (U)			
	synthetases; various	1			
	steps in protein	about charging of tRNA,			
	synthesis, proteins	aminoacyl			
	involved in initiation,	tRNAsynthetases.(U)			
	elongation and	CSO 5.3: To illustrate on			
	termination of	the various steps in			
	polypeptides;	protein synthesis, proteins			
	Inhibitors of protein	involved in initiation,			
	synthesis; Post-	elongation and			
	translational	termination of			
	modifications of				
	proteins.	CSO 5.4 : To discuss			
	r	about fidelity of			
		translation and inhibitors			
		of protein synthesis. (U)			
		CSO 5.5 : To explain on			
		-			
		post-translational			
1		modification of proteins.			
		(U)			

NAME OF THE PAPER	: MOLECULAR BIOLOGY
Code	: BTC 5.1(P)
Number of Credit	:01
Number of Hours of Lecture	: 30

- 1. Preparation of LB medium and raising E.coli.
- 2. Isolation of genomic DNA from *E.coli*.
- 3. DNA estimation by diphenylamine reagent/UV Spectrophotometry.
- 4. Study of DNA replication mechanisms through photographs (Rolling circle, Theta replication and semi-discontinuous replication).
- 5. Study of structures of prokaryotic RNA polymerase and eukaryotic RNA polymerase II through photographs.
- 6. Photographs establishing nucleic acid as genetic material (Messelson and Stahl's, Avery et al, Griffith's, Hershey & Chase's and Fraenkel & Conrat's experiments)

- 1. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th edition.
- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings. U.S.A. 9th edition.
- 4. Russell, P. J. (2010). i-Genetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition

NAME OF THE PAPER (CODE)	: PLANT PHYSIOLOGY	(BTC 5.2)
Number of Credit	: 03	
Number of Hours of Lecture	: 45	

The following are the Course Objectives (COs) for the paper **PLANT PHYSIOLOGY**:

CO 1	To be introduced to and understand about plant water relations.
CO 2	To learn about nutrition in plants.
CO 3	To understand about translocation in plants.
CO 4	To be sensitized about plant growth regulators.
CO 5	To learn and understand the physiology of flowering.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Water Potential and its	CSO 1.1: To explain	10	22	
Plant-water	components, water	water potential and its			
relations (CO	absorption by roots,	components. (U)			
1)	aquaporins, pathway of	CSO 1.2: To illustrate on			
-)	water	water absorption by roots			
	movement, symplast,	and aquaporins. (A)			
	apoplast, transmembrane	CSO 1.3: To explain			
	pathways, root pressure,	pathway of water			
	guttation. Ascent of sap-	movement, symplast,			
	cohesion-tension theory.	apoplast and			
	Transpiration and factors	transmembrane pathways.			
	affecting transpiration,	(U)			
	mechanism of stomatal	CSO 1.4: To describe			
	movement.	about root pressure and			
		guttation. (K)			
		CSO 1.5: To explain			
		ascent of sap and			
		cohesion-tension theory.			
		(U)			
		CSO 1.6 : To discuss about			
		transpiration and factors			
		affecting transpiration,			
		anti transpirants and			
		mechanism of stomatal			
		movement.(U)	10		
UNIT 2	Essential and beneficial	CSO 2.1 : To explain about essential and	10	22	
Mineral	elements, macro and micronutrients, methods				
nutrition (CO		beneficial elements, macro and micronutrients. (U)			
2)	of study and use of nutrient solutions, criteria	CSO 2.2 : To describe the			
	for essentiality, mineral	methods and use of			
	deficiency symptoms,	nutrient solutions. (K)			
	roles of essential	CSO 2.3 : To explain on			
	elements, chelating	criteria of essentiality and			
	agents.	mineral deficiency			
	azems.	mineral deficiency			

		· · · · · · · · · · · · · · · · · · ·		[
		symptoms. (U)			
		CSO 2.4: To illustrate on			
		essential elements and			
		chelating agents. (A)	10		
UNIT 3	Soil as a nutrient	CSO 3.1: To illustrate on	10	22	
Nutrient	reservoir, transport of	soil as a nutrient reservoir.			
Uptake	ions across cell	(A)			
Translocation	membrane, passive	CSO 3.2: To discuss on			
in the phloem	absorption,	transport of ions across			
(CO 3)	electrochemical gradient, facilitated diffusion,	cell membrane, passive			
	active absorption, role of	absorption, electrochemical gradient,			
	ATP, carrier systems,	facilitated diffusion, active			
	proton ATPase pump and	absorption and role of			
	ion flux, uniport, co-	ATP. (U)			
	transport, symport,	CSO 3.3: To explain			
	antiport.	about carrier systems,			
	Experimental evidence in	proton ATPase pump and			
	support of phloem as the	ion flux, uniport, co-			
	site of sugar translocation.	transport, symport and			
	Pressure–Flow	antiport. (U)			
	Model; Phloem loading	CSO 3.4 : To discuss about			
	and unloading; Source-	experimental evidence in			
	sink relationship.	support of phloem as the			
		site of sugar translocation.			
		(U)			
		CSO 3.5: To demonstrate			
		Pressure-flow model,			
		phloem loading and			
		unloading and source-sink			
		relationship. (A)			
UNIT 4	Discovery, chemical	CSO 4.1: To discuss on	5	12	
Plant growth	nature (basic structure),	the discovery, chemical			
regulators	bioassay and	nature and structure of			
(CO 4)	physiological roles of	auxins, gibberellins,			
	Auxin,	abscisic acid, ethylene,			
	Gibberellins, Cytokinin,	brassinosteroids and			
	Abscisic acid, Ethylene,	jasmonic acid. (U)			
	Brassinosteroids and	CSO 4.2 : To explain the			
	Jasmonic acid.	bioassay and physiological			
		roles of auxins,			
		gibberellins, abscisic acid,			
		ethylene, brassinosteroids			
TINITT F	Dhotoporiodism	and jasmonic acid. (U) CSO 5.1 : To define and	10	22	
UNIT 5	Photoperiodism, flowering stimulus,	explain photoperiodism.	10	22	
Physiology of	florigen concept,	(K+U)			
flowering;	vernalization, seed	CSO 5.2 : To illustrate on			
Phytochrome,	dormancy.	flowering stimulus,			
crytochromes	Discovery, chemical	florigen concept,			
and	nature, role in	vernalization and seed			
phototropins	photomorphogenesis, low	dormancy. (A)			
(CO 5)	energy responses (LER)	CSO 5.3 : To explain the			
. ,	energy responses (LER)				

and high irradiance	discovery, chemical nature		
responses (HIR), mode of	and role of light pigments		
action.	on photomorphogenesis.		
	(U)		
	CSO 5.4: To describe		
	about low energy		
	response, high irradiance		
	responses and the mode of		
	action. (K)		

NAME OF THE PAPER	: PLANT PHYSIOLOGY
Code	: BTC 5.2(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. Determination of osmotic potential of plant cell sap by plasmolytic method.
- 2. Determination of water potential of given tissue (potato tuber) by weight method.
- 3. Study of the effect of wind velocity and light on the rate of transpiration in excised twig/leaf.
- 4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.
- 5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
- 6. To study the phenomenon of seed germination (effect of light).
- 7. To study the effect of different concentrations of IAA on *Avena* coleoptile elongation (IAA Bioassay).

Demonstration experiments

- 1. To demonstrate suction due to transpiration.
- 2. Fruit ripening/Rooting from cuttings (Demonstration).

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual. Narosa Publishing House, New Delhi.

NAME OF THE PAPER (CODE)	: PLANT BIOTECHNOLOGY (BTC 5.3)
Number of Credit	: 03
Number of Hours of Lecture	: 45

The following are the Course Objectives (COs) for the paper **PLANT BIOTECHNOLOGY**:

CO 1	To learn the concept of plant tissue culture.
CO 2	To learn about Recombinant DNA Technology.
CO 3	To gain knowledge on gene cloning.
CO 4	To learn about methods of gene transfer.
CO 5	To gain in depth knowledge on applications of biotechnology

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Historical perspective;	CSO 1.1 : To outline on	12	26	
Plant Tissue	Composition of media;	the historical			
Culture (CO	role of Vitamins and	perspective of plant			
1)	hormones; Totipotency;	tissue culture. (K)			
	Organogenesis;	CSO 1.2: To discuss on			
	Embryogenesis	the composition of			
	(somatic and zygotic);	media, nutrient and			
	Protoplast isolation,	1			
	culture and fusion;				
	Tissue culture	÷			
	applications	about totipotency,			
	(micropropagation, virus				
	elimination, secondary	• •			
	-	CSO 1.4: To illustrate			
	haploids, triploids and	1 1			
	hybrids;	culture and fusion. (A)			
	Cryopreservation;	CSO 1.5 : To explain on			
	Germplasm	the various important			
	Conservation).	applications of tissue			
		culture. (U)			
UNIT 2	Restriction	CSO 2.1 : To explain the	8	18	
Recombinant	Endonucleases (Types	history, types, biological			
DNA	I-IV, biological role	role and application of			
technology	and application);	restriction			
(CO 2)	Cloning Vectors:	endonucleases. (U)			
	Prokaryotic (pUC 18	CSO 2.2: To discuss			
	and pUC19, pBR322,	linear and circular			
	Ti plasmid, BAC);	restriction mapping. (U)			
	Lambda phage, M13	CSO 2.3: To explain on			
	phagemid, Cosmid,	prokaryotic cloning			
	Shuttle vector;	vectors, lambda phage,			
	Eukaryotic Vectors	M13 phagemid, cosmid,			

		abuttle reation and			
	(YAC).	shuttle vector and			
		eukaryotic vectors. (U)		10	
UNIT 3	Recombinant DNA,	CSO 3.1: To explain	8	18	
Gene Cloning	Bacterial	about recombinant			
(CO 3)	Transformation and	DNA, bacterial			
	selection of	transformation and			
	recombinant clones,	selection of recombinant			
	Gene Construct;	clones. (U)			
	construction of	CSO 3.2: To illustrate			
	genomic and cDNA	on PCR mediated gene			
	libraries, screening	cloning, gene construct,			
	DNA libraries to	construction of genomic			
	obtain gene of interest	and cDNA libraries. (A)			
	-				
	by genetic selection;	CSO 3.3: To explain			
	Colony hybridization;	about screening DNA			
	PCR	libraries to obtain gene			
		of interest by genetic			
		selection. (U)			
		CSO 3.4: To discuss on			
		complementation,			
		colony hybridization			
		and PCR. (U)			
UNIT 4	Agrobacterium-	CSO 4.1: To explain on	8	18	
Methods of	mediated, Direct gene	Agrobacterium-			
gene transfer	transfer by	mediated gene transfer.			
(CO 4)	Electroporation,	(U)			
	Microinjection,	CSO 4.2: To illustrate			
	Microprojectile	on direct gene transfer			
	bombardment;	by electroporation,			
	Selection of	microinjection and			
	transgenics- selectable	5			
	marker and reporter				
	genes (Luciferase,				
	GUS, GFP).	selection of transgenics-			
		selectable markers and			
		reporter genes. (U)			
UNIT 5	Pest resistant (Bt-	CSO 5.1 : To explain on	9	20	
Applications	cotton); herbicide	application of	,		
of	resistant plants	biotechnology on pest			
Biotechnology	(RoundUp Ready	resistant, herbicide			
(CO 5)	· · · · ·	<i>,</i>			
	•	1			
	crops with improved	transgenic crops with			
	quality traits (Flavr	improved quality traits.			
	Savr tomato, Golden				
	rice); Role of	CSO 5.2: To discuss on			
	transgenics in	improved horticultural			
	bioremediation	varieties and role of			

Human	Products– Growth	bioremediation. (U) CSO 5.3: To explain about edible vaccines, industrial enzymes and genetically engineered		
		products-human growth hormone. (U) CSO 5.4 : To discuss on Humulin and biosafety		
		concerns. (U)		

NAME OF THE PAPER	: PLANT BIOTECHNOLOGY
Code	: BTC 5.3(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. Preparation of MS medium.
- 2. Study of anther, embryo and endosperm culture, micropropagation, somatic embryogenesis & artificial seeds through photographs.
- 3. Isolation of protoplasts.
- 4. Study of methods of gene transfer through photographs: *Agrobacterium*-mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment.
- 5. Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savr tomato through photographs.
- 6. Isolation of plasmid DNA.
- 7. Gel electrophoresis of plasmid DNA.

- 1. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 2. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 3. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi. 5th edition.
- 4. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons, U.K. 5th edition.
- 5. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.

Semester-VI

NAME OF THE PAPER (CODE)	: PLANT METABOLISM (BTC 6.1)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **PLANT METABOLISM**:

CO 1	To be introduced to and understand the concept of metabolism.
CO 2	To understand about carbon assimilation in plants
CO 3	To learn about carbohydrate metabolism and carbon oxidation in
	plants.
CO 4	To learn about ATP synthesis and signal transduction in plants
CO 5	To understand and learn about lipid and nitrogen metabolism.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 Concept of metabolism (CO 1)	Introduction, anabolic and catabolic pathways, regulation of metabolism, role of regulatory enzymes (allosteric, covalent modulation and Isozymes).	CSO 1.1: To describe the concept of metabolism. (K) CSO 1.2: To explain about anabolic and catabolic pathways. (U) CSO 1.3: To illustrate on the regulation of metabolism and role of regulatory enzymes. (A)	5	12	
UNIT 2 Carbon assimilation (CO 2)	Photosynthetic pigments (chlorophylls and accessory pigments), photosynthetic electron transport, antenna molecules and reaction centres, photochemical reactions, PSI, PSII, Q cycle, photorespiration, C4pathways; Crassulacean acid metabolism.	CSO 2.1: To explain on photosynthetic pigments and their roles. (U) CSO 2.2: To discuss on antenna molecules and reaction centres of photosynthetic pigments. (U) CSO 2.3: To illustrate on photochemical reactions and photosynthetic electron transport. (A) CSO 2.4: To explain on PSI, PSII and Q cycle. (U)	10	22	

		CSO 2.5: To discuss			
		on CO2 reduction, C4			
		pathways, CAM			
		pathway and factors			
		affecting CO2			
		reduction. (U)			
UNIT 3	Synthesis and catabolism	· ·	10	22	
Carbohydrate	of sucrose and starch.	on synthesis and	10		
metabolism;	Glycolysis, fate of	catabolism of sucrose			
Carbon	5 5 7				
	pyruvate, regulation of				
Oxidation	glycolysis, oxidative	1			
(CO 3)	pentose phosphate	glycolysis, fate of			
	pathway, oxidative	pyruvate, regulation			
	decarboxylation of	of glycolysis and			
	pyruvate, regulation of	oxidative pentose			
	PDH, NADH shuttle;	phosphate pathway.			
	TCA cycle, mitochondrial	(U)			
	electron transport,	CSO 3.3: To explain			
	oxidative	on oxidative			
	phosphorylation, cyanide-	decarboxylation of			
	resistant respiration.	pyruvate and			
	resistant respiration.	regulation of PDH			
		0			
		and NADH shuttle.			
		(U)			
		CSO 3.4: To explain			
		TCA cycle,			
		amphibolic role,			
		anaplerotic reactions			
		and regulation of the			
		cycle. (U)			
		CSO 3.5 : To illustrate			
		mitochondrial			
		electron transport and			
		oxidative			
		phosphorylation. (A)			
		CSO 3.6 : To explain			
		cyanide-resistant			
		respiration and factors			
		affecting respiration.			
		(U)			
UNIT 4	Mechanism of ATP	CSO 4.1: To explain	10	22	
ATP-	synthesis, substrate level	the mechanism of			
Synthesis and	phosphorylation,	ATP synthesis,			
Mechanism of	chemiosmotic mechanism	substrate level			
signal	(Oxidative and	phosphorylation and			
transduction	photophosphorylation),	chemiosmotic			
(CO 4)	ATP synthase, Boyers	mechanism. (U)			
	conformational model,	CSO 4.2 : To illustrate			
	Racker's experiment,	on ATP synthase,			
	ruekei 5 experiment,	on min synthase,			

	I 1 0	D		[]	
	Jagendorf's experiment;	Boyers			
	role of uncouplers.	conformational			
	Receptor-ligand	model, Racker's			
	interactions; Second	experiment and			
	messenger concept,	Jagendrof's			
	Calcium calmodulin.	experiment. (A)			
		CSO 4.3: To discuss			
		the role of			
		uncouplers, receptor-			
		ligand interactions,			
		second messenger			
		concept and calcium			
		calmodulin. (U)			
		CSO 4.4: To explain			
		on MAP kinase			
		cascade. (U)			
UNIT 5	Synthesis and breakdown	CSO 5.1: To explain	10	22	
Lipid and	of triglycerides, β -	the synthesis and			
Nitrogen	oxidation, glyoxylate	breakdown of			
metabolism	cycle, gluconeogenesis	triglycerides. (U)			
(CO 5)	and its role in	CSO 5.2: To discuss			
	mobilisation of lipids	on β -oxidation,			
	during seed germination,	glyoxylate cycle,			
	α oxidation.	gluconeogenesis and			
	Nitrate assimilation,	its role in			
	biological nitrogen	mobilisation of lipids			
	fixation (examples of	during seed			
	legumes and non-	germination. (U)			
	legumes);	CSO 5.3 : To explain			
	Ammonia assimilation	α -oxidation. (U)			
	and transamination.	CSO 5.4 : To explain			
		on nitrate			
		assimilation,			
		biological nitrogen			
		fixation. (U)			
		CSO 5.5 : To illustrate			
		on physiology and			
		<i>.</i>			
		nitrogen fixation, ammonia assimilation			
		and transamination. (A)			
		(A)			

NAME OF THE PAPER	: PLANT METABOLISM
Code	: BTC 6.1(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. Chemical separation of photosynthetic pigments.
- 2. To study the effect of light intensity on the rate of photosynthesis.
- 3. Effect of carbon dioxide on the rate of photosynthesis.
- 4. To compare the rate of respiration in different parts of a plant.
- 5. To demonstrate activity of Nitrate reductase in germinating leaves of different plant sources.
- 6. Demonstration of fluorescence by isolated chlorophyll pigments.
- 7. Demonstration of absorption spectrum of photosynthetic pigments.

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 3. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.

NAME OF THE PAPER (CODE)	: BIOMOLECULES (BTC 6.2)
Number of Credit	: 03
Number of Hours of Lecture	: 45

The following are the Course Objectives (COs) for the paper **BIOMOLECULES**:

CO 1	To understand and study biomolecules in the biological world.	
CO 2	To understand nomenclature, classification, structures and functions of	
	carbohydrates, lipids and fatty acids	
CO 3	To learn about aminio acids, nucleic acids, RNA and DNA.	
CO 4 To learn about the concept of bioenergetics.		
CO 5	To understand enzymes, its types, classification, structure and activity.	

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1 Introduction to Biomolecules (CO 1) UNIT 2 Biomolecules I (CO 2)	Types and significance of chemical bonds; Structure and properties of water; pH and buffers. Carbohydrates: Nomenclature and classification ; Monosacchar ides ; Disaccharide s;Oligosaccharides and polysaccharides. Lipids: Definition and major classes of storage and structural lipids; Fatty acids structure and functions; Essential fatty acids; Triacyl glycerols structure, functions and properties;	CSO 1.1: To define biomolecules and explain the types and significance of chemical bonds. (K+U) CSO 1.2: To explain about the structure and properties of water, pH and buffers. (U) CSO 2.1: To explain the nomenclature, classification (monosaccharides, disaccharides, oligosaccharides and polysaccharides) of carbohydrates. (U) CSO 2.2: To define lipids and explain the major classes of storage and structural lipids. (K+U) CSO 2.3: To explain the structure of fatty acids and functions. (U) CSO 2.4: To define essential fatty acids and explain the structure, function and properties of triacyl glycerols. (K+U) CSO 2.5: To explain about phosphoglycerides. (U)	Items 7 10	22	
UNIT 3 Biomolecules II (CO 3)	Phosphoglycerides. Proteins: Structure of amino acids; Levels of protein structure-primary, secondary, tertiary	CSO 3.1 : To explain the structure of amino acids, levels of protein structure; protein denaturation and biological roles of proteins. (U)	10	22	

	and quarternary; Protein denaturation and biological roles of proteins. Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotides; Types of nucleic acids; Structure of A, B, Z types of DNA; Types of RNA; Structure of tRNA.	CSO 3.2: To explain the structure of nitrogenous bases, structure and functions of nucleotides, types of nucleic acids, structure of A, B and Z (U) CSO 3.3: To illustrate about the types of DNA (A) CSO 3.4: To explain and illustrate about the types of RNA and structure of tRNA. (U+A)			
UNIT 4 Bioenergenetics (CO 4)	Laws of thermodynamics, concept of free energy, endergonic and exergonic reactions, coupled reactions, redox reactions. ATP: structure, its role as a energy currency molecule.	CSO 4.1: To explains the laws of thermodynamics and concept of free energy. (U) CSO 4.2: To explain about endergonic and exergonic reactions, coupled reactions and redox reactions. (U) CSO 4.3: To explain the structure of ATP and its role as energy currency molecule. (U)	6	14	
UNIT 5 Enzymes (CO 5)	Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; Classification of enzymes; Features of active site, substrate specificity, mechanism of action (activation energy, lock and key hypothesis, induced - fit theory), Michaelis – Menten equation, enzyme inhibition and factors affecting enzyme activity.	CSO 5.1: To define enzymes and explain the structure of enzyme (holoenzyme, apoenzyme, cofactors, coenzyme and prosthetic group). (K+U) CSO 5.2: To explain the classification of enzymes, features of active site, substrate specificity and mechanism of enzyme action. (U) CSO 5.3: To explain and work out Michaelis-Menten Equation. (K+A) CSO 5.4: To explain about enzyme inhibition and factors affecting enzyme activity. (U)	12	26	

NAME OF THE PAPER	: BIOMOLECULES
Code	: BTC 6.2(P)
Number of Credit	:01
Number of Hours of Lecture	:3

1. Testing food samples for the presence of biomolecules.

- 2. Qualitative tests for carbohydrates, reducing sugars, non-reducing sugars, lipids and proteins.
- 3. Buffer solution preparations and pH measurement.
- 4. Tests on amino acids.
- 5. Separation of sugars by paper chromatography.
- 6. Isolation of casein from milk.

- 1. Campbell, MK (2012) Biochemistry, 7th ed., Published by Cengage Learning
- 2. Campbell, PN and Smith AD (2011) Biochemistry Illustrated, 4th ed., Published by ChurchillLivingstone
- 3. Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- 4. Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company Nelson DL and Cox MM (2008) Lehninger Principles of Biochemistry, 5th Edition., W.H.Freeman and Company.

NAME OF THE PAPER (CODE)

: PLANT DIVERSITY AND HUMAN WELFARE
(BTC 6.3)
: 03
: 45

COURSE OBJECTIVES (COs)

Number of Hours of Lecture

Number of Credit

The following are the Course Objectives (COs) for the paper **PLANT DIVERSITY AND HUMAN WELFARE**:

CO 1	To acquire detailed knowledge on plant diversity and its scopes.
CO 2	To understand the implications of biodiversity loss and its management.
CO 3	To learn about management of plant biodiversity.
CO 4	To gain in depth knowledge of conservation of biodiversity.
CO 5	To learn on the role of plants in human welfare

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 Plant diversity and its scope (CO 1)	Introduction to plant diversity: Genetic diversity, Species diversity, Plant diversity at theecosystem level, Agrobiodiversity and cultivated plant taxa, wild taxa. Values and uses ofBiodiversity: Ethical and aesthetic values, Precautionary principle, Methodologies for valuation, Uses of plants, Uses of microbes.	Objectives (CSOs) CSO 1.1: To explain about plant diversity: Genetic diversity, Species diversity. (U) CSO 1.2: To explain plant diversity at the ecosystem level. (U) CSO 1.3: To explain about Agrobiodiversity and cultivated plant taxa, wild taxa. (U) CSO 1.4: To explain about values and uses of Biodiversity: Ethical and aesthetic values, Precautionary principle, Methodologies for valuation, Uses of plants,	Hours 12	26	
UNIT 2 Loss of Biodiversity (COM2)	Loss of genetic diversity, Loss of species diversity, Loss of ecosystem diversity, Loss of agrobiodiversity, Projected scenario for biodiversity loss.	Uses of microbes. (U) CSO 2.1: To explain about loss of genetic diversity, loss of species diversity, loss of ecosystem diversity, loss of agrobiodiversity. (U) CSO 2.2: To explain about projected scenario for biodiversity loss. (U)	8	18	
UNIT 3 Management of Plant Biodiversity (CO 3)	Organizations associated with biodiversity management- Methodology for	CSO 3.1: To explain about organizations associated with biodiversity management- Methodology for	10	22	

	execution-IUCN, UNEP, UNESCO, WWF, NBPGR; Biodiversity legislation and conservations, Biodiversity information management and communication.	execution-IUCN, UNEP, UNESCO, WWF, NBPGR. (U) CSO 3.2 : To explain about biodiversity legislation and conservations. (U) CSO 3.3 : To explain about biodiversity information management and communication. (U)			
UNIT 4 Conservation of Biodiversity (CO 4)	Conservation of genetic diversity, species diversity and ecosystem diversity, <i>In situ</i> and <i>ex situ</i> conservation, Social approaches to conservation, Biodiversity awareness programs, Sustainable development.	CSO 4.1: To explain about conservation of genetic diversity, species diversity and ecosystem diversity, <i>In situ</i> and <i>ex situ</i> conservation. (U) CSO 4.2: To explain about social approaches to conservation, biodiversity awareness programs, sustainable development. (U)	7	16	
UNIT 5 Role of plants in relation to Human Welfare (CO 5)	a) Importance of forestry their utilization and commercial aspects b) Avenue trees, c) Ornamental plants of India. d)Alcoholic beverages through ages e) Fermented foods f) Ethnobotanical medicines. Fruits and nuts: Important fruit crops their commercial importance. Wood and its uses.	CSO 5.1: To explain about the importance of forestry their utilization and commercial aspects. (U) CSO 5.2: To explain and illustrate about Avenue trees, ornamental plants of India, alcoholic beverages through ages, fermented foods and ethnobotanical medicines. (U+A) CSO 5.3: To explain about fruits and nuts: Important fruit crops their commercial importance. Wood and its uses. (U)	8	18	

NAME OF THE PAPER	: PLANT DIVERSITY AND HUMAN WELFARE
Code	: BTC 6.3(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. Collecting and preserving plant specimens, preparation of herbarium sheets.
- 2. Study of plant diversity (gymnosperms and angiosperms) of the campus.
- 3. Study of some important ornamental plants of India/Nagaland
- 4. Study of some locally available fruits and nuts.
- 5. Field visit to Biodiversity hot spots.
- 6. Study of local fermented foods (microbes involved and process of fermentation)

- 1. Krishnamurthy, K.V. (2004). An Advanced Text Book of Biodiversity Principles and Practices. Oxford and IBH Publications Co. Pvt. Ltd. New Delhi.
- 2. Sharma O.P., (2015.) Plants and Human Welfare. Pragathi Prakashan
- 3. S.K .Jain, 1995. Manual of Ethnobotany. Scientific publishers.
- 4. S. Sundar Rajan.,(2007.) College Botany Vol-V, Part 1:Taxonomy and Economic Botany Himalaya Publishing House.
- 5. Susil Kumar Mukharjee.,(2004.) College Botany Vol-III. New Central Book agency, London
- 6. P.Vasanth Kumar., (2014.) Economic Botany.
- 7. Erach Bharucha., (1998.) Environmental Studies for UG Students. Universities Press, New Delhi.
- 8. Jain S. K., (2000.) Human aspects of plant diversity. Economic Botany 54: 459 (article).
- 9. Maiti, P.K., Maiti, P.(2017.) Biodiversity : Perception, Peril and Preservation Prentice Hall India Pvt., Limited

NAME OF THE PAPER (CODE)	: PLANT BREEDING (BTC 6.3)
Number of Credit	: 03
Number of Hours of Lecture	: 45

The following are the Course Objectives (COs) for the paper PLANT BREEDING:

CO 1	To learn the basic concepts about the field of plant breeding.
CO 2	To be well versed in the methods of crop improvement.
CO 3	To gain knowledge in quantitative inheritance in plants.
CO 4	To understand about inbreeding depression and heterosis.
CO 5	To gain insights on crop improvement and breeding.

COURSE SPECIFIC OUTCOMES (CSOs)

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Outcomes (CSOs)	Hours		
UNIT 1	Introduction and objectives.	CSO 1.1: To give an	10	22	
Plant	Breeding systems: modes	introduction and explain			
Breeding (CO	of reproduction in crop	the objectives of plant			
1)	plants. Important	breeding. (K+U)			
_,	achievements and	CSO 1.2: To illustrate			
	undesirable consequences	on breeding systems and			
	of plant breeding.	modes of reproduction			
		in crop plants. (A)			
		CSO 1.3: To discuss on			
		important achievements			
		and undesirable			
		consequences of plant			
		breeding. (U)			
UNIT 2	Introduction: Centres of	CSO 2.1: To explain on	10	22	
Methods of	origin and domestication of	the centres of origin and			
crop	crop plants, plant genetic	domestication of crop			
improvement	resources;	plants and plant genetic			
(CO 2)	Acclimatization; Selection	resources. (U)			
(00 -)	methods: For self	CSO 2.2: To discuss on			
	pollinated, cross pollinated	acclimatization of crop			
	and vegetatively propagated	plants, selection			
	plants; Hybridization: For	methods for self			
	self, cross and vegetatively	pollinated, cross			
	propagated plants -	pollinated and			
	Procedure, advantages and	vegetatively propagated			
	limitations.	plants. (U)			
		CSO 2.3: To define			
		hybridization and			
		explain hybridization			
		for self, cross and			
		vegetatively propagated			
		plants. (K+U)			
		CSO 2.4: To illustrate			
		the procedure,			
		advantages and			
		limitations of			

				1 1	1
		hybridization for self,			
		cross and vegetatively			
		propagated plants. (A)			
UNIT 3	Concept, mechanism,	CSO 3.1 : To explain the	10	22	
Quantitative	examples of inheritance of	concept of quantitative			
inheritance	Kernel colour in wheat,	inheritance. (U)			
(CO 3)	kernel colour in corn,	CSO 3.2: To illustrate			
(005)	Monogenic vs polygenic	the mechanism with			
	Inheritance	examples of inheritance			
		of kernel colour in			
		wheat and kernel colour			
		in corn. (A)			
		CSO 3.3 : To make a			
		comparison between			
		monogenic and			
		polygenic inheritance.			
		(U+A)			
UNIT 4	History, genetic basis of	CSO 4.1 : To discuss on	5	12	
Inbreeding	inbreeding depression and	the history of inbreeding	U		
depression	heterosis; Applications.	depression and			
and heterosis	TI III	heterosis. (U)			
		CSO 4.2 : To explain the			
(CO 4)		genetic basis of			
		inbreeding depression			
		and heterosis. (U)			
		CSO 4.3 : To outline the			
		applications of			
		inbreeding depression			
		and heterosis. (K)			
UNIT 5	Role of mutations;	CSO 5.1 : To illustrate	10	22	
Crop	Polyploidy; Distant	the role of mutation in	10		
improvement	hybridization and role of	crop improvement. (A)			
-	biotechnology in crop	CSO 5.2 : To discuss			
and breeding	improvement.	polyploidy in crop			
(CO 5)	r ·	improvement. (U)			
		CSO 5.3 : To explain on			
		distant hybridization			
		and role of			
		biotechnology in crop			
		improvement. (U)			
		mprovement. (U)			

NAME OF THE PAPER	: PLANT BREEDING
Code	: BTC 6.4(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

Project work (To be assigned to students)

- 1. Hybridization technique on selected plants
- 2. Plant tissue culture through root, stem and shoot cuttings or seeds.
- 3. Cultivation of crops and study of acclimatization and various environmental factors affecting its growth.
- 4. Study of qualitative inheritance in kernel color in wheat or corn.

- 1. Singh, B.D. (2005). Plant Breeding: Principles and Methods. Kalyani Publishers. 7th edition.
- Chaudhari, H.K. (1984). Elementary Principles of Plant Breeding. Oxford IBH. 2nd edition 52
- 3. Acquaah, G. (2007). Principles of Plant Genetics & Breeding. Blackwell Publishing.

_____ Semester-VII

NAME OF THE PAPER (CODE)

: HORTICULTURE PRACTICES AND POST HARVEST TECHNOLOGY (BTC 7.1)

Number of Credit Number of Hours of Lecture

:03 : 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper HORTICULTURE PRACTICES AND **POST HARVEST TECHNOLOGY:**

CO 1	To understand about the field of horticulture and its techniques.
CO 2	To learn about floriculture and ornamental plants.
CO 3	To learn about various vegetable and fruit crops.
CO 4	To learn about post-harvest technologies.
CO 5	To understand and learn about landscaping and garden design.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Scope and importance,	CSO 1.1: To explain	10	22	
Introduction	Branches of	about the scope and			
and	horticulture; Role in	importance of			
horticultural	rural economy and	horticulture and			
techniques	employment	different branches of			
(CO 1)	generation; Importance	horticulture. (U)			
	in food and nutritional	CSO 1.2: To discuss			
	security; Urban	the role of horticulture			
	horticulture and	in rural economy and			
	ecotourism. Application	employment			
	of fertilizers and PGRs;	generation. (U)			
	Biofertilizers,	CSO 1.3: To explain			
	biopesticides; Irrigation	on the importance of			
	methods (drip	horticulture in food and			
	irrigation, surface	nutritional security. (U)			
	irrigation, furrow and	CSO 1.4: To discuss on			
	border irrigation);	urban horticulture and			
	Hydroponics;	ecotourism. (U)			
	Propagation Methods:	CSO 1.5: To explain			
	asexual (grafting,	on application of			
	cutting, layering,	manure, fertilizers,			
	budding), sexual (seed	nutrients and PGRs.			
	propagation).	(U)			
		CSO 1.6: To discuss on			
		weed control, bio			
		fertilizers and bio			
		pesticides. (U)			

					
		CSO 1.7: To explain			
		about the different			
		methods of irrigation			
		and hydroponics. (U)			
		CSO 1.8: To discuss on			
		asexual and sexual			
		propagation methods.			
		(U)			
		CSO 1.9 : To discuss on			
		scope and limitations			
		oh horticulture. (U)			
UNIT 2	Cut flowers, bonsai,	CSO 2.1 : To discuss	10	22	
	, , ,		10	ZZ	
Floriculture	commerce (market	about cut flowers and			
and	demand and supply).	bonsai as well as their			
Ornamental	Types, classification	market demand and			
plants (CO 2)	(annuals, perennials);	supply. (U)			
	Identification and	CSO 2.2: To explain			
	salient features of some	about the importance of			
	ornamental plants [rose,	flower shows and			
	gladiolus, orchids,	exhibitions. (U)			
	poppies, gerberas,	CSO 2.3: To explain			
	tuberose, sages, cacti	about the different			
	and succulents (opuntia,	types and classification			
	agave and spurges)]	of flowers and			
	Ornamental flowering	ornamental plants. (U)			
	trees (Indian laburnum,	CSO 2.4 : To identify			
	gulmohar, Jacaranda,	and explain the salient			
	Lagerstroemia, fishtail,	features of some			
	areca palms, coral tree).	ornamental plants.			
	areca panns, corar irec).	(A+U)			
		CSO 2.5: To identify			
		and explain the salient			
		features of some			
		ornamental flowering			
		trees. (A+U)			
UNIT 3	Production, origin and	CSO 3.1: To explain	5	12	
Fruit and	distribution;	about the production,			
vegetable	Description of plants	origin and distribution			
crops (CO 3)	and their economic	of fruits and vegetable			
	products;	crops. (U)			
	Management and	CSO 3.2: To illustrate			
	marketing of vegetable	on description of plants			
	and fruit crops;	and their economic			
	Identification of some	products. (A)			
	fruits and vegetable	CSO 3.3 : To discuss on			
	varieties (citrus,	the management and			
	banana, mango, chillies	marketing of fruits and			
	and cucurbits).	vegetable crops. (U)			
		CSO 3.4 : To identify			
		CSU 3.4 . 10 Identify			

					[]
		and study some fruits			
		and vegetable varieties.			
		(A)			
UNIT 4	Importance of post-	CSO 4.1: To explain	10	22	
Post-harvest	harvest technology in	on the importance of			
technology	horticultural crops;	post harvest technology			
(CO 4)	Evaluation of quality	in horticultural crops.			
	traits; Harvesting and	(U)			
	handling of fruits,	CSO 4.2: To study			
	vegetables and cut	about the evaluation of			
	-				
	flowers; Principles,	quality traits. (U+A)			
	methods of preservation	CSO 4.3: To explain			
	and processing;	about harvesting and			
	Methods of minimizing	handling of fruits,			
	loses during storage and	vegetables and cut			
	transportation; Food	flowers. (U)			
	irradiation - advantages	CSO 4.4: To illustrate			
	and disadvantages; food	on the principles and			
	safety.	methods of			
		preservation and			
		processing of fruits and			
		vegetables. (A)			
		CSO 4.5 : To discuss on			
		the methods of			
		minimizing losses			
		during storage and			
		transportation. (U)			
		-			
		CSO 4.6 : To explain			
		about food irradiation,			
		its advantages and			
		disadvantages and food			
		safety. (U)			
UNIT 5	Planning and layout	CSO 5.1 : To discuss on	10	22	
Landscaping	(parks and avenues);	planning and layout of			
and garden	gardening traditions -	parks and avenues. (U)			
design (CO 5)	Ancient Indian,	CSO 5.2: To explain			
	European, Mughal and	about gardening			
	Japanese Gardens;	traditions with			
	Urban forestry; policies	reference to ancient			
	and practices.	Indian, European,			
	r	Mughal and Japanese			
		gardens. (U)			
		CSO 5.3 : To explain			
		-			
		about urban forestry,			
		policies and practices.			
	l	(U)			

NAME OF THE PAPER

Code Number of Credit Number of Hours of Lecture

: HORTICULTURE PRACTICES AND POST HARVEST TECHNOLOGY : BTC 7.1(P)

:01

: 30

Practicals

1. Field trip

Field visits to gardens, standing crop sites, nurseries, vegetable gardens and horticultural fields at IARI or other suitable locations.

OR

2. **Project work (to be assigned to the students)**

- a) Hydroponics
- b) Post harvest techniques
- c) Floriculture/Olericulture/Pomology (Market demand and sales)
- d) Landscaping & Gardens

- 1. Singh, D. & Manivannan, S. (2009). Genetic Resources of Horticultural Crops. Ridhi International, Delhi, India.
- 2. Swaminathan, M.S. and Kochhar, S.L. (2007). Groves of Beauty and Plenty: An Atlas of Major Flowering Trees in India. Macmillan Publishers, India.
- 3. NIIR Board (2005). Cultivation of Fruits, Vegetables and Floriculture. National Institute of Industrial Research Board, Delhi.
- 4. Kader, A.A. (2002). Post-Harvest Technology of Horticultural Crops. UCANR Publications, USA.56
- 5. Capon, B. (2010). Botany for Gardeners. 3rd Edition. Timber Press, Portland, Oregon.

NAME OF THE PAPER (CODE): BIOSTATISTICS AND BIOINFORMATICS (BTC 7.2)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **BIOSTATISTICS AND BIOINFORMATICS**:

CO 1	To develop in-depth knowledge of biostatistics and data collection.	
CO 2	To learn and understand about central tendency and statistical inference.	
CO 3	To learn about bioinformatics and databases.	
CO 4	To gain knowledge about Biological Sequence Databases and Sequence	
	Alignment and Molecular Phylogeny	
CO 5	To learn about applications of bioinformatics.	

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Definition-Statistical	CSO 1.1: To define	7	16	
Biostatistics and	methods- basic	biostatistics. (K)			
Collection of	principles. Variables-	CSO 1.2: To explain			
primary and	measurements,	about statistical			
secondary data	functions, limitations	methods and basic			
(CO 1)	and uses of statistics.	principles. (U)			
	Types and methods of	CSO 1.3: To illustrate			
	data collection	on variables-			
	procedures-merits and	measurements,			
	demerits,	functions, limitations			
	Classification-	and uses of statistics.			
	tabulation and	(A)			
	presentation of data-	CSO 1.4: To explain			
	sampling methods.	the types and methods			
		of data collection			
		procedures. (U)			
		CSO 1.5: To discuss			
		the merits and			
		demerits of the types			
		of data collection. (U)			
		CSO 1.6: To illustrate			
		on classification,			
		tabulation and			
		presentation of data.			
		(A)			
		CSO 1.7: To explain			
		about sampling			
		methods. (U)			
UNIT 2	Mean, Median, Mode,	CSO 2.1: To define	10	22	
Measures of	Geometric mean-	and solve problems of			

Central	merits and demerits.	mean, median, mode			
Tendency and	Measures of	and geometric mean.			
Statistical	dispersion-range,	(K+A)			
inference (CO 2)	standard deviation,	CSO 2.2: To discuss			
	mean deviation,	the merits and			
	quartile deviation-	demerits of mean,			
	merits and demerits.	median, mode and			
	Hypothesis-simple	geometric mean. (U)			
	hypothesis-student't'	CSO 2.3 : To define			
	test-Chi square test.	and work out			
	Introduction to				
	software tools for	problems on range, standard deviation,			
		mean deviation and			
	statistical analysis.				
		quartile deviation. $(K + \Lambda)$			
		(K+A)			
		CSO 2.4: To discuss			
		the merits and			
		demerits of range,			
		standard. (U)			
		CSO 2.5: To define			
		and explain about			
		hypothesis. (K+U)			
		CSO 2.6: To evaluate			
		and work out			
		problems on			
		student't'-test. (A)			
		CSO 2.7: To work out			
		problems on chi-			
UNIT 3	Introduction	square test. (A) CSO 3.1: To define	10	22	
	Introduction, Branches of		10	22	
Introduction to Bioinformatics	Branches of Bioinformatics, Aim,	and explain the branches of			
and Databases	, , ,				
in Databases	Scope and Research areas of	(K+U)			
Bioinformatics	Bioinformatics:	CSO 3.2: To explain			
(CO 3)	Biological Databases,	about the aim, scope			
	Classification format	and research area of			
	of Biological	bioinformatics. (U)			
	Databases.	CSO 3.3: To discuss			
		on biological			
		databases and			
		classification format			
		of biological			
		databases. (U)			
UNIT 4	National Centre for	CSO 4.1 : To explain	13	28	
Biological	Biotechnology	about National Centre	10		
Sequence	(NCBI): Tools and				
		210000mio10gy		I I	

Databases and	Databases of NCBI,				
Sequence	Database Retrieval	Databases of NCBI,			
Alignment and	Tools, Sequence				
Molecular	submission to NCBI,				
Phylogeny (CO	Basic Local				
4)	Alignment Search	(U)			
	Tool (BLAST),	CSO 4.2: To study			
	Nucleotide Database.	and illustrate about			
	Introduction, Concept	Basic Local			
	of Alignment,	-			
	Multiple Sequence	Tool (BLAST),			
	Alignment (MSA),	Nucleotide Database.			
	MSA by CLUSTAL	(U+A)			
	W. Mehtods of	CSO 4.3: To explain			
	Phylogeny, Software	on the concept on			
	for Phylogenetics	alignment and			
	Analyses.	Multiple Sequence			
		Alignment (MSA),			
		MSA by CLUSTAL			
		W. (U)			
		CSO 4.4: To explain			
		abd illustrate about			
		methods of			
		Phylogeny, Software			
		for Phylogenetics			
		Analyses. (U+A)			
UNIT 5	Structural	CSO 5.1: To explain	5	12	
Application of	Bioinformatics in	and illustrate about			
Bioinformatics	Drugs Discovery,	structural			
(CO 5)	Quantitative structure-	bioinformatics in			
	activity relationship	drugs discovery,			
	(QSAR) techniques in	Quantitative structure-			
	Drugs Design,	activity relationship			
	Microbial genome	(QSAR) techniques in			
	application, Crop	Drugs Design. (U+A)			
	improvement	CSO 5.2: To discuss			
		on Microbial genome			
		application, Crop			
		improvement. (U)			

NAME OF THE PAPER	: BIOSTATISTICS AND BIOINFORMATICS
Code	: BTC 7.2(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. Collection of data.
- 2. Calculation of central tendency.
- 3. Testing of statistical hypothesis.
- 4. Nucleic Acid and Protein Databases.
- 5. Sequence retrieval from Databases.
- 6. Sequence alignment.
- 7. Sequence homology and Gene Annotation.
- 8. Construction of phylogenetic tree

- 1. Andreas D. Baxevanis and B. F. Francis Ouellette Bioinformatics (2001). A Practical Guide to the Analysis of Genes and Proteins, Second Edition 2nd Edition; Willey&Sons.
- 2. Bailey, N.T.J. 1995. Statistical methods of Biology 3rd edition, Cambridge University Press
- 3. Bioinformatics and Biostatistics James M. Bower and Hamid Bolouri (2011).Computational Modeling of Genetic and Biochemical Networks. MIT Pubs
- 4. Daniel, W. W. (2007). Biostatistics- A Foundation for Analysis in the Health Sciences, Wiley.
- 5. Daniel, W.W., (1978.) Biostatistics: A foundation for analysis in health sciences 2nd edition. John Wiley, NY.
- 6. Dutta, N. K. (2004). Fundamentals of Biostatistics, Kanishka Publishers.
- 7. Eynon B.P. and T.W. Anderson, Minitab guide to Statistics.
- 8. Gurumani N. (2005) . An Introduction to Biostatistics, MJP Publishers.
- 9. Jayarama Reddy (2011)Fundamentals of Bioinformatics.SS Education Series: 1st edition 2011
- 10. Jayarama Reddy (2017) Bioinformatics and Biostatistics, Publishers- Geetha Book House, Bengaluru, ISBN:(9789352679515)
- 11. Jayarama Reddy (2017) Bioinformatics and Biostatistics, Publishers- Geetha Book House, Bengaluru.
- 12. Khan, I.A. and Khanum, (1994.)Fundamentals of Biostatistics, Ukaaz Publications Hyderabad.
- 13. Mark Borodovsky and Svetlana Ekisheva (2006). Problems and Solutions in Biological Sequence Analysis Cambridge University Press; 1st edition
- 14. Pagano, M. & Gauvreau, K. (2007). Principles of Biostatistics.
- 15. Pavel A. Pevzner, Phillip Compeau (2015). Bioinformatics Algorithms. Active Learning Publishers, 2015
- 16. Rao, K. V. (2007). Biostatistics A Manual of Statistical Methods for use in Health Nutrition and Anthropology.
- 17. Remington, R.D. and Schork, M.A. (1970.) Statistics with applications to the Biological and health sciences, Prentice Hall Inc. NY.

NAME OF THE PAPER (CODE)	: RESEARCH METHODOLOGY (RM 7)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **RESEARCH METHODOLOGY**:

CO 1	To learn the basic concept of research, research methods and types of research.	
CO 2	To learn about various laboratory practices.	
CO 3	CO 3 To be well versed in data collection, documentation and biological problems.	
CO 4	CO 4 To learn about different methods of plant study and micro techniques.	
CO 5	To be acquainted with the art of scientific writing and presentation.	

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 Basic concepts of research (CO 1)	Research-definition and types of research (Descriptive vs analytical; applied vs fundamental;quantitative	Objectives (CSOs)CSO 1.1: To defineresearch and types ofresearch. (K)CSO 1.2: To explainaboutresearchmethods as well asmethodology. (U)CSO 1.3: To discussabout literature reviewand its consolidations.(U)CSO 1.4: To discusson library research,field research andlaboratory research.	Hours 7	16	
UNIT 2 Laboratory practices (CO 2)	Common calculations in botany laboratories. Understanding the details on the label of reagent bottles. Molarity and normality of common acids and bases.Preparation of solutions. Dilutions. Percentage solutions. Molar, molal and normal solutions.Technique of handling micropipettes; Knowledge about	(U) CSO 2.1 : To explain about common calculations in botany laboratories. (U) CSO 2.2 : To explain the details on the label of reagent bottles and molarity, normality of common acids and bases. (U) CSO 2.3 : To explain on preparation of solutions, dilutions, percentage solutions, molar, molal and normal solutions. (U)	7	16	

	common toxic chemicals	CSO 2.4: To explain			
	and safety measures in their handling.	the techniques of handling micropipettes			
	then nanoning.	and give knowledge			
		about common toxic chemicals and safety			
		measures in their			
		handling. (U)			
UNIT 3	Maintaining a laboratory	CSO 3.1: To explain	10	22	
Data	record; Tabulation and	about maintaining a			
collection, documentation	generation of graphs.	laboratory record, tabulations and			
and Biological	Imaging of tissue specimens and	generation of graphs.			
problems (CO	specimens and application of scale bars.	(U)			
3)	The art of field	CSO 3.2: To explain			
	photography.	on imaging of tissue specimens and			
	History; Key biology	application of scale			
	research areas, Model organisms in biology (A	bars and discuss the art			
	Brief overview):	of field photography.			
	Genetics, Physiology,	(U) CSO 3.3: To discuss			
	Biochemistry, Molecular	on history, key biology			
	Biology, Cell Biology, Genomics, Proteomics-	research areas and			
	Transcriptional	model organisms in			
	regulatory network	biology. (U)			
		CSO 3.4 : To briefly explain about genetics,			
		physiology,			
		biochemistry,			
		molecular biology, cell			
		biology, genomics and			
UNIT 4	Whole mounts, peel	proteomics. (U) CSO 4.1: To explain	15	32	
Methods to	mounts, squash	about whole mounts,	10		
study plant	preparations, clearing,	peel mounts, squash			
cell/tissue	maceration and	preparations, clearing,			
structure (CO 4)	sectioning; Tissue	maceration and sectioning. (U)			
· · ·	preparation: living vs	CSO 4.2 : To discuss			
	fixed, physical vs	on tissue preparation:			
	chemical fixation,	living vs fixed,			
	coagulating fixatives,	physical vs chemical fixation			
	non-coagulant fixatives;	fixation, coagulating fixatives, non-			
	tissue dehydration using	coagulant fixatives,			
	graded solvent series;	tissue dehydration			

	Paraffin and plastic infiltration; Preparation of thin and ultrathin sections. Staining procedures, classification and chemistry of stains. Staining equipment. Reactive dyes and fluorochromes (including genetically engineered protein labeling with GFP and other tags). Cytogenetic techniques with squashed plant materials.	using graded solvent series. (U) CSO 4.3: To explain about paraffin and plastic infiltration and preparation of thin and ultrathin sections. (U) CSO 4.4: To discuss on staining procedures, classification and chemistry of stains. (U) CSO 4.5: To explain on staining equipments, reactive dyes and fluorochromes. (U) CSO 4.6: To discuss on cytogenetic techniques and squashed plant materials. (U)			
UNIT 5 The art of scientific writing and its presentation (CO 5)	Numbers, units, abbreviations and nomenclature used in scientific writing. Writing references. Powerpoint presentation. Poster presentation. Scientific writing and ethics, Introduction to copyright-academic misconduct/plagiarism.	CSO 5.1: To explain about numbers, units, abbreviations and nomenclature used in scientific writing. (U) CSO 5.2: To discuss on writing references, power point presentations, poster presentation. (U) CSO 5.3: To explain on scientific writing and ethics. (U) CSO 5.4: To describe about copyright- academic misconduct/plagiarism. (K)	6	14	

NAME OF THE PAPER	: RESEARCH METHODOLOGY
Code	: RM 7(P)
Number of Credit	:01
Number of Hours of Lecture	: 30

- 1. Experiments based on chemical calculations.
- 2. Plant microtechnique experiments.
- 3. The art of imaging of samples through microphotography and field photography.
- 4. Poster presentation on defined topics.
- 5. Technical writing on topics assigned.
- 6. Field survey/Field sampling.

- 1. Dawson, C. (2002). Practical research methods. UBS Publishers, New Delhi.
- 2. Stapleton, P., Yondeowei, A., Mukanyange, J., Houten, H. (1995). Scientific writing for agricultural research scientists a training reference manual. West Africa Rice Development Association, Hong Kong.
- 3. Ruzin, S.E. (1999). Plant microtechnique and microscopy. Oxford University Press, New York, U.S.A.
- 4. Garg, B. L.Karadia R. Agrawal, F. and Agrawal U. K., (2002). An Introduction to Research Methodology, RBSAPublishers
- 5. Kothari C. R.,(1990.) Research Methodology: Methods and Techniques New Age International418p.
- 6. Sinha S. C. and Dhiman A. K., (2002.) Research Methodology Ess Publications 2 Columes.
- 7. Trochim W. M. K., (2005.) Research Methods: The Concise Knowledge Base Atomic Dog Publishing.270P
- 8. Wadehra B. L., (2000.) Law Relating to Patents, Trade Marks, Copyright Design and Geographical Indications, Universal LawPublishing
- 9. Research Methodology: Principle, Methods and Practices-Joshua O.Miluwi and Hina Rashid
- 10. How to Write and publish a Research Paper- Seventh Edition-Robert Day And Barbara Gastle..

Semester-VIII

NAME OF THE PAPER (CODE) : MICROBIOLOGY, MYCOLOGY AND PLANT PATHOLOGY (BTC 8 1) PATHOLOGY (BTC 8.1)

Number of Credit Number of Hours of Lecture

:03 : 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper MICROBIOLOGY, MYCOLOGY AND **PLANT PATHOLOGY:**

CO 1	To gain knowledge on plant diseases, its defence and host-pathogen interaction.
CO 2	To learn about the immune system in plants.
CO 3	To learn about mycology and fungal forms.
CO 4	To be well versed in plant pathology.
CO 5	To study various plant diseases.

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Host-microbe relationship	CSO 1.1: To explain about	7	16	
Diseases and	(Symbiosis,	Host-microbe relationship. (U)			
Defence:	Commensalism,	CSO 1.2: To discuss on			
Host-	Mutualism & Parasitism)	infection patterns,			
Pathogen	Infection Patterns;	pathogenecity and virulence.			
interaction	Pathogenicity; Virulence	(U)			
(CO 1)	Classification of Diseases	CSO 1.3 : To explain about			
(COI)	(Epidemic, Endemic,	classification of diseases,			
	Pandemic & Sporadic)	epidemiology and diseases in			
	Epidemiology	population. (U)			
	Diseases in population	CSO 1.4: To explain about			
	Reservoirs of infection	reservoirs of infection. (U)			
UNIT 2	Introduction to	CSO 2.1 : To introduce	8	18	
Diseases and	immunology	immunology and discuss on			
Defence:	Innate & Acquired	innate and acquired immune			
Immune	Immune Response	response. (U)			
system (CO	Antigen; Antibody	CSO 2.2 : To explain about			
2)	Structure, Types &	antigen, antibody structure,			
_)	Properties	types and properties. (U)			
	Haematopoiesis	CSO 2.3: To discuss on			
	Cells involved in immune	haematopoiesis, cells involved			
	system	in immune system and			
	Immunity in Plants	immunity in plants. (U)			
UNIT 3	Characteristics, habit,	CSO 3.1 : To explain about the	14	30	
Introduction	habitat, somatic structures,	characteristics, habit, habitat,			
to mycology	reproduction and present	somatic structures, reproduction			
and fungal	status of fungi;	and present status of fungi. (U)			
forms (CO	Classification of fungi by	CSO 3.2 : To discuss about the			
3)	Ainsworth,1973, and	classification of fungi by			
-,	Alexopoulos et al. 1996,	Ainsworth, Alexopoulos			

	Phylogenetic classification of fungi by Mclaughlin et al 2001, Hibbett et al 2007, and Kirk et.al, 2008. Economic importance of fungi. Salient features, classification and life cycles of Myxomycota, Mastigomycotina, Zygomycotina, Ascomycotina, Basidiomycotina and Deuteromycotina with	phylogenetic classification by Mclaughlin, Hubbet and Kirk. (U) CSO 3.3 : To discuss on the economic importance of fungi. (U) CSO 3.4 : To explain the salient features, classification and life cycles of myxomycota, mastigomycotina, zygomycotina, ascomycotina, basidiomycotina and deuteromycotina. (U) CSO 3.5 : To discuss about			
	suitable examples. Mycotoxins: useful and harmful effects.	mycotoxins, its useful and harmful effects. (U)			
UNIT 4 Plant Pathology (CO 4)	harmful effects. History, concepts and scope of plant pathology; classification of plant diseases; Disease cycle and disease development; Pathogenicity test and Koch's postulates, effect disease on physiology of host, defence mechanisms in plants. Methods of plant disease management. Locally available plant diseases	CSO 4.1: To explain the history, concepts and scope of plant pathology. (U) CSO 4.2: To explain the classification of plant diseases, disease cycle and disease development. (U) CSO 4.3: To discuss about pathogenecity test and Koch's postulates. (U) CSO 4.4: To explain the effect of disease on physiology of host, defence mechanisms in plants and methods of plant disease management. (U)	7	16	
UNIT 5 Study of Plant Diseases (COM5)	Disease cycle and control measures of following diseases: Mycoplasma diseases: Grassy shoot of sugar cane, Yellow Dwarf in rice, Viral diseases: Bunchy top of banana, Cotton leaf curl disease, Bacterial diseases: Bacterial leaf blight of paddy, Black rot of crucifers, Fungal Diseases: Late blight of Potato, Coffee rust, Wood rotting.	CSO 5.1 : To explain about disease cycle and control measures of: Mycoplasma diseases Viral diseases Bacterial diseases Fungal diseases (U)	9	20	

NAME OF THE PAPER: MICROBIOLOGY, MYCOLOGY AND PLANT
PATHOLOGYCode: BTC 8.1(P)Number of Credit: 01Number of Hours of Lecture: 30

Practicals

- 1. Micrometry
- 2. Haemocytometer
- 3. Isolation, Culture and Staining Techniques of Fungi
- 4. Identification of Fungi using Fungal Floras
- 5. Type Study: Stemonites, Saprolegnia, Albugo, Phytophthora, Mucor, Aspergillus, Pencillium, Morchella, Hemileia, Ustilago, Lycoperdon, Dictyophora, Curvularia, Alternaria, Fusarium, Pestalotia, Pleurotus, Amanita, Lenzites, Polyporus, Trametes Ganoderma. (use recent classification)
- 6. Study of some Bacterial, Viral, Mycoplasma Diseases in Plants (based on availability)
- 7. Antibacterial/Fungal essay by Disc Diffusion method.
- 8. Type study of locally available plant diseases.

- 1. Ajoy Paul, (2016.) Text book of Immunology. Books and Allied Pvt. Ltd. Kolkatta.
- 2. Alexopoulus, C.J., Mims, C.W and Blackwell (1996) Introductory Mycology, 6th edition, Wiley Eastern Ltd., New Delhi.
- 3. Aneja, K.R. (1993) Experiments in Microbiology, plant pathology and tissue culture, Wishwa Prakashan, New Delhi.
- 4. Burnet, F.M. and Stanely, W.M. (1970) Biochemical biological and biophysical properties Vol-I general virology 3rd edition Academic Press, NY, London.
- 5. Conrat, F.H.; Kimball, P.C. and Jay, L. (1988) Virology, Prentice Hall, Englewood Cliff, New Jersey.
- 6. Deacon, J.W., (2006.) Fungal Biology., Blackwell Publishers, USA.
- 7. N.J.Dimmock, A.J.Easton, K.N. Leppard, (2007,) Modern Virology, VI Edition, Blackwell Publishing Company.
- 8. Kodo, C.I. and Agarwal, H.O. (1972) Principles and techniques in Plant Virology, Van Nostrand, Reinhold company
- 9. Pelczar, M.J. (Jr.) Chan, E.C.S. and Kreig, N.R. (1988) Microbiology, 5th edition McGraw Hall book company, Singapore.

NAME OF THE PAPER (CODE): PLANT MORPHOGENESIS AND EMBRYOLOGY
(BTC 8.2)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **PLANT MORPHOGENESIS AND EMBRYOLOGY**:

CO 1	To attain knowledge in plant morphogenesis and organogenesis.
CO 2	To learn about polarity and flower.
CO 3	To gain knowledge on microsporangium and ovule.
CO 4	To understand the process of fertilization and sexual incompatibility in
	plants.
CO 5	To learn about embryo and endosperm.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Aim, scope and	CSO 1.1: To discuss	10	22	
Morphogenetic	historical account of	on aim, scope and			
studies and	Plant Morphogenesis	historical account of			
organogenesis in	Morphogenesis in vivo	plant morphogenesis.			
plants (CO 1)	(Field concepts and	(U)			
	meristemoid);	CSO 1.2: To explain			
	Experimental studies	about morphogenesis			
	on shoot apex, root	in vivo and			
	apex and differentiated	experimental studies			
	organs. (5 hrs)	on shoot apex, root			
	Formation of leaves;	apex and differentiated			
	types of phyllotaxy				
	(Self study -1 hrs);	CSO 1.3: To explain			
	transformation of	about formation of			
	vegetative apex into	leaves and types of			
	reproductive apex.	phyllotaxy. (U)			
	Nature of organs:	CSO 1.4: To discuss			
	Theories on nature of	about transformation			
	shoot (Phytonic and	of vegetative apex into			
	axial theories) and	reproductive apex. (U)			
	flower (Monaxial,	CSO 1.5: To explain			
	pluriaxial, suigeneris	on Nature of organs:			
	and acarpy:	Theories on nature of			
	appendicular and axial	shoot and flower. (U)			
	theories of inferior				
	ovaries).				
UNIT 2	Contemporary	CSO 2.1: To discuss	8	18	
Polarity and	understanding at	1 4			
Flower (CO 2)	different levels of	understanding at			

	• .• • • •				
	organization and in	different levels of			
	different organisms	organization and in			
	(self study-3 hr)	different organisms.			
	Differentiation –	(U)			
	patterns of	1			
	differentiation,	about differentiation -			
	vascular	patterns of			
	differentiation, role of	-			
	growth hormones in				
	vasculardifferentiation	,			
	Serial evocation of	growth hormones in			
	genes and floral	vascular differentiation.			
	development; genetic	(U)			
	analysis of floral	CSO 2.3: To explain			
	development ABCDE	about Serial evocation			
	model (Arabidopsis),	of genes and floral			
	flower regulatory	development; genetic			
	genes (MADS box	analysis of floral			
	genes).	development ABCDE			
		model (Arabidopsis),			
		flower regulatory			
		genes (MADS box			
		genes). (U)			
UNIT 3	Development and	CSO 3.1: To explain	10	22	
	structure;	about development and			
Microsporangium	differentiation of	structure;			
and Ovule (CO 3)	anther wall and their	differentiation of			
	role.	anther wall and their			
	Microsporogenesis:	role. (U)			
	General account,	CSO 3.2: To discuss			
	ultrastructure and				
	physiology; role of	general account,			
	callose. Male	ultrastructure and			
	gametophyte:	physiology; role of			
	Development and				
	structure; formation	CSO 3.3: To explain			
	of male gametes,	on male gametophyte:			
	sperm dimorphism,	Development and			
	male germ unit.	structure; formation of			
	Discussion of	male gametes, sperm			
	research papers with	-			
	specific examples of	0			
	development.	CSO 3.4: To discuss			
	Pollen abnormalities -	on research papers			
	pollen sporophytes,	with specific examples			
	Nemec phenomenon,				
	pollen development in	-			
	Cyperaceae (Self	on pollen			
	study-2 hrs)	abnormalities - pollen			
1	A general account of	sporophytes, Nemec			

	ontogeny, types and diversity in structure. Megasporogenesis: General account, Ultra structure and physiology. Female gametophyte Diversity in organization; ultra structure of female gametophyte, embryosac haustoria. Types, Development and reserve food materials.	development in Cyperaceae. (U) CSO 3.6: To explain on ontogeny, types and diversity in structure. (U) CSO 3.7: To explain on megasporogenesis: General account, ultra structure and physiology. (U) CSO 3.8: To discuss about female gametophyte, diversity in organization; ultra structure of female gametophyte, embryosac haustoria. (U) CSO 3.9: To explain about types, development and			
		reserve food materials.			
UNIT 4 Fertilization and Sexual incompatibility (CO 4)	Structure of stigma and style, role of stigmatic exudates; pollen germination in vivo ;pollen tube entry into the stigma ; pollen tube growth ; entry of pollen tube into female gametophyte ; double fertilization ; hetero fertilization and single fertilization, in vitro fertilization, Polyspermy. Self incompatibility, genetic basis, barriers to fertilization, physiology and biochemistry of incompatibility.	CSO 4.2 : To discuss about pollen germination in vivo ; pollen tube entry into	9	20	

		1 . 1		1	
		biochemistry of			
		incompatibility. (U)			
UNIT 5	Classification based	CSO 5.1: To explain	8	18	
Embryo and	on early development	about classification			
Endosperm (CO	of embryo; structure,	based on early			
5)	Composition of	development of			
	embryo. Early	embryo; structure and			
	embryogenesis in	composition of			
	Capsella (Dicot) and	embryo. (U)			
	Najas (Monocot).	CSO 5.2: To discuss			
	Chimeral embryos.	about early			
	Polyembryony,	embryogenesis in			
	apomixis in bief,	Capsella (Dicot) and			
	embryo endosperm	Najas (Monocot). (U)			
	relationship,	CSO 5.3: To explain			
	Endosperm haustoria.	about chimeral			
	1	embryos. (U)			
		CSO 5.4: To explain			
		about polyembryony,			
		apomixes, and embryo			
		endosperm relationship			
		and endosperm			
		haustoria. (U)			

NAME OF THE PAPER	: PLANT MORPHOGENESIS AND EMBRYOLOGY
Code	: BTC 8.2(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

Plant Morphogenesis:

- 1. Study of shoot apices by dissections using aquatic plants (Ceratophyllum & Hydrilla).
- 2. Study of cytohistochemical zonation in the shoot apical meristem in sectioned and double stained micropreparation of a suitable plant. Study of development of bisected shoot apices.
- 3. Study of L.S. of roots from permanent micropreparation to understand the organization of root apicalmeristem and its derivatives
- 4. Study of alternate and distichous, alternate and superposed, opposite and superposed, opposite anddecussate leaf arrangement.
- 5. Diagrammatic representation on theories of shoot and flower, Regeneration experiment with stem cuttings to show polarity.

Embryology:

- 1. Study of the following stages from permanent micro preparation: Anther wall, Microsporogenesis.Pollen mitosis; pollen in cyperaceae; Isolation of male gametes.
- 2. Pollen germination in *Balsam, Vinca, Datura, Delonix, Peltophorum* and the effect of sucrose, Boron andCalcium on germination.
- 3. Types of placentation, Types of ovules and ovular parts.
- 4. Megasporogenesis and female gametophyte (Polygonum type)
- 5. Study of endosperm: types, endosperm haustoria
- 6. Embryo Mature dicot and monocot embryos. Mounting of globular, cordate and torpedo shaped embryos **f**msuitable seeds.

- 1. Bhojwani S.S. Bhatnagar S.P. and P.K. Dantu, (2015). The embryology of angiosperms, 6th Ed., Vikas Pub. New Delhi.
- 2. Davis G.L. (1966). Systematic embryology of Angiosperms, John Wiley & Sons, Inc. New York.
- 3. Easu K. (1977). Anatomy of seed plants 2nd ed. Wiley Eastern New Delhi.
- 4. Johansen, D.A. (1950). Plant embryology, Chronica Botanica Co., Waltham, mass.
- 5. Johri B.M. (ed) (1984). Embryology of Angiosperms, Springler verlag, Berlin.
- 6. Lyndon R.F (1990). Plant Development The cellular basis, Unwin Hyman, London.
- 7. Maheswari P. (1950). An introduction to the embryology of Angiosperms, McGraw Hill, New York.
- 8. Maheshwari P (ed.) (1963). Recent advances in embryology, Int. Soc. Pl. Morphol. New York.
- 9. Raghvan V. (1976) Experimental embryogenesis in vascular plants, Cambridge University, Cambridge.
- 10. Raghavan V.R.(2000). Developmental biology of flowering plants. Springer publications.
- 11. Sinnot E.W. (1960).Plant morphogenesis. Mc Graw Hill Book Company, INC, New York.
- 12. Steeves T.A. and Sussex I.M. (1989). Patterns in plant development, 2nd ed. Cambridge UniversityPress, Cambridge.
- 13. Steward, F.C. (1968). Growth and Organization in plants, Addison Wesley Pub. Co. U.S.A.
- 14. Johri B.M. (1982). Experimental embryology of vascular plants. Springer Verlag, Berlin.
- 15. Wardlaw (1968). Morphogenesis in plants, Methuen and Co.
- 16. Wareing P.F. and I.D.J. Phillips, (1978). The control of growth and differentiation in plants. Pergamonpress, New York.
- 17. Mc Lean R.C. and W.R. Ivimey-Cook, (1951). Text book of theoretical botany, Vol. I. Longmans, Green and Co Ltd.
- 18. Weigel (1995). The genetics of flower development from floral induction to ovule morphogenesis. Annual review of Genetics. Vol.29.
- 19. Bernier G. (1988). The control of floral evocation and morphogenesis. Ann. Rev. Pl. Physiol. & Mol. Biol. Vol. 39., 175-219.
- 20. Sharma, H.P.(2009). Plant embryology classical and experimental. Narosa Publishing House, New Delhi.

NAME OF THE PAPER (CODE)	: METHODS IN PLANT SCIENCES (BTC 8.3)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are	The following are the Course Objectives (COs) for the paper METHODS IN PLANT SCIENCES:			
CO 1	CO 1 To develop a sound knowledge in microscopy, its history and types.			
CO 2	To develop a very good understanding on microtomy and centrifugation			
CO 3 To understand the various separation and purification techniques.				
CO 4	To gain sound knowledge on biophysics.			
CO 5	To learn about research methodology.			

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
	Our Contents	Objectives (CSOs)	Hours	1 v1a1 K5	LUS
UNIT 1	History of Microscopy.	CSO 1.1 : To explain	10	22	
Microscopy,	Properties of light in	about history of	10		
History,	relation to microscopy -	Microscopy, properties of			
Introduction	Wavelength, resolution,				
and types of	reflection, transmission,	light in relation to microscopy - Wavelength,			
microscopes	absorption, refraction,	resolution, reflection,			
(CO 1)	diffraction. Aberrations	transmission, absorption,			
(\mathbf{COI})	in Microscopy	refraction, diffraction and			
	(spherical, chromatic and field curvature).				
	Lenses used in	microscopy. (U) CSO 1.2: To discuss			
	compound microscope –	about lenses used in			
	Abbe's condenser	compound microscope –			
	system, objective lenses,	Abbe's condenser system,			
	ocular lenses and mirror.	objective lenses, ocular			
	Principle, construction	lenses and mirror. (U)			
	and uses of bright field	CSO 1.3 : To explain			
	microscopy, dark field	about principle,			
	microscopy, dark neid	construction and uses of			
	stereomicroscopy,	bright field microscopy,			
	Nomarski (DIC)	dark field microscopy,			
	microscopy, inverted	stereomicroscopy,			
	microscopy, polarization	Nomarski (DIC)			
	microscopy, fluorescent	microscopy, inverted			
	microscopy, electron	microscopy, polarization			
	microscopy (TEM,	microscopy, fluorescent			
	SEM), atomic force	microscopy, electron			
	microscope, Camera	microscopy (TEM, SEM),			
	lucida,	and atomic force			
	photomicrography (Self-	microscope. (U)			
	study- 1 hr) and image	CSO 1.4 : To explain			
	analysis.	about camera lucida,			

		photomicrography and			
		image analysis. (U)			
UNIT 2	Microtomy and ultra	CSO 2.1 : To explain	8	18	
Microtomy	microtomy techniques,	about microtomy and	Ũ	10	
and	fixatives, clearing	ultra microtomy			
Centrifugation	agents, dehydrants,	techniques, fixatives,			
(CO 2)	stains, staining	clearing agents,			
(00 =)	schedules, freeze	dehydrants, stains,			
	fracturing, freeze	staining schedules, freeze			
	etching;	fracturing, freeze etching;			
	cryopreservation.	cryopreservation. (U)			
		CSO 2.2: To discuss			
	centrifuges and rotors;	about principle and types			
	techniques of	of centrifuges and			
	1	rotors: techniques of			
	centrifugation, brief acout	centrifugation, brief acout			
	of cell fractionation (self-	of cell fractionation. (U)			
	study- 1 hr).	CSO 2.3: To explain			
	Spectroscopy: Visible,	about Spectroscopy:			
	UV, IR, NMR, AAS,	Visible, UV, IR, NMR,			
	XRD. Radiobiology:	AAS, XRD. (U)			
		CSO 2.4: To discuss			
	radioisotope techniques	about radiobiology:			
	(GM counter,	radioisotope techniques			
	scintillation and	(GM counter, scintillation			
	autoradiography).	and autoradiography). (U)			
UNIT 3	Electrophoresis (agarose	CSO 3.1: To explain	8	18	
Separation	and PAGE), isoelectric	about Electrophoresis			
and	focussing.	(agarose and PAGE),			
purification	Chromatography, types				
techniques	and applications: History				
(CO 3)	and introduction (self-	about Chromatography,			
	study – 1 hr). Paper	types and applications:			
	chromatography	History and introduction.			
	(ascending, descending,	(U)			
	2D), TLC, HPTLC,	CSO 3.3: To explain and			
	Column	illustrate about paper			
	chromatography, Gel	chromatography			
	filtration, affinity, ion	(ascending, descending,			
	exchange, Gas	2D), TLC, HPTLC,			
	-				
		• • •			
	v 1	-			
	onincographij.				
		interaction		1	1
	chromatography, HPLC and hydrophobic interaction chromatography.	Column chromatography, Gel filtration, affinity, ion exchange, Gas chromatography, HPLC and hydrophobic			

		chromatography. (U+A)			
UNIT 4	Intra and intermolecular	CSO 4.1: To explain	12	26	
Biophysics	interactions: atomic	about intra and			
(CO 4)	structure, chemical	intermolecular			
	bonding (ionic, covalent,	interactions: atomic			
	hydrogen and coordinate	structure, chemical			
	bonds). Van der Waals	bonding (ionic, covalent,			
	interactions and London	hydrogen and coordinate			
	forces of dispersion	bonds). (U)			
	Colloids: Properties,	CSO 4.2: To discuss			
	dispersion system,	about Van der Walls			
	classification of colloids	interactions and London			
	(sol, gel, suspension and	forces of dispersion			
	emulsion). Tyndall	Colloids: Properties,			
	effect and Brownian	dispersion system,			
	movement. Applications	classification of colloids			
	of colloids. (Self-study-2	(sol, gel, suspension and			
	hrs). Photoluminescence:	emulsion). (U)			
	Principles and	CSO 4.3: To explain			
	applications of	about tyndall effect and			
	phosphorescence,	Brownian movement and			
	fluorescence and	applications of colloids.			
	bioluminescence.	(U)			
	Biomechanics:	CSO 4.4: To discuss			
	Principles and	about photoluminescence:			
	applications of	principles and			
	biomechanics, nano-	applications of			
	technology and protein	phosphorescence,			
	engineering.	fluorescence and			
		bioluminescence. (U)			
		CSO 4.5: To explain			
		about biomechanics:			
		Principles and			
		applications of			
		biomechanics, nano-			
		technology and protein			
		engineering. (U)			
UNIT 5	Components of a research	CSO 5.1: To explain	7	16	
Research	paper. Writing	about components of a			
Methodology	references using	research paper. (U)			
(CO 5)	Mendeley and Endnotes.	CSO 5.2: To discuss			
		about writing references			
		using Mendeley and			
		Endnotes. (U)			

NAME OF THE PAPER	: METHODS IN PLANT SCIENCES
Code	: BTC 8.3(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. Writing references using Mendeley and Endnotes. Photomicrography and image analysis.
- 2. Working and applications of dissection microscope, stereomicroscope and light microscope; Cameralucida.
- 3. Phase contrast Microscope and Inverted microscope. Microtome.
- 4. Tissue maceration to identify VAM fungal colonization.
- 5. Centrifuges: types of rotors, centrifugation techniques (cell fractionation, density gradient, differential)
- 6. Extraction of pigments using Soxhlet apparatus.
- 7. Chromatography: paper, TLC, column chromatography.
- 8. Determination of absorption maxima of compounds extracted from plants.
- 9. Extraction of proteins and preparation of reagents for SDS-PAGE.
- 10. Separation of proteins using SDS-PAGE.
- 11. Revision and attestation of records.

- 1. R. Cotterill (2002), Biophysics An Introduction, John Wiley & Sons.
- 2. Pranav Kumar (2017), Fundamentals and Techniques of Biophysics and Molecular Biology, Second Edition, Pathfinder Publications, New Delhi.
- 3. Gerald Karp (2007), Cell Biology, Seventh Edition, John Wiley & Sons.
- 4. C.E. Banwell, C.N., and McCash E.M. 1994. Fundamentals of Molecular spectroscopy, (4th edition), TataMcGraw Hill, Publishing Co. Ltd
- 5. Narayanan, P. (2000). Essential of Biophysics. New Agri. International Publishers.
- 6. Berlyn, G.P. & Miksche, J.P. (1976). Botanical Microtechnique and cytochemistry, Iowa State Univ. Press.
- 7. De Robertis, E.O.P., & De Robertis, E.M.R. Jr. (1987). Cell and molecular biology, 8th ed., B.I. Wasberly Pvt.Ltd., New Delhi.
- 8. Dhopte, A, M. (2002). Principles and Techniques for plant scientists, Agrobios (India).
- 9. Grey, P. (ed.) (1973) Encyclopedia of microscopy and Microtechnique, van Nostrand Reinhold Co., NewYork.
- 10. Jensen, W.A. (1962). Botanical histochemistry, Freeman & Co., San-Fransisco.
- 11. Johansen, D.A. (1940). Botanical Microtechnique, McGraw Hill, New York.
- 12. Kaul, A.D., Singh, N., Sonkusare, A., Kumar, P. &Wadhwa, S.S. (1997). Design of an Atomic forcemicroscope for topographic studies, Curr. Sci. 73 (9): 738 743.
- 13. Purvis, M.J., Collins, D.C., & Wallis, D. (1966). Laboratory techniques in Botany (2nd ed.) Butterworths, London Running.
- 14. M.P., Clark, S.E. & Mayerowitzz, E.M. (1995). Confocal microscopy of shoot apex, in methods in cell biology, Vol. 49, pp. 355 366, Academic Press, New York.
- 15. Sanderson, J.B. (1994). Biological microtechniques, BIOS Sci. Pub., London.

.INTERDISCIPLINARY MINOR (IDM)

NAME OF THE PAPER (CODE): PHYCOLOGY AND MICROBIOLOGY (BTM 1)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The following are	e the Course Objectives (COs) for the paper PHYCOLOGY AND MICROBIOLOGY:
CO 1	To be well versed in all the different organisms of the microbial world.
CO 2	To be well aware about viruses.
CO 3	To learn about the general bacterial world.
CO 4	To know about the general account and classification of algae.
CO 5	To learn about the different life cycles of economically important algae and
	locally available species of algae.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Microbial nutrition,	CSO 1.1: To define the	7	16	
Introduction to	growth and metabolism.	term micro-organisms.			
microbial	Economic importance of	(K)			
world (CO 1)	viruses with reference to	CSO 1.2: To explain on			
	their role in research and				
	medicine. Economic	growth and metabolism.			
	importance of bacteria	0			
	with reference to their				
	role in agriculture and	economic importance of			
	industry (fermentation	-			
	and medicine).	vaccine production,			
		research and medicine.			
		(A)			
		CSO 1.4: To explain the			
		diagnostics of micro-			
		organisms as causal			
		organisms of plant			
		diseases. (U)			
		CSO 1.5: To illustrate the			
		economic importance of			
		bacteria with reference to			
		agriculture and industry.			
		(Å)			
UNIT 2	Discovery, general		8	18	
Viruses (CO 2)	characteristics;	viruses. (K)			

	classification (Baltimore); replication (general account), Structure of DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV), Retrovirus (HIV).	CSO 2.2: To explain the discovery, physiochemical and biological characteristics of viruses. (U) CSO 2.3: To illustrate about the classification, general structure with special reference to viroids and prions. (A) CSO 2.4: To explain the general account of replication. (U) CSO 2.5: To illustrate about DNA virus (T- phage), lytic and lysogenic cycle, RNA virus (TMV), Retrovirus			
UNIT 3 Bacteria (CO 3)	Discovery, general characteristics; Types- archaebacteria, eubacteria; Cell structure; shapes of bacteria; classification of bacteria (Bergey's); Reproduction- vegetative, asexual and recombination (conjugation, transformation and transduction).	(HIV). (A) CSO 3.1 : To define bacteria. (K) CSO 3.2 : To explain the discovery and general characteristics of bacteria. (U) CSO 3.3 : To explain the different types of bacteria- archaebacteria, eubacteria, wall-less forms (mycoplasma and spheroplasts). (U) CSO 3.4 : To explain the detailed cell structure, shapes, classification and nutritional types of bacteria. (U) CSO 3.5 : To illustrate the different modes of reproduction in bacteria. (A)	8	18	
UNIT 4 Algae (CO 4)	General characteristics; Ecology and occurrence; range of thallus organization; vegetative structure and cell	 (A) CSO 4.1: To define algae. (K) CSO 4.2: To explain the general characteristics, ecology and distribution of algae. (U) CSO 4.3: To illustrate the 	10	22	

	components- cell wall, pigment system, reserve food (of only groups represented in the syllabus), flagella; methods of reproduction; Classification; criteria, system of Fritsch. Economic importance of algae.	range of thallus organization, cell structure and components; cell wall, pigment system, reserve food and flagella. (A) CSO 4.4 : To explain the different methods of reproduction in algae. (U) CSO 4.5 : To explain the different systems of classifications and criteria of algae. (U) CSO 4.6 : To explain the significant contributions of important phycologists and economic importance of algae. (U)			
UNIT 5 Cyanophyta, Xanthophyta, Chlorophyta, Charophyta and Rhodophyta. (CO 5)	General characteristics; occurrence; morphology; Reproduction and life- cycle of Nostoc, Vaucheria, Chlamydomonas, Volvox, Oedogonium, Chara, Ectocarpus, Fucus and Polysiphonia. Evolutionary significance of Prochloron.	CSO 5.1: To explain the ecology, occurrence, range of thallus organization, cell structure, reproduction, morphology and life cycle of <i>Nostoc</i> and <i>Vaucheria</i> . (U) CSO 5.2: To explain the general characteristics, occurrence, cell structure, reproduction, morphology and life cycle of <i>Chlamydomonas</i> , <i>Oedogonium</i> and <i>Chara</i> . (U) CSO 5.3: To describe the evolutionary significance of <i>Prochloron</i> . (K) CSO 5.4: To explain the general characteristics, occurrence, cell structure, reproduction, morphology and life cycle of <i>Ectocarpus</i> and <i>Fucus</i> . (U)	12	26	

NAME OF THE PAPER	: PHYCOLOGY AND MICROBIOLOGY
Code	: BTM 1(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

Microbiology

- 1. Electron micrographs/Models of viruses T-Phage and TMV, Line drawings/ Photographs ofLytic and Lysogenic Cycle.
- 2. Types of Bacteria to be observed from temporary/permanent slides/photographs. Electron micrographs of bacteria, binary fission, endospore, conjugation, root Nodule.
- 3. Gram staining of gram positive and gram negative bacteria.
- 4. Endospore staining with malachite green using the (endospores taken from soil bacteria).

Phycology

- 1. Study of vegetative and reproductive structures of *Nostoc, Chlamydomonas* (electron micrographs), Volvox, *Oedogonium,Chara, Vaucheria, Ectocarpus, Fucus and Polysiphonia,Procholoron* through electron micrographs, temporary preparations and permanentslides.
- 2. Study of locally available algae species.

- 1. Lee, R.E. (2008). Phycology, Cambridge University Press, Cambridge. 4th edition.
- 2. Wiley JM, Sherwood LM and Woolverton CJ. (2013) Prescott's Microbiology. 9th Edition. McGrawHill International.
- 3. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West Press, Delhi.
- 4. Sahoo, D. (2000). Farming the ocean: seaweeds cultivation and utilization. Aravali International,New Delhi.
- Campbell, N.A., Reece J.B., Urry L.A., Cain M.L., Wasserman S.A. Minorsky P.V., Jackson R.B. (2008). Biology, Pearson Benjamin Cummings, USA. 8th edition.
- 6. Pelczar, M.J. (2001) Microbiology, 5th edition, Tata McGraw-Hill Co, New Delhi.

Semester-II

NAME OF THE PAPER (CODE) Number of Credit Number of Hours of Lecture

: MYCOLOGY AND PHYTOPATHOLOGY (BTM 2) : 03 : 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **MYCOLOGY AND PHYTOPATHOLOGY**:

CO 1	To learn about true fungi, Chytridiomycota, Zygomycota and Oomycota.
CO 2	To learn about Ascomycota and Basidiomycota.
CO 3	To gain Knowledge on allied fungi and symbiotic associations.
CO 4	To learn about applied mycology.
CO 5	To understand about phytopathology.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	General Characteristics;	CSO 1.1: To explain	10	22	
Introduction to	Thallus Organization;	the general			
true fungi;	Cell Wall Composition;	characteristics of fungi			
Chytridiomycota,	Nutrition;	and its affinities with			
Zygomycota and	Classification.	plants and animals. (U)			
Oomycota (CO 1)	Chytridiomycota,	CSO 1.2: To explain			
	Zygomycota and	the thallus organization,			
	Oomycota:	cell wall composition			
	Characteristic features;	and nutrition of fungi.			
	Significance;	(U)			
	Reproduction; Life	CSO 1.3: To explain			
	cycle with reference to	the classification of			
	Synchytrium, Rhizopus	fungi. (U)			
	and Phytophthora .	CSO 1.4: To explain			
		the Characteristic			
		features; Significance;			
		Reproduction; Life			
		cycle with reference to			
		Synchytrium, Rhizopus			
		and <i>Phytophthora</i> . (U)			
UNIT 2	Ascomycota: General	CSO 2.1: To explain	10	22	
Ascomycota and	characteristics; asexual	the general			
Basidiomycota	and sexual fruiting	characteristics, life			
(CO 2)	bodies; Life cycle with	cycle and classification			
	reference to	with reference to			
	Saccharomyces,	Saccharomyces,			

UNIT 3	Aspergillus, Penicillium and Alternaria. Basidiomycota: General characteristics; Life cycle with reference to Puccinia, Agaricus; Bioluminescence, Fairy Rings of Mushroom. Slime molds: General	Aspergillus, Penicillium and Alternaria. (U) CSO 2.2: To explain the general characteristics, ecology, life cycle and classification with reference to black stem rust on wheat (<i>Puccinia</i>), loose and covered smut (<i>Agaricus</i>). (U) CSO 2.3: To explain about bioluminescence and fairy rings of mushroom. (U) CSO 3.1: To explain	10	22	
Allied Fungi, and symbiotic associations (CO 3)	characteristics; Status; Classification; Occurrence; Types of plasmodia; Types of fruiting bodies. Lichen: Occurrence; General characteristics; Growth forms and range of thallus organization; Nature of associations of algal and fungal partners; Reproduction. Mycorrhiza: Ectomycorrhiza, Endomycorrhiza and their significance.	the general characteristics and status of slime moulds. (U) CSO 3.2 : To explain the classification and occurrence of slime moulds. (U) CSO 3.3 : To explain on the types of plasmodia and types of fruiting bodies. (U) CSO 3.4 : To explain the occurrence, general characteristics, growth forms and range of thallus organization of lichens. (U) CSO 3.5 : To explain the Nature of associations of algal and fungal partners; Reproduction. (U) CSO 3.6 : To explain about Ectomycorrhiza, Endomycorrhiza and their significance. (U)			
UNIT 4 Applied Mycology (CO 4)	Role of fungi in biotechnology; Application of fungi in	CSO 4.1 : To explain the role of fungi in biotechnology, food	6	14	

<u>г</u>					[]
	food industry (Flavour	industry and as a source			
	& texture,	of secondary			
	Fermentation, Baking,	metabolites. (U)			
	Organic acids, Enzymes,	CSO 4.2: To explain			
	Mycoproteins);	the application of fungi			
	Secondary metabolites	in agriculture as well as			
	(Pharmaceutical	a source of mycotoxins.			
	preparations);	(U)			
	Agriculture	CSO 4.3: To explain			
	(Biofertilizers);	the role of fungi in			
	Mycotoxins; Biological	biological control and			
	control (Mycofungicides,	in medical mycology.			
	Mycoherbicides,	(U)			
	Mycoinsecticides,	(-)			
	Myconematicides);				
	Medical mycology.				
UNIT 5	Terms and concepts;	CSO 5.1 : To define the	9	20	
Phytopathology	General symptoms;	terms and concepts of			
(CO 5)	Geographical	phytopathology. (K)			
	distribution of diseases;	CSO 5.2: To explain			
	Etiology;	the general symptoms,			
	Symptomology; Host-	geographical			
	Pathogen relationships;	distribution of diseases			
	Disease cycle and	and etiology. (U)			
	environmental relation;	CSO 5.3 : To explain			
	prevention and control	about symptomology,			
	of plant diseases, and	host-pathogen			
	role of quarantine.	relationships, disease			
	Bacterial diseases-	cycle and			
	Citrus Canker	environmental relation			
	Viral diseases –	of host and pathogen.			
	Tobacco Mosaic viruses.				
	Fungal diseases –	(U) CSO 5 4: To oveloin			
	-	CSO 5.4 : To explain			
	Early and late blight of	about the prevention			
	potato; Black stem rust	and control of plant			
	of wheat. Loose and	diseases and role of			
	covered smut	quarantine. (U)			
	(Symptoms only).	CSO 5.5 : To explain			
		about bacterial			
		diseases. (U)			
		CSO 5.6: To explain			
		about viral diseases.			
		(U)			
		CSO 5.7: To explain			
		CSO 5.7 : To explain about fungal diseases.			

NAME OF THE PAPER	: MYCOLOGY AND PHYTOPATHOLOGY
Code	: BTM 2(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

- 1. Introduction to the world of fungi (Unicellular, coenocytic/ septate mycelium, ascocarps & basidiocarps).
- 2. *Rhizopus*: study of asexual stage from temporary mounts and sexual structures through permanent slides.
- 3. *Aspergillus* and *Penicillium*: Study of asexual stage from temporary mounts. Study of sexual stage from permanent slides/ photographs.
- 4. *Peziza*: sectioning through ascocarp.
- 5. Alternaria: Specimen/ photographs and temporary mounts.
- 6. *Puccinia*: Mounts of spores / Permanent slides
- 7. *Agaricus*: Specimens of button stage and full grown mushroom; sectioning of gills of *Agaricus*, fairy rings and bioluminescent mushrooms to be shown.
- 8. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose) on different substrates. Study of thallus and reproductive structures (soredia and apothecium) through permanent slides. Mycorrhizae: ectomycorrhiza and endomycorrhiza (Photographs)
- 9. Phytopathology: Herbarium specimens of Citrus Canker (bacterial diseases); TMV (Viral diseases); Early blight of potato, Black stem rust of wheat (Fungal diseases).

- 1. Agrios, G.N. (1997) Plant Pathology, 4th edition, Academic Press, U.K.
- 2. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley &Sons (Asia) Singapore. 4th edition.
- 3. Webster, J. and Weber, R. (2007). Introduction to Fungi, Cambridge University Press, Cambridge. 3rd edition.
- 4. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi and Their Allies, Macmillan Publishers India Ltd.
- 5. Sharma, P.D. (2011). Plant Pathology, Rastogi Publication, Meerut, India.

Semester-III

NAME OF THE PAPER (CODE)	: MORPHOLOGY	AND	ANATOMY	OF	ANGIOSPERMS
	(BTM 3)				
Number of Credit	:03				
Number of Hours of Lecture	: 45				

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **MORPHOLOGY AND ANATOMY OF ANGIOSPERMS**:

CO 1	To gain knowledge on the structures and development of different parts of the		
	plant body.		
CO 2	To learn about the tissue system in plants.		
CO 3	To gain insights on meristematic tissues of plants.		
CO 4	To be well versed with the vascular cambium, secondary growth and wood.		
CO 5	To learn about adaptive and peotective system in plants.		

COURSE SPECIFIC OBJECTIVES (CSOs)

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Applications in	CSO 1.1: To explain the	8	18	
Introduction,	systematics, forensics and	application of			
Structure and	pharmacognosy. Internal	angiosperms in			
Development	organization of plant	systematic, forensics and			
of Plant Body	body: The three tissue	pharmacognosy. (U)			
(CO 1)	systems, types of cells	CSO 1.2: To explain the			
	and tissues. Development	internal			
	of plant body: Polarity,	organization of plant body			
	Cytodifferentiation and	of angiosperms. (U)			
	organogenesis during	CSO 1.3: To explain the			
	embryogenic	tissue systems, types of			
	development.	cells and tissues. (U)			
		CSO 1.4: To explain and			
		illustrate the development			
		of plant body. (U+A)			
		CSO 1.5: To explain			
		about polarity,			
		cytodifferentiation and			
		organogenesis during			
		embryogenic			
		development. (U)			
UNIT 2	Classification of tissues;	CSO 2.1: To define	9	20	
Tissues (CO 2)	Simple and complex	tissues. (K)			
	tissues (no phylogeny);	CSO 2.2: To explain the			
	cytodifferentiation of	classification of tisues,			
	tracheary elements and sieve	simple and complex			
	elements; Pits and				

	plasmodesmoto: Erzostia	tisquag (II)			
	plasmodesmata; Ergastic substances. Hydathodes, cavities, lithocysts and laticifers.	tissues. (U) CSO 2.3 : To explain cytodifferentiation of tracheary elements and sieve elements, pits and plasmodesmata. (U) CSO 2.4 : To explain about wall ingrowths and transfer cells, adcrustations and ergastic substances. (U) CSO 2.5 : To explain on hydathodes, cavities, lithocysts and laticifers. (U)			
UNIT 3 Apical meristems (CO 3)	Evolution of concept of organization of shoot apex (Apical cell theory, Histogen theory); Types of vascular bundles; Structure of dicot and monocot stem. Diversity and structure of monocot and dicot leaf. Structure of dicot and monocot leaf, Kranz anatomy. Organization of root apex (Apical cell theory, Histogen theory); Quiescent centre; Rootcap; Structure of dicot and monocot root.	(U) CSO 3.1 : To explain on the evolution of concept of organization of shoot apex. (U) CSO 3.2 : To explain the types of vascular bundles. (U) CSO 3.3 : To explain the structure of dicot and monocot stem. (U) CSO 3.4 : To explain the origin, development, arrangement and diversity in size and shape of leaves. (U) CSO 3.5 : To explain the structure of dicot and monocot leaf as well as Kranz anatomy. (U) CSO 3.6 : To explain the organization of root apex, quiescent centre and root cap. (U) CSO 3.7 : To explain the structure of dicot and monocot root. (U) CSO 3.8 : To explain about endodermis,	12	26	
		exodermis and origin of			
UNIT 4	Structure, function and	exodermis and origin of lateral root. (U)	10	22	
UNIT 4 Vascular	Structure, function and seasonal activity of	exodermis and origin of	10	22	

Wood (CO 4)	growth in root and stem.	cambium. (U)			
	Axially and radially	CSO 4.2: To explain			
	oriented elements; Types	about secondary growth in			
	of rays and axial	× ,			
	parenchyma; Sapwood	CSO 4.3: To describe in			
	and heartwood; Ring and	detail about axially and			
	diffuse porous wood;	radially oriented elements.			
	Early and late wood,	(K)			
	tyloses;	CSO 4.4: To explain the			
	Dendrochronology.	types of rays and axial			
		parenchyma. (U)			
		CSO 4.5: To illustrate on			
		cyclic aspects and			
		reaction of wood. (A)			
		CSO 4.6: To describe			
		about sapwood and			
		heartwood, ring and			
		diffuse porous wood,			
		early and late wood. (K)			
		CSO 4.7: To explain			
		about tyloses and			
		dendrochronology. (U)			
		CSO 4.8: To explain			
		about the development			
		and composition of			
		periderm, rhytidome and			
		lenticels. (U)			
UNIT 5	Epidermal tissue system,	CSO 5.1: To explain on	6	14	
Adaptive and	cuticle, epicuticular	the epidermal tissue			
Protective	waxes, trichomes (uni and	5			
Systems (CO		-			
5)	and non-glandular, two				
	examples of each),	CSO 5.2: To describe			
	stomata (classification);	about the classification of			
	Adcrustation and	stomata. (K)			
	incrustation; Anatomical	CSO 5.3: To illustrate on			
	adaptations of xerophytes,	adcrustation and			
	hydrophytes and	incrustation. (A)			
	epiphytes.	CSO 5.4: To elucidate on			
		anatomical adaptations of			
		xerophytes and			
		hydrophytes. (A)			

NAME OF THE PAPER	:MORPHOLOGY	AND	ANATOMY
	ANGIOSPERMS		
Code	: BTM 3(P)		
Number of Credit	:01		
Number of Hours of Lecture	: 30		

- 1. Apical meristem of root, shoot and vascular cambium.
- 2. Distribution and types of parenchyma, collenchyma and sclerenchyma.
- 3. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates;
- 4. xylem fibres.
- 5. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
- 6. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.
- 7. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.
- 8. Root: monocot, dicot, secondary growth.
- 9. Stem: monocot, dicot primary and secondary growth; periderm; lenticels.
- 10. Adaptive Anatomy: xerophytes, hydrophytes, epiphytes
- 11. Secretory tissues: cavities, lithocysts and laticifers.

Suggested Readings

- 1. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 4. Evert, R.F. (2006) Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function and Development. John Wiley and Sons, Inc.

OF

, -----

Semester-IV

NAME OF THE PAPER (CODE): PLANT TAXONOMY (BTM 4)Number of Credit: 03

Number of Hours of Lecture : 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **PLANT TAXONOMY**:

CO 1	To learn the basics of plant taxonomy and significance of plant systematic.
CO 2	To learn about taxonomic hierarchy and taxonomic evidences.
CO 3	To be well versed on Botanical Nomenclature.
CO 4	To learn about classification systems.
CO 5	To gain knowledge on biometrics, numerical taxomomy and cladistics.

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Identification,	CSO 1.1: To define plant	8	18	
Introduction	Classification,	systematic and explain on plant			
to plant	Nomenclature.	identification, classification and			
taxonomy	Functions of	nomenclature. (K+U)			
(CO 1)	Herbarium, important	CSO 1.2 : To explain about field			
	herbaria and botanical	inventory and functions of			
	gardens of the world	herbarium. (U)			
	and India;	CSO 1.3 : To discuss on important			
	Documentation: Flora,	herbaria and botanical gardens of			
	Keys: single access and	the world and India as well as on			
	multi-access	virtual herbarium and e-flora. (U)			
		CSO 1.4: To illustrate on			
		taxonomic documentation and			
		taxonomic keys. (A)			
UNIT 2	Taxonomic evidences:	CSO 2.1 : To illustrate on the	12	26	
Taxonomic	Palynology, cytology,	evidences from palynology,			
evidences and	phytochemistry and	cytology, phytochemistry and			
Taxonomic	molecular data. Ranks,	molecular data. (A)			
hierarchy (CO	categories and	CSO 2.2 : To explain about			
2)	taxonomic groups	taxonomic hierarchy- Ranks,			
		categories and taxonomic groups.			
		(U)			
UNIT 3	Principles and rules	CSO 3.1 : To explain about the	14	30	
Botanical	(ICN); ranks and names;	Principles and rules (ICN); ranks			
nomenclature	binominal system,	and names; binominal system,			
(CO 3)	typification, author	typification, author citation, valid			
	citation, valid	publication, rejection of names,			
	publication, rejection of	principle of priority and its			

UNIT 4 Classification (CO 4)	names, principle of priority and its limitations. Types of classification- artificial, natural and phylogenetic. Bentham and Hooker (upto series), Engler and Prantl (upto series).	limitations. (U) CSO 4.1 : To explain about types of classification-artificial, natural and phylogenetic. (U) CSO 4.2 : To explain Bentham and Hooker (upto series), Engler and Prantl (upto series). (U)	6	14	
UNIT 5 Biometrics, numerical taxonomy and cladistics (CO 5)	Characters; variations; OTUs, character weighting and coding; cluster analysis; phenograms, cladograms (definitions and differences).	CSO 5.1: To explain about characters; variations; OTUs, character weighting and coding. (U) CSO 5. 2: To explain about cluster analysis; phenograms, cladograms. (U)	5	12	

NAME OF THE PAPER	: PLANT TAXONOMY
Code	: BTM 4(P)
Number of Credit	:01
Number of Hours of Lecture	: 30

- Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker's system of classification):Brassicaceae Brassica,Alyssum / Iberis; Asteraceae -Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax; Solanaceae -Solanum nigrum, Withania; Lamiaceae -Salvia, Ocimum; Liliaceae Asphodelus / Lilium / Allium.
- 2. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book).

- 1. Kormondy, E.J. (1996). Concepts of Ecology. Prentice Hall, U.S.A. 4th edition.
- 2. Sharma, P.D. (2010) Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
- 3. Simpson, M.G. (2006). *Plant Systematics*. Elsevier Academic Press, San Diego, CA, U.S.A.
- 4. Singh, G. (2012). *Plant Systematics:* Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rd editio

Semester- V

NAME OF THE PAPER (CODE) : PLANT PHYSIOLOGY (BTM 5) Number of Credit

Number of Hours of Lecture

:03 : 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **PLANT PHYSIOLOGY**:

	are the course objectives (cos) for the paper running running course of	
CO 1	To be introduced to and understand about plant water relations.	
CO 2	To learn about nutrition in plants.	
CO 3	To understand about translocation in plants.	
CO 4	To be sensitized about plant growth regulators.	
CO 5	To learn and understand the physiology of flowering.	

Unit & Title	Unit Contents	Course Specific Objectives (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 Plant-water relations (CO 1)	Water Potential and its components, water absorption by roots, aquaporins, pathway of water movement, symplast, apoplast, transmembrane pathways, root pressure, guttation. Ascent of sap– cohesion- tension theory. Transpiration and factors affecting transpiration, mechanism of stomatal movement.	 CSO 1.1: To explain water potential and its components. (U) CSO 1.2: To illustrate on water absorption by roots and aquaporins. (A) CSO 1.3: To explain pathway of water movement, symplast, apoplast and transmembrane pathways. (U0 CSO 1.4: To explain about root pressure and guttation. (U) CSO 1.5: To explain ascent of sap and cohesion-tension theory. (U) CSO 1.6: To discuss about transpiration and factors affecting transpiration, anti transpirants and mechanism of stomatal movement. (U) 	10	22	
UNIT 2 Mineral nutrition (CO 2)	Essential and beneficial elements, macro and micronutrients, methods of study and use of nutrient solutions, criteria for essentiality, mineral deficiency symptoms, roles of essential elements, chelating agents.	 CSO 2.1: To explain about essential and beneficial elements, macro and micronutrients. (U) CSO 2.2: To explain the methods and use of nutrient solutions. (U) CSO 2.3: To explain on criteria of essentiality and mineral deficiency symptoms. (U) CSO 2.4: To illustrate on essential elements and chelating agents. (A) 	10	22	
UNIT 3 Nutrient Uptake	Soil as a nutrient reservoir, transport of ions across cell membrane, passive	CSO 3.1: To illustrate on soil as a nutrient reservoir. (A)CSO 3.2: To discuss on transport of ions across cell membrane, passive	10	22	108

Translocation in the phloem (CO 3)	absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems, proton ATPase pump and ion flux, uniport, co- transport, symport, antiport. Experimental evidence in support of phloem as the site of sugar translocation. Pressure– Flow Model; Phloem loading and unloading; Source–sink relationship.	absorption, electrochemical gradient, facilitated diffusion, active absorption and role of ATP. (U) CSO 3.3 : To explain about carrier systems, proton ATPase pump and ion flux, uniport, co-transport, symport and antiport. (U) CSO 3.4 : To discuss about experimental evidence in support of phloem as the site of sugar translocation. (U) CSO 3.5 : To illustrate Pressure-flow model, phloem loading and unloading and source-sink relationship. (A)		12	
UNIT 4 Plant growth regulators (CO 4)	Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene, Brassinosteroids and Jasmonic acid.	CSO 4.1 : To discuss on the discovery, chemical nature and structure of auxins, gibberellins, abscisic acid, ethylene, brassinosteroids and jasmonic acid. (U) CSO 4.2 : To explain the bioassay and physiological roles of auxins, gibberellins, abscisic acid, ethylene, brassinosteroids and jasmonic acid. (U)	5	12	
UNIT 5 Physiology of flowering; Phytochrome, crytochromes and phototropins (CO 5)	Photoperiodism, flowering stimulus, florigen concept, vernalization, seed dormancy. Discovery, chemical nature, role in photomorphogenesis, low energy responses (LER) and high irradiance responses (HIR), mode of action.	CSO 5.1: To define and explain photoperiodism. (K+U) CSO 5.2: To illustrate on flowering stimulus, florigen concept, vernalization and seed dormancy. (A) CSO 5.3: To explain the discovery, chemical nature and role of light pigments on photomorphogenesis. (U) CSO 5.4: To describe about low energy response, high irradiance responses and the mode of action. (K)	10	22	

NAME OF THE PAPER	: PLANT PHYSIOLOGY
Code	: BTM 5(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

Practicals

- 1. Determination of osmotic potential of plant cell sap by plasmolytic method.
- 2. Determination of water potential of given tissue (potato tuber) by weight method.
- 3. Study of the effect of wind velocity and light on the rate of transpiration in excised twig/leaf.
- 4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.
- 5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
- 6. To study the phenomenon of seed germination (effect of light).
- 7. To study the effect of different concentrations of IAA on *Avena* coleoptile elongation (IAA Bioassay).

Demonstration experiments

- 1. To demonstrate suction due to transpiration.
- 2. Fruit ripening/Rooting from cuttings (Demonstration).

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons.U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development.Sinauer Associates Inc. USA. 6th edition.
- 3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual. Narosa Publishing House, New Delhi.

Semester-VI

NAME OF THE PAPER (CODE): PLANT METABOLISM (BTM 6)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **PLANT METABOLISM**:

0	j i j i j
CO 1	To be introduced to and understand the concept of metabolism.
CO 2	To understand about carbon assimilation in plants.
CO 3	To learn about carbohydrate metabolism and carbon oxidation in plants.
CO 4	To learn about ATP synthesis and signal transduction in plants
CO 5	To understand and learn about lipid and nitrogen metabolism.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 Concept of metabolism (CO 1)	Introduction, anabolic and catabolic pathways, regulation of metabolism, role of regulatory enzymes (allosteric, covalent modulation and Isozymes).	CSO 1.1: To give an introduction on the concept of metabolism. (K) CSO 1.2: To explain about anabolic and catabolic pathways. (U) CSO 1.3: To illustrate on the regulation of metabolism and role of	5	12	
UNIT 2 Carbon assimilation (CO 2)	Photosynthetic pigments (chlorophylls and accessory pigments), photosynthetic electron transport, antenna molecules and reaction centres, photochemical reactions, PSI, PSII, Q cycle, photorespiration, C4pathways; Crassulacean acid metabolism.	regulatory enzymes. (A) CSO 2.1 : To explain on photosynthetic pigments and their roles. (U) CSO 2.2 : To discuss on antenna molecules and reaction centres of photosynthetic pigments. (U) CSO 2.3 : To illustrate on photochemical reactions and photosynthetic electron transport. (A) CSO 2.4 : To explain on PSI, PSII and Q cycle. (U) CSO 2.5 : To discuss on	10	22	

	l				
		pathways, CAM pathway			
		and factors affecting			
		CO2 reduction. (U)			
UNIT 3	Synthesis and catabolism	CSO 3.1: To explain on	10	22	
Carbohydrate	of sucrose and starch.	synthesis and catabolism			
metabolism;	Glycolysis, fate of	of sucrose and starch.			
Carbon	pyruvate, regulation of				
Oxidation (CO	glycolysis, oxidative	CSO 3.2: To explain			
3)	pentose phosphate	-			
0)	pathway, oxidative				
	decarboxylation of				
	pyruvate, regulation of	0,0,0			
	PDH, NADH shuttle; TCA				
		1 0 0			
		CSO 3.3 : To explain on			
	electron transport,				
	oxidative phosphorylation,	decarboxylation of			
	cyanide-resistant	pyruvate and regulation			
	respiration.	of PDH and NADH			
		shuttle. (U)			
		CSO 3.4: To explain			
		TCA cycle, amphibolic			
		role, anaplerotic			
		reactions and regulation			
		of the cycle. (U)			
		CSO 3.5: To illustrate			
		mitochondrial electron			
		transport and oxidative			
		phosphorylation. (A)			
		CSO 3.6: To explain			
		cyanide-resistant			
		respiration and factors			
		affecting respiration. (U)			
UNIT 4	Mechanism of ATP		10	22	
ATP-Synthesis	synthesis, substrate level	mechanism of ATP	-0		
and	phosphorylation,	synthesis, substrate level			
Mechanism of		phosphorylation and			
signal	(Oxidative and				
transduction	photophosphorylation),	mechanism. (U)			
(CO 4)	ATP synthase, Boyers				
	conformational model,	ATP synthase, Boyers			
	Racker's experiment,	conformational model,			
	Jagendorf's experiment;	Racker's experiment and			
	role of uncouplers.	Jagendrof's experiment.			
	1				
	Receptor-ligand	(A) CSO 4.2. To diagona the			
	interactions; Second	CSO 4.3 : To discuss the			
	messenger concept,	role of uncouplers,			
	Calcium calmodulin.	receptor-ligand			
	L	interactions, second			

		1		1	
		messenger concept and			
		calcium calmodulin. (U)			
		CSO 4.4: To explain on			
		MAP kinase cascade. (U)			
UNIT 5	Synthesis and breakdown	CSO 5.1: To explain the	10	22	
Lipid and	of triglycerides, β -	synthesis and breakdown			
Nitrogen	oxidation, glyoxylate	of triglycerides. (U)			
metabolism	cycle, gluconeogenesis and	CSO 5.2: To discuss on			
(CO 5)	its role in mobilisation of	β -oxidation, glyoxylate			
	lipids during seed	cycle, gluconeogenesis			
	germination, α oxidation.	and its role in			
	Nitrate assimilation,	mobilisation of lipids			
	biological nitrogen	during seed germination.			
	fixation (examples of	(U)			
	legumes and non-	CSO 5.3 : To explain α-			
	legumes); Ammonia	oxidation. (U)			
	assimilation and	CSO 5.4: To explain on			
	transamination.	nitrate assimilation,			
		biological nitrogen			
		fixation. (U)			
		CSO 5.5: To illustrate on			
		physiology and			
		biochemistry of nitrogen			
		fixation, ammonia			
		assimilation and			
		transamination. (A)			

NAME OF THE PAPER	: PLANT METABOLISM
Code	: BTM 6(P)
Number of Credit	:01
Number of Hours of Lecture	: 30

Practicals

- 1. Chemical separation of photosynthetic pigments.
- 2. To study the effect of light intensity on the rate of photosynthesis.
- 3. Effect of carbon dioxide on the rate of photosynthesis.
- 4. To compare the rate of respiration in different parts of a plant.
- 5. To demonstrate activity of Nitrate reductase in germinating leaves of different plant sources.
- 6. Demonstration of fluorescence by isolated chlorophyll pigments.
- 7. Demonstration of absorption spectrum of photosynthetic pigments.

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 3. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.

Semester-VII

NAME OF THE PAPER (CODE)	: HORTICULTURE PRACTICES HARVEST TECHNOLOGY (BTM 7.1)	AND	POST-
Number of Credit	: 03		
Number of Hours of Lecture	: 45		

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper HORTICULTURE PRACTICES AND POST-HARVEST TECHNOLOGY:

CO 1	To understand about the field of horticulture and its techniques.
CO 2	To learn about floriculture and ornamental plants.
CO 3	To learn about various vegetable and fruit crops.
CO 4	To learn about post-harvest technologies.
CO 5	To understand and learn about landscaping and garden design.

COURSE SPECIFIC OBJECTIVES (CSOs)

Unit & Title	Unit Contents	Course Specific Objectives (CSOs)	Lecture	Marks	LOs
			Hours		
UNIT 1	Scope and importance,	CSO 1.1 : To explain about the scope	10	22	
Introduction	Branches of horticulture;	and importance of horticulture and			
and	Role in rural economy	different branches of horticulture.			
horticultural	and employment	(U)			
techniques	generation; Importance	CSO 1.2 : To discuss the role of			
(CO 1)	in food and nutritional	horticulture in rural economy and			
	security; Urban	employment generation. (U)			
	horticulture and	CSO 1.3 : To explain on the			
	ecotourism. Application	importance of horticulture in food			
	of fertilizers and PGRs;	and nutritional security. (U)			
	Biofertilizers,	CSO 1.4: To discuss on urban			
	biopesticides; Irrigation	horticulture and ecotourism. (U)			
	methods (drip irrigation,	CSO 1.5 : To explain on application			
	surface irrigation, furrow	of manure, fertilizers, nutrients and			
	and border irrigation);	PGRs. (U)			
	Hydroponics;	CSO 1.6: To discuss on weed			
	Propagation Methods:	control, bio fertilizers and bio			
	asexual (grafting,	pesticides. (U)			
	cutting, layering,	CSO 1.7 : To explain about the			
	budding), sexual (seed	different methods of irrigation and			
	propagation).	hydroponics. (U)			
		CSO 1.8: To discuss on asexual and			
		sexual propagation methods. (U)			
		CSO 1.9 : To discuss on scope and			
		limitations oh horticulture. (U)			
UNIT 2	Cut flowers, bonsai,	CSO 2.1: To discuss about cut	10	22	
Floriculture	commerce (market	flowers and bonsai as well as their			
and	demand and supply).	market demand and supply. (U)			

Ornamental plants (CO 2)	Types, classification (annuals, perennials); Identification and salient features of some ornamental plants [rose, gladiolus, orchids, poppies, gerberas, tuberose, sages, cacti and succulents (opuntia, agave and spurges)] Ornamental flowering trees (Indian laburnum, gulmohar, Jacaranda, Lagerstroemia, fishtail, areca palms, coral tree).	CSO 2.2: To explain about the importance of flower shows and exhibitions. (U) CSO 2.3: To explain about the different types and classification of flowers and ornamental plants. (U) CSO 2.4: To identify and explain the salient features of some ornamental plants. (A) CSO 2.5: To identify and explain the salient features of some ornamental flowering trees. (A)			
UNIT 3 Fruit and vegetable crops (CO 3)	Production, origin and distribution; Description of plants and their economic products; Management and marketing of vegetable and fruit crops; Identification of some fruits and vegetable varieties (citrus, banana, mango, chillies and cucurbits).	CSO 3.1: To explain about the production, origin and distribution of fruits and vegetable crops. (U) CSO 3.2: To illustrate on description of plants and their economic products. (A) CSO 3.3: To discuss on the management and marketing of fruits and vegetable crops. (U) CSO 3.4: To identify and study some fruits and vegetable varieties. (A)	5	12	
UNIT 4 Post-harvest technology (CO 4)	Importance of post- harvest technology in horticultural crops; Evaluation of quality traits; Harvesting and handling of fruits, vegetables and cut flowers; Principles, methods of preservation and processing; Methods of minimizing loses during storage and transportation; Food irradiation - advantages and disadvantages; food safety.	CSO 4.1: To explain on the importance of post harvest technology in horticultural crops. (U) CSO 4.2: To study about the evaluation of quality traits. (A) CSO 4.3: To explain about harvesting and handling of fruits, vegetables and cut flowers. (U) CSO 4.4: To illustrate on the principles and methods of preservation and processing of fruits and vegetables. (A) CSO 4.5: To discuss on the methods of minimizing losses during storage and transportation. (U) CSO 4.6: To explain about food irradiation, its advantages and disadvantages and food safety. (U)	10	22	
UNIT 5	Planning and layout (parks and avenues);	CSO 5.1 : To discuss on planning and layout of parks and avenues. (U)	10	22	

and garden	gardening traditions - Ancient Indian, European, Mughal and Japanese Gardens; Urban	CSO 5.2 : To explain about gardening traditions with reference to ancient Indian, European, Mughal and Japanese gardens. (U)		
5)	forestry; policies and practices.	CSO 5.3 : To explain about urban forestry, policies and practices. (U)		

NAME OF THE PAPER

Code Number of Credit Number of Hours of Lecture

: HORTICULTURE PRACTICES AND POST-HARVEST TECHNOLOGY : BTM 7.1(P)

: 01 : 30

Practicals

1. Field trip

Field visits to gardens, standing crop sites, nurseries, vegetable gardens and horticultural fields at IARI or other suitable locations.

OR

2. Project work (to be assigned to the students)

- a) Hydroponics
- b) Post harvest techniques
- c) Floriculture/Olericulture/Pomology (Market demand and sales)
- d) Landscaping & Gardens

- 1. Singh, D. & Manivannan, S. (2009). Genetic Resources of Horticultural Crops. Ridhi International, Delhi, India.
- 2. Swaminathan, M.S. and Kochhar, S.L. (2007). Groves of Beauty and Plenty: An Atlas of Major Flowering Trees in India. Macmillan Publishers, India.
- 3. NIIR Board (2005). Cultivation of Fruits, Vegetables and Floriculture. National Institute of Industrial Research Board, Delhi.
- 4. Kader, A.A. (2002). Post-Harvest Technology of Horticultural Crops. UCANR Publications, USA.56
- 5. Capon, B. (2010). Botany for Gardeners. 3rd Edition. Timber Press, Portland, Oregon.

NAME OF THE PAPER (CODE): BIOSTATISTICS AND BIOINFORMATICS (BTM 7.2)Number of Credit: 03Number of Hours of Lecture: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **BIOSTATISTICS AND BIOINFOEMATICS**:

CO 1	To develop in-depth knowledge of biostatistics and data collection.	
CO 2	2 To learn and understand about central tendency and statistical inference.	
CO 3	To learn about bioinformatics and databases.	
CO 4	To gain knowledge about Biological Sequence Databases and Sequence	
Alignment and Molecular Phylogeny.		
CO 5	To learn about applications of bioinformatics.	

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Definition-Statistical	CSO 1.1: To define	7	16	
Biostatistics and	methods- basic principles.	biostatistics. (K)			
Collection of	Variables-measurements,	CSO 1.2: To explain			
primary and	functions, limitations and	about statistical methods			
secondary data	uses of statistics.	and basic principles. (U)			
(CO 1)	Types and methods of	CSO 1.3: To illustrate on			
	data collection	variables-measurements,			
	procedures-merits and	functions, limitations and			
	demerits, Classification-	uses of statistics. (A)			
	tabulation and	CSO 1.4: To explain the			
	presentation of data-	types and methods of data			
	sampling methods.	collection procedures. (U)			
		CSO 1.5: To discuss the			
		merits and demerits of the			
		types of data collection.			
		(U)			
		CSO 1.6: To illustrate on			
		classification, tabulation			
		and presentation of data.			
		(A)			
		CSO 1.7: To explain			
		about sampling methods.			
		(U)			
UNIT 2	Mean, Median, Mode,	CSO 2.1: To define and	10	22	
Measures of	Geometric mean-merits	solve problems of mean,			
Central	and demerits. Measures	median, mode and			
Tendency and	of dispersion-range,	geometric mean. (K+A)			
Statistical	standard deviation, mean	CSO 2.2: To discuss the			
inference (CO	deviation, quartile	merits and demerits of			
2)	deviation-merits and	mean, median, mode and			
	demerits. Hypothesis-	geometric mean. (U)			

	simple hypothesis- student't' test-Chi square test. Introduction to software tools for statistical analysis.	CSO 2.3: To define and work out problems on range, standard deviation, mean deviation and quartile deviation. (K+A) CSO 2.4: To discuss the merits and demerits of range, standard. (U) CSO 2.5: To define and explain about hypothesis. (K+U) CSO 2.6: To work out problems on student't'- test. (A) CSO 2.7: To work out problems on chi-square test. (A)			
UNIT 3 Introduction to Bioinformatics and Databases in Bioinformatics (CO 3)	Introduction, Branches of Bioinformatics, Aim, Scope and Research areas of Bioinformatics: Biological Databases, Classification format of Biological Databases.	CSO 3.1: To introduce and explain the branches of Bioinformatics. (K+U) CSO 3.2: To explain about the aim, scope and research area of bioinformatics. (U) CSO 3.3: To discuss on biological databases and classification format of biological databases. (U)	10	22	
UNIT 4 Biological Sequence Databases and Sequence Alignment and Molecular Phylogeny (CO 4)	Tools,SequencesubmissiontoNCBI,BasicLocalAlignment	CSO 4.1: To explain about National Centre for Biotechnology (NCBI): Tools and Databases of NCBI, Database Retrieval Tools, Sequence submission to NCBI. (U) CSO 4.2: To explain about Basic Local Alignment Search Tool	13	28	

		(U+A)			
UNIT 5	Structural Bioinformatics	CSO 5.1: To explain	5	12	
Application of	in Drugs Discovery,	about structural			
Bioinformatics	Quantitative structure-	bioinformatics in drugs			
(CO 5)	activity relationship	discovery, Quantitative			
	(QSAR) techniques in	structure-activity			
	Drugs Design, Microbial	relationship (QSAR)			
	genome application, Crop	techniques in Drugs			
	improvement	Design. (U)			
		CSO 5.2: To discuss on			
		Microbial genome			
		application, Crop			
		improvement. (U)			

NAME OF THE PAPER Code	: BIOSTATISTICS AND BIOINFORMATICS : BTM 7.2(P)
Number of Credit	:01
Number of Hours of Lecture	: 30

Practicals

- 1. Collection of data.
- 2. Calculation of central tendency.
- 3. Testing of statistical hypothesis.
- 4. Nucleic Acid and Protein Databases.
- 5. Sequence retrieval from Databases.
- 6. Sequence alignment.
- 7. Sequence homology and Gene Annotation.
- 8. Construction of phylogenetic tree.

- 1. Andreas D. Baxevanis and B. F. Francis Ouellette Bioinformatics (2001). A Practical Guide to the Analysis of Genes and Proteins, Second Edition 2nd Edition; Willey&Sons.
- 2. Bailey, N.T.J. 1995. Statistical methods of Biology 3rd edition, Cambridge University Press
- 3. Bioinformatics and Biostatistics James M. Bower and Hamid Bolouri (2011).Computational Modeling of Genetic and Biochemical Networks. MIT Pubs
- 4. Daniel, W. W. (2007). Biostatistics- A Foundation for Analysis in the Health Sciences, Wiley.
- 5. Daniel, W.W., (1978.) Biostatistics: A foundation for analysis in health sciences 2nd edition. John Wiley, NY.
- 6. Dutta, N. K. (2004). Fundamentals of Biostatistics, Kanishka Publishers.
- 7. Eynon B.P. and T.W. Anderson, Minitab guide to Statistics.
- 8. Gurumani N. (2005) . An Introduction to Biostatistics, MJP Publishers.
- 9. Jayarama Reddy (2011)Fundamentals of Bioinformatics.SS Education Series: 1st edition 2011
- 10. Jayarama Reddy (2017) Bioinformatics and Biostatistics, Publishers- Geetha Book House, Bengaluru, ISBN:(9789352679515)

Semester-VIII

NAME OF THE PAPER (CODE)	: MICROBIOLOGY, PATHOLOGY (BTM 8.1)	AND	PLANT
Number of Credit Number of Hours of Lecture	: 03 : 45		

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **MICROBIOLOGY**, **MYCOLOGY AND PLANT PATHOLOGY**:

CO 1	To gain knowledge on plant diseases, its defence and host-pathogen interaction.
CO 2	To learn about the immune system in plants.
CO 3	To learn about mycology and fungal forms.
CO 4	To be well versed in plant pathology.
CO 5	To study various plant diseases.

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Host-microbe	CSO 1.1: To explain about	7	16	
Diseases and	relationship (Symbiosis,	Host-microbe relationship.			
Defence:	Commensalism,	(U)			
Host-	Mutualism &	CSO 1.2: To discuss on			
Pathogen	Parasitism)	infection patterns,			
interaction	Infection Patterns;	pathogenecity and virulence.			
(CO 1)	Pathogenicity;	(U)			
	Virulence	CSO 1.3: To explain about			
	Classification of	classification of diseases,			
	Diseases (Epidemic,	epidemiology and diseases in			
	Endemic, Pandemic &	population. (U)			
	Sporadic)	CSO 1.4: To explain about			
	Epidemiology	reservoirs of infection. (U)			
	Diseases in population				
	Reservoirs of infection				
UNIT 2	Introduction to	CSO 2.1 : To introduce	8	18	
Diseases and	immunology	immunology and discuss on			
Defence:	Innate & Acquired	innate and acquired immune			
Immune	Immune Response	response. (K+U)			
system (CO	Antigen; Antibody	CSO 2.2: To explain about			
2)	Structure, Types &	antigen, antibody structure,			
	Properties	types and properties. (U)			
	Haematopoiesis	CSO 2.3: To discuss on			
	Cells involved in	haematopoiesis, cells involved			
	immune system	in immune system and			
	Immunity in Plants	immunity in plants. (U)		•	
UNIT 3	Characteristics, habit,	CSO 3.1: To explain about	14	30	
Introduction	habitat, somatic	the characteristics, habit,			
to mycology	structures, reproduction	habitat, somatic structures,			

and fungal forms (CO 3)	and present status of fungi; Classification of fungi by Ainsworth,1973, and Alexopoulos et al. 1996, Phylogenetic classification of fungi by Mclaughlin et al 2001, Hibbett et al 2007, and Kirk et.al, 2008. Economic importance of fungi. Salient features, classification and life cycles of Myxomycota, Mastigomycotina, Zygomycotina, Basidiomycotina and Deuteromycotina with suitable examples. Mycotoxins: useful and harmful effects.	reproduction and present status of fungi. (U) CSO 3.2 : To discuss about the classification of fungi by Ainsworth, Alexopoulos phylogenetic classification by Mclaughlin, Hubbet and Kirk. (U) CSO 3.3 : To discuss on the economic importance of fungi. (U) CSO 3.4 : To explain the salient features, classification and life cycles of myxomycota, mastigomycotina, zygomycotina, ascomycotina, basidiomycotina and deuteromycotina. (U) CSO 3.5 : To discuss about mycotoxins, its useful and harmful effects. (U)			
UNIT 4 Plant Pathology (CO 4)	History, concepts and scope of plant pathology; classification of plant diseases; Disease cycle and disease development; Pathogenicity test and Koch's postulates effect disease on physiology of host, defence mechanisms in plants. Methods of plant disease management. Locally available plant diseases.	history, concepts and scope of plant pathology. (U) CSO 4.2 : To explain the classification of plant diseases, disease cycle and disease development. (U) CSO 4.3 : To discuss about	7	16	
UNIT 5 Study of Plant Diseases (CO 5)	Disease cycle and control measures of following diseases: Mycoplasma diseases: Grassy shoot of sugar cane, Yellow Dwarf in rice, Viral diseases: Bunchy top of banana, Cotton	 CSO 5.1: To explain about disease cycle and control measures of: a) Mycoplasma diseases b) Viral diseases c) Bacterial diseases d) Fungal diseases (U) 	9	20	

Bac Bac pado cruc Fung bligt	curl disease, terial diseases: terial leaf blight of dy, Black rot of ifers, gal Diseases: Late ht of Potato, Coffee Wood rotting		
rust,	Wood rotting.		

NAME OF THE PAPER

Code Number of Credit Number of Hours of Lecture

: MICROBIOLOGY, MYCOLOGY AND PLANT PATHOLOGY : BTM 8.1(P) : 01

Practicals

- 1. Micrometry
- 2. Haemocytometer
- 3. Isolation, Culture and Staining Techniques of Fungi
- 4. Identification of Fungi using Fungal Floras
- 5. Type Study: Stemonites, Saprolegnia, Albugo, Phytophthora, Mucor, Aspergillus, Pencillium, Morchella, Hemileia, Ustilago, Lycoperdon, Dictyophora, Curvularia, Alternaria, Fusarium, Pestalotia, Pleurotus, Amanita, Lenzites, Polyporus, Trametes Ganoderma. (use recent classification)
- 6. Study of some Bacterial, Viral, Mycoplasma Diseases in Plants (based on availability)

: 30

- 7. Antibacterial/Fungal essay by Disc Diffusion method.
- 8. Type study of locally available plant diseases.

- 1. Ajoy Paul, (2016.) Text book of Immunology. Books and Allied Pvt. Ltd. Kolkatta.
- 2. Alexopoulus, C.J., Mims, C.W and Blackwell (1996) Introductory Mycology, 6th edition, Wiley Eastern Ltd., New Delhi.
- 3. Aneja, K.R. (1993) Experiments in Microbiology, plant pathology and tissue culture, Wishwa Prakashan, New Delhi.
- 4. Burnet, F.M. and Stanely, W.M. (1970) Biochemical biological and biophysical properties Vol-I general virology 3rd edition Academic Press, NY, London.
- 5. Conrat, F.H.; Kimball, P.C. and Jay, L. (1988) Virology, Prentice Hall, Englewood Cliff, New Jersey.
- 6. Deacon, J.W., (2006.) Fungal Biology., Blackwell Publishers, USA.
- 7. N.J.Dimmock, A.J.Easton, K.N. Leppard, (2007,) Modern Virology, VI Edition, Blackwell Publishing Company.
- 8. Kodo, C.I. and Agarwal, H.O. (1972) Principles and techniques in Plant Virology, Van Nostrand, Reinhold company
- 9. Pelczar, M.J. (Jr.) Chan, E.C.S. and Kreig, N.R. (1988) Microbiology, 5th edition McGraw Hall book company, Singapore.

NAME OF THE PAPER (CODE)	: NATURAL RESOURCE MANAGEMENT (BTM 8.2)
Number of Credit	: 03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper NATURAL RESOURCE MANAGEMENT:

CO 1	To understand the concept of natural resources and sustainable utilization.	
CO 2	CO 2 To be well versed with the utilization of land and water resources.	
CO 3	3 To learn about biological resources.	
CO 4	CO 4 To learn about forests and energy resources.	
CO 5	To be sensitized on resource management and conservation.	

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		205
UNIT 1	Natural Resources:	CSO 1.1: To define natural	7	16	
Natural resources and Sustainable utilization (CO 1)	Definition and types. Sustainable utilization: Concept, approaches (economic, ecological and socio-cultural) with special reference to sustainable practices in Nagaland, WCED.	resources and explain its types. (K+U) CSO 1.2 : To discuss the concepts and approaches with special reference to sustainable practices in Nagaland. (U)			
UNIT 2 Land and Water (CO 2)	Utilization (agricultural, pastoral, horticultural, Silvicultural); Soil degradation and management. Fresh water (rivers, lakes, groundwater, watershed); Marine; Estuarine; Wetlands; Threats and management strategies.	CSO 2.1: To illustrate on the different types of land utilization. (A) CSO 2.2: To discuss on soil degradation and management. (U) CSO 2.3: To explain on fresh water resources, marine, estuarine and wetlands. (U) CSO 2.4: To discuss about the threats and management strategies. (U)	12	26	
UNIT 3 Biological Resources (CO 3)	Biodiversity- Definition and types; Significance; Threats; Management strategies; Bioprospecting; IPR; CBD; National Biodiversity Action Plan). Ecosystem services.	CSO 3.1: To define biodiversity and explain its types. (K+U) CSO 3.2: To study the significance of biodiversity. (K) CSO 3.3: To discuss the threats, management and strategies of biodiversity. (U) CSO 3.4: To explain on bioprospecting and Intellectual Property Right. (U) CSO 3.5: To discuss on CBD and National Biodiversity Action Plan. (U)	9	20	
UNIT 4 Forests and	Definition, Cover and its significance (with special reference to India); Major	CSO 4.1 : To define forest and explain on forest cover and its significance with reference to India.	9	20	

Energy (CO 4)	and minor Forestproducts; Depletion; Management. Renewable and non- renewable sources of energy.	 (K+U) CSO 4.2: To discuss on major and minor forest products. (U) CSO 4.3: To explain on the depletion and management of forest. (U) CSO 4.4: To explain about renewable and non-renewable sources of energy. (U) 			
UNIT 5 Contemporary practices in resource management and National and international efforts in resource management and conservation (CO 5)	EIA, GIS, Participatory Resource Appraisal, Ecological Footprint with emphasis on carbon footprint, Resource Accounting; Waste management.	CSO 5.1: To explain about Environmental Impact Assessment, GIS and Participatory Resource Appraisal. (U) CSO 5.2: To discuss about ecological footprint with emphasis on carbon footprint. (U) CSO 5.3: To explain about resource accounting and waste management. (U)	8	18	

NAME OF THE PAPER	: NATURAL RESOURCE MANAGEMENT
Code	: BTM 8.2(P)
Number of Credit	: 01
Number of Hours of Lecture	: 30

Practicals

- 1. Estimation of solid waste generated by a domestic system (biodegradable and nonbiodegradable) and its impact on land degradation.
- 2. Collection of data on forest covers of specific area.
- 3. Measurement of dominance of woody species by DBH (diameter at breast height) method.
- 4. Calculation and analysis of ecological footprint.
- 5. Ecological modeling.
- 6. Field report.

- 1. Vasudevan, N. (2006). Essentials of Environmental Science. Narosa Publishing House, New Delhi.
- 2. Singh, J. S., Singh, S.P. and Gupta, S. (2006). Ecology, Environment and Resource Conservation. Anamaya Publications, New Delhi.
- 3. Rogers, P.P., Jalal, K.F. and Boyd, J.A. (2008). An Introduction to Sustainable Development. Prentice Hall of India Private Limited, New Delhi.

Semester-I

NAME OF THE PAPER (CODE)	: NURSERY AND GARDENING (BTS 1)
Number of Credit	: 02
Number of Hours of Lecture	: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper NURSERY AND GARDENING:

CO 1	To gain in depth knowledge about nursery.
CO 2	To gain knowledge and understand about seed and vegetative propagation.
CO 3	To learn about gardening, sowing/raising of seeds and seedlings.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 Nursery (CO 1)	Definition, objectives and scope and building up of infrastructure for nursery, planning and seasonal activities - Planting - direct seeding and transplants.	CSO 1.1: To define nursery and explain its objectives and scope. (K+U) CSO 1.2: To explain the building up of infrastructure for nursery, planning and seasonal activities. (U) CSO 1.3: To explain about planting - direct seeding and transplants. (U)	4	8	
UNIT 2 Seed and Vegetative propagation (CO 2)	Structure and types - Seed dormancy; causes and methods of breaking dormancy - Seed storage: Seed banks, factors affecting seed viability, genetic erosion – Seed production technology - seed testing and certification. Air-layering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings - Hardening of plants - green house - mist	CSO 2.1: To explain about structure and types of seeds. (U) CSO 2.2: To explain seed dormancy; causes and methods of breaking dormancy. (U) CSO 2.3: To explain about seed storage: Seed banks, factors affecting seed viability, genetic erosion. (U) CSO 2.4: To explain about seed protein technology - seed testing and certification. (U) CSO 2.5: To explain about air-layering,	12	20	

	chamber, shed root,	cutting, selection of			
	shade house and glass	cutting, collecting			
	house.	season, treatment of			
		cutting, rooting			
		medium and planting of			
		cuttings. (U)			
		CSO 2.6: To explain			
		about hardening of			
		plants - green house -			
		mist chamber, shed			
		root, shade house and			
LINITT 2	Definition	glass house. (U)	14	22	
UNIT 3	Definition, objectives	CSO 3.1: To define	14	22	
Gardening,	and scope - different	garden and explain its			
Sowing/raising	types of gardening -	objectives and scopes.			
of seeds and	1	(K+U)			
seedlings (CO 3)	gardening - parks and	CSO 3.2: To explain			
	its components - plant	different types of			
	materials and design -	gardening-landscape			
	computer applications	and home gardening.			
	in landscaping -	(U)			
	Gardening operations:	CSO 3.3: To explain			
	soil laying, manuring,	about parks and its			
	watering, management	components. (U)			
	of pests and diseases	CSO 3.4: To explain			
	and harvesting.	about plant materials			
	Transplanting of	and design and			
	seedlings - Study of	computer applications in			
	cultivation of different	landscaping. (U)			
	vegetables: cabbage,	CSO 3.5 : To explain			
	brinjal, lady's finger,	about gardening			
	onion, garlic, tomatoes,	1 0			
	andcarrots - Storage and	manuring, watering,			
	marketing procedures.	management of pests			
		and diseases and			
		harvesting. (U)			
		CSO 3.6: To explain			
		about transplanting of			
		seedlings. (U)			
		CSO 3.7 : To explain the			
		cultivation of different			
		vegetables- cabbage,			
		brinjal, lady's finger,			
		onion, garlic, tomatoes,			
		and carrots. (U)			
		CSO 3.8 : To explain			
		about storage and			
		marketing procedures.			
		(U)			
	1				

- 1. Bose T.K. & Mukherjee, D., (1972). Gardening in India, Oxford & IBH Publishing Co., New Delhi.
- 2. Sandhu, M.K., (1989). Plant Propagation, Wile Eastern Ltd., Bangalore, Madras.
- 3. Kumar, N., (1997). Introduction to Horticulture, Rajalakshmi Publications, Nagercoil.
- 4. Edmond Musser & Andres, Fundamentals of Horticulture, McGraw Hill Book Co., New Delhi.
- 5. Agrawal, P.K. (1993). Hand Book of Seed Technology, Dept. of Agriculture and Cooperation, National Seed Corporation Ltd., New Delhi.
- 6. Janick Jules. (1979). Horticultural Science. (3rd Ed.), W.H. Freeman and Co., San Francisco, USA.

-	 	 	 	 	-	 	 -	-	-	-	 	 		-	-	-	-		-	-	_	-	-	-	-	 	 -	-	-	-	 	 -	-	-	-	 	 	 	 •
													6	٦.			~ .	~4	~		т	т																	

Semester-II

NAME OF THE PAPER (CODE)	: FLORICULTURE (BTS 2)
Number of Credit	: 02
Number of Hours of Lecture	: 30

COURSE OBJECTIVES (COs)

The following ar	e the Course Objectives (COs) for the paper FLORICULTURE :
CO 1	To learn about floriculture and ornamental plants.
CO 2	To gain knowledge on principles of garden design and landscaping.
CO 3	To be well versed about commercial floriculture.

COURSE SPECIFIC OBJECTIVES (CSOs)

_ _ _ _

_ _

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	History of gardening;	CSO 1.1: To explain the	14	22	
Introduction to	Importance and scope of	History of gardening;			
floriculture and	floriculture and landscape	Importance and scope of			
Ornamental Plants	gardening.	floriculture and			
(CO 1)	Nursery Management and				
	Routine Garden	CSO 1.2: To explain			
	Operations: Sexual and	about Nursery			
	vegetative methods of	Management and			
	propagation; Soil	Routine Garden			
	sterilization; Seed sowing;	Operations: Sexual and			
	Pricking; Planting and	vegetative methods of			
	transplanting; Shading;	propagation; Soil			
	Stopping or pinching;	sterilization; Seed			
	Defoliation; Wintering;	sowing; Pricking;			
	Mulching; Topiary; Role	Planting and			
	of plant growth	transplanting; Shading;			
	regulators.	Stopping or pinching;			
	Flowering annuals;	Defoliation; Wintering;			
	Herbaceous perennials;	Mulching; Topiary;			
	Divine vines; Shade and	Role of plant growth			
	ornamental trees;	regulators. (U)			
	Ornamental bulbous and	CSO 1.3: To explain			
	foliage plants; Cacti and	about Flowering annuals			
	succulents; Palms and	and Herbaceous			
	Cycads; Ferns and	perennials. (U)			
	Selaginellas; Cultivation	CSO 1.4: To explain			
	of plants in pots; Indoor	about divine vines;			
	gardening; Bonsai.	Shade and ornamental			
		trees. (U) CSO 1.5: To explain			
		about Ornamental			
		bulbous and foliage			
		plants; Cacti and			
	I	plants, Cacu allu			

		succulents; Palms and			
		Cycads; Ferns and Selaginellas. (U)			
		CSO 1.6 : To explain about Cultivation of			
		plants in pots; Indoor			
		gardening; Bonsai. (U)			
UNIT 2 Dringinlag of Condon	English, Italian, French,	CSO 2.1 : To explain	8	14	
Principles of Garden Designs and	Persian, Mughal and Japanese gardens;	about English, Italian, French, Persian, Mughal			
landscaping (CO 2)	Features of a garden	and Japanese gardens.			
	(Garden wall, Fencing,	(U)			
	Steps, Hedge, Edging, Lawn, Flower beds,	CSO 2.2 : To explain about Features of a			
	Shrubbery, Borders,	garden (Garden wall,			
	Water garden. Some	Fencing, Steps, Hedge,			
	Famous gardens of India.	Edging, Lawn, Flower beds, Shrubbery,			
	Landscaping Places of Public Importance:	Borders, Water garden.			
	Landscaping highways	(U)			
	and Educational	CSO 2.3: To explain			
	institutions.	about some Famous gardens of India. (U)			
		CSO 2.4: To explain			
		about landscaping Places			
		of Public Importance: Landscaping highways			
		and Educational			
		institutions. (U)			
UNIT 3	Factors affecting flower		8	14	
Commercial Floriculture (CO 3)	production; Production and packaging of cut	e			
	flowers; Flower				
	arrangements; Methods to	about Production and			
	prolong vase life;	packaging of cut flowers. (U)			
	Cultivation of Important cut flowers (Carnation,	CSO 3.3 : To explain			
	Aster, Chrysanthemum,	about Flower			
	Dahlia, Gerbera,	arrangements; Methods			
	Gladiolous, Marigold, Rosa Lilium Orabida)	to prolong vase life. (U) CSO 3.4: To explain			
	Rose, Lilium, Orchids). Diseases and Pests of	about ultivation of			
	Ornamental Plants.	important cut flowers.			
		(U) CSO 3.5: To explain			
		Diseases and Pests of			
		Ornamental Plants. (U)			

Suggested Readings 1. Randhawa, G.S. and Mukhopadhyay, A. 1986. Floriculture in India. Allied Publishers.

Semester-III

NAME OF THE PAPER (CODE)	: BIOFERTILIZERS (BTS 3)
Number of Credit	: 02
Number of Hours of Lecture	: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **BIOFERTILIZERS**:

CO 1	To understand the concept of biofertilizers.
CO 2	To learn about Azospirillum, Azotobacter, Cyanobacteria, Azolla and
	Anabaena azollae as biofertilizers.
CO 3	To understand Mycorrhizal association and organic farming.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 Introduction to biofertilizers (CO 1)	General account about the microbes used as biofertilizer – Rhizobium – isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis.	CSO 1.1: To explain about the microbes used as biofertilizer – <i>Rhizobium</i> – isolation, identification, mass multiplication, carrier based inoculants. (U) CSO 1.2: To explain about Actinorrhizal symbiosis. (U)	4	8	
UNIT 2 Azospirillum, Azotobacter, Cyanobacteria, Azolla and Anabaena azollae as biofertilizers (CO 2)	Azospirillum: isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms.Azotobacter: classification, characteristics – crop response to Azotobacter inoculum, maintenance and mass multiplication. Cyanobacteria (blue green algae), Azolla and Anabaena azollae association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation.		12	20	

	1			[
		CSO 2.3: To explain			
		about Cyanobacteria			
		(blue green algae),			
		Azolla and Anabaena			
		azollae association,			
		nitrogen fixation,			
		factors affecting			
		growth. (U)			
		CSO 2.4 : To explain			
		_			
		0			
		algae and Azolla in			
		rice cultivation. (U)			
UNIT 3	Mycorrhizal association,	CSO 3.1: To explain	14	22	
Mycorrhizal	types of mycorrhizal	about mycorrhizal			
Associations	association, taxonomy,	association and types			
and Organic	occurrence and distribution,	of mycorrhizal			
Farming (CO	phosphorus nutrition,	association. (U)			
3)	growth and yield –	CSO 3.2: To explain			
	colonization of VAM -	about taxonomy,			
	isolation and inoculum	occurrence and			
	production of VAM, and its	distribution,			
	influence on growth and	phosphorus nutrition,			
	yield of crop plants.	growth and yield –			
	• • • • •	colonization of VAM			
	Organic farming – Green	– isolation and			
	manuring and organic	inoculum production			
	fertilizers, Recycling of	of VAM, and its			
	bio- degradable municipal,	influence on growth			
	agricultural and Industrial	and yield of crop			
	wastes – biocompost	plants. (U)			
	making methods, types				
	and method of	• •			
	vermicomposting – field	about green manuring			
	Application.	and organic			
		fertilizers. (U)			
		CSO 3.4: To explain			
		about Recycling of			
		bio- degradable			
		municipal, agricultural			
		and Industrial wastes.			
		(U) CSO 25. To evaluin			
		CSO 3.5: To explain about biocompost			
		making methods,			
		types and method of			
		vermicomposting –			
		field application. (U)			

Suggested Readings

- 1. Dubey, R.C., (2005). A Text book of Biotechnology S.Chand & Co, New Delhi.
- 2. Kumaresan, V. (2005). Biotechnology, Saras Publications, New Delhi.
- 3. John Jothi Prakash, E. (2004). Outlines of Plant Biotechnology. Emkay Publication, NewDelhi.
- 4. Sathe, T.V. (2004). Vermiculture and Organic Farming. Daya publishers.
- 5. Rao, N.S. (2000). Soil Microbiology, Oxford & IBH Publishers, New Delhi.

Vayas, S.C., Vayas, S. and Modi, H.A. (1998). Bio-fertilizers and organic Farming Akta Prakashan, Nadiad

Semester-IV

NAME OF THE PAPER (CODE) Number of Credit Number of Hours of Lecture

: MUSHROOM CULTIVATION (BTS 4)

: 02

: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper MUSHROOM CULTIVATION:CO 1To learn about mushroom and its history.CO 2To gain in depth knowledge about cultivation technology, requirements
and mushroom bed preparation.CO 3To learn about storage, preparation and mushroom food preparation.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	Nutritional and	CSO 1.1: To define	5	10	
Introduction	medicinal value of	mushroom. (K)			
and history	edible mushrooms;	CSO 1.2: To illustrate			
(CO 1)	Poisonous	on the nutritional and			
	mushrooms.Types of	medicinal value of			
	edible mushrooms	edible mushrooms. (A)			
	available in India -	CSO 1.3: To explain			
	Volvariella volvacea,	about types of			
	Pleurotus	poisonous and selected			
	citrinopileatus, Agaricus	edible mushrooms			
	bisporus.	available in India. (U)			
UNIT 2	Cultivation	CSO 2.1: To explain	13	20	
Cultivation	Technology:	the infrastructures			
Technology,	Infrastructure:	involved in cultivation			
requirements and	substrates (locally	technology. (U)			
Mushroom bed	available) Polythene	CSO 2.2: To discuss			
preparation (CO 2)	bag, vessels,	the use of locally			
	Inoculation hook,	available substrates,			
	inoculation loop, low-	polythene bags, vessels,			
	cost stove, sieves,	inoculation hook,			
	culture rack,	inoculation loop, low			
	mushroom unit	cost stove, sieves,			
	(Thatched house) water	culture rack, water			
	sprayer, tray, small	sprayer etc. (U)			
	polythene bag. Pure	CSO 2.3: To illustrate			
	culture: Medium,	on pure culture			
	sterilization,	medium, sterilization,			
	preparation of spawn,	preparation of spawn			

	multiplication. Paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation. Low cost technology, Composting	and multiplication. (A) CSO 2.4 : To explain mushroom bed preparation using paddy straw, sugarcane trash, maize straw and banana leaves. (U) CSO 2.5 : To explain about factors affecting			
	technology in mushroom production.	mushroom bed preparation. (U) CSO 2.6 : To explain on low cost technology, composting technology in mushroom production (U)			
UNIT 3 Storage, nutrition and Mushroom food preparation (CO 3)	Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in saltsolutions. Nutrition - Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins. Food Preparation: Types of foods prepared from mushroom.Research Centres - National level and Regional level.Cost benefit ratio - Marketing in India and abroad, Export Value.	production. (U) CSO 3.1 : To explain short-term storage and long term storage of mushroom. (U) CSO 3.2 : To discuss the methods of storage of mushroom. (U) CSO 3.3 : To explain on the nutritive values of mushroom with reference to amino acids, mineral elements, carbohydrates, fibre content and vitamins. (U) CSO 3.4 : To discuss on the different types of food prepared from mushroom. (U) CSO 3.5 : To illustrate on Research Centres at National level and Regional level. (A) CSO 3.6 : To explain the cost benefit. (U)	12	20	

- 1. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991)
- 2. Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 3. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.

- 4. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 5. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

	Semester-V
NAME OF THE PAPER (CODE)	: HERBAL TECHNOLOGY (BTS 5)
Number of Credit	: 02
Number of Hours of Lecture	: 30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper **HERBAL TECHNOLOGY**:

CO 1	To learn about herbal medicines.
CO 2	To gain knowledge on pharmacognosy and phytochemistry.
CO 3	To learn about analytical pharmacognosy and future prospects.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	History and scope -	CSO 1.1 : To explain the	6	10	
Herbal medicines	definition of medical	history, scope and			
(CO 1)	terms - role of medicinal	definition of medical			
	plants in Siddha systems	terms. (U)			
	of medicine; cultivation	CSO 1.2: To illustrate			
	- harvesting - processing	the role of medicinal			
	- storage - marketing	plants in Siddha systems			
	and utilization of	of medicine. (A)			
	medicinal plants.	CSO 1.3 : To explain the			
		cultivation, harvesting,			
		processing, storage,			
		marketing and			
		utilization of medicinal			
		plants. (U)			
UNIT 2	Systematic position	CSO 2.1: To define the	12	20	
Pharmacognosy	medicinal uses of the	term pharmacognosy.			
and	following plants in	(K)			
Phytochemistry	curing various ailments;	CSO 2.2 : To explain the			
(CO 2)	Tulsi, Ginger,	systematic position,			
	Fenugreek, Indian	medicinal uses of Tulsi,			
	Goose berry and	ginger, fenugreek,			
	Ashoka.	Indian gooseberry and			
	Active principles and	Ashoka in curing			
	methods of their testing	various ailments. (U)			

					1
	- identification and	CSO 2.3: To define the			
	utilization of the	term phytochemisry.			
	medicinal herbs;	(K)			
	Catharanthus roseus	CSO 2.4 : To explain the			
	(cardiotonic), Withania	active principles and			
	somnifera (drugs acting	methods of testing of			
	on nervous system),	medicinal plants. (U)			
	Clerodendron	CSO 2.5: To illustrate			
	phlomoides (anti-	the identification and			
	rheumatic) and Centella	utilization of the			
	asiatica (memory	medicinal herbs such as			
	booster).	Catharanthus roseus,			
		Withania somnifera,			
		Clerodendron			
		<i>phlomoides</i> and			
		<i>Centella asiatica</i> . (A)			
UNIT 3	Drug adulteration -	CSO 3.1: To define	12	20	
Analytical	types, methods of drug				
pharmacognosy	evaluation - Biological	CSO 3.2 : To explain the			
and future	testing of herbal drugs -	types and methods of			
prospects (CO 3)	Phytochemical screening	51			
prospects (CC C)	tests for secondary	CSO 3.3 : To explain			
	metabolites (alkaloids,	-			
	flavonoids, steroids,	herbal drugs. (U)			
	triterpenoids, phenolic	CSO 3.4 : To explain			
	compounds).	phytochemical			
	Medicinal plant banks	screening tests for			
	micro propagation of	secondary metabolites.			
		(U)			
		CSO 3.5 : To explain			
	(<i>Withania somnifera</i> , neem and tulsi- Herbal	about medicinal plant			
		1			
		CSO 3.6 : To discuss on			
	pharmacognosy)				
		micro propagation of			
		Withania somnifera,			
		neem and tulsi. (U)			
		CSO 3.7 : To discuss on			
		herbal foods. (U)			
		CSO 3.8: To illustrate			
		on the future of			
		pharmacognosy. (A)			

- 1. Glossary of Indian medicinal plants, R.N.Chopra, S.L.Nayar and I.C.Chopra, (1956). C.S.I.R, New Delhi.
- 2. The indigenous drugs of India, Kanny, Lall, Dey and Raj Bahadur, (1984). International Book _Distributors.

- 3. Herbal plants and Drugs Agnes Arber, (1999). Mangal Deep Publications.
- 4. Ayurvedic drugs and their plant source. V.V. Sivarajan and Balachandran Indra (1994). Oxford IBH _publishing Co.
- 5. Ayurveda and Aromatherapy. Miller, Light and Miller, Bryan, (1998). Banarsidass, Delhi.
- 6. Principles of Ayurveda, Anne Green, (2000). Thomsons, London.
- 7. Pharmacognosy, Dr.C.K.Kokate et al. (1999). Nirali Prakashan.

	Semester-III
IE OF THE PAPER (CODE)	: INTELLECTUAL PROPERTY RIGHTS (MDC-3)

NAME OF THE PAPER (CODE)	: INTELLECTU
Number of Credit	:04
Number of Hours of Lecture	: 60

COURSE OBJECTIVES (COs)

•

The following are the Course Objectives (COs) for the paper **INTELLECTUAL PROPERTY RIGHTS**:

CO 1	To learn about Intellectual Property Rights.
CO 2	To understand and be aware about patents
CO 3	To learn about copyrights and trademarks.
CO 4	To learn about Geographical indications.
CO 5	To gain in depth knowledge about industrial designs and information technology.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1 Introduction to Intellectual Property Rights (CO 1)	Concept and kinds. Economic importance. IPR in India and world: Genesis and scope, some important examples.IPR and WTO (TRIPS, WIPO).	CSO 1.3 : To explain about genesis, scope	10	16	
UNIT 2 Patents (CO 2)	Objectives, Rights, Patent Act 1970 and	CSO 2.1 : To explain on the objectives and rights of patents. (U)	14	24	

		CSO 2 2. To diamag and		Г	
	its amendments. Procedure of obtaining patents, Working of patents, Rights and duties of Patentee, Assignment and license, Infringement, Remedies and Penalties.	CSO 2.4 : To explain about remedies and penalties. (U)			
UNIT 3 Copyrights and Trademarks (CO 3)	Copyrights: Introduction, Works protected under copyright law, Rights, Transfer of copyrights, Infringement. Trademarks: Objectives, Types, Rights, Protection of Goodwill, Infringement, Passing off, Defences, Domain name.	CSO 3.1: To introduce copyrights and explain about works protected under copyright law. (K+U) CSO 3.2: To explain about rights, transfer of copyrights and infringement. (U) CSO 3.3: To explain the objectives, types, protection of goodwill of trademarks. (U) CSO 3.4: To discuss about the infringement, passing off, defenses and domain name of trademarks. (U)	12	20	
UNIT 4 Geographical Indications (CO 4)	Objectives, Justification, International Position, Multilateral Treaties, National Level, Indian Position. Geographical indications granted to Nagaland State.	CSO 4.1: To explain about the objectives, and justification of geographical indications. (U) CSO 4.2: To discuss about the international position, multilateral treaties, national level and Indian position pertaining to geographical indications. (U) CSO 4.3: To discuss about geographical indication granted to Nagaland state. (U)	10	16	
UNIT 5 Industrial designs and Information	Industrial Designs: Objectives, Rights, Assignments,	CSO 5.1 : To explain about objectives, rights, assignments,	14	24	

5)	Infringements, Defences of Design Infringement Information Technology: Computer Software and Intellectual Property, Database and Data Protection, Protection of Semi- conductor chips, Domain Name Protection.	(U) CSO 5.2 : To explain about computer software and intellectual property. (U) CSO 5.3 : To discuss about Database and Data Protection, Protection of Semi-		
----	--	---	--	--

- 1. N.S. Gopalakrishnan & T.G. Agitha, (2009) Principles of Intellectual Property EasternBook Company, Lucknow.
- 2. Kerly's Law of Trade Marks and Trade Names (14th Edition) Thomson, Sweet & Maxweel.
- 3. Ajit Parulekar and Sarita D' Souza, (2006) Indian Patents Law Legal & Business Implications; Macmillan India Ltd.
- 4. B.L.Wadehra (2000) Law Relating to Patents, Trade Marks, Copyright, Designs & Geographical Indications; Universal law Publishing Pvt. Ltd., India.
- 5. P. Narayanan (2010) Law of Copyright and Industrial Designs; Eastern law House, Delhi.