

ST. JOSEPH'S COLLEGE (AUTONOMOUS) JAKHAMA-NAGALAND

SYLLABUS (Outcome Based Education)

CURRICULUM AND CREDIT FRAMEWORK FOR UNDERGRADUATE PROGRAMMES (NEP-2020)

DEPARTMENT OF CHEMISTRY

With effect from the Academic Year 2023-2024 (1st to 4th FYUGP)

CHEMISTRY HONOURS SYLLABUS

FOUR YEAR DEGREE COURSE SEMESTER SYSTEM (U.G COURSE) (Under UGC NEP 2020 Guidelines) DEPARTMENT OF CHEMISTRY St. Joseph's College (Autonomous) Jakhama, Nagaland <u>COURSE STRUCTURE</u>

S E M E S T E R	MAJOR OR DISCIPLINE SPECIFIC CORE COURSE (4 CREDITS EACH)	INTER DISCIPLINARY MINOR (IDM) (4 CREDITS EACH)	MULTI- DISCIPLINARY/ 3 INTRODUCTORY COURSE (4CREDITS EACH)	ABILITY ENHANCEMENT COURSE (AEC) (2 CREDITS EACH)	SKILL ENHANCEMENT COURSES (SEC) (2 CREDITS EACH)	INTERNSHIP/ APPRENTICESHIP/ PROJECT/ INTERNSHIP /COMMUNITY OUTREACH (2 CREDITS EACH)	VALUE ADDITION COURSE VAC (2CREDITS EACH)	TO TAL CRE DITS
I	INORGANIC CHEMISTRY: I CHC 1.1 PHYSICAL CHEMISTRY: I CHC 1.2	INORGANIC CHEMISTRY: I CHM 1 (Minor-1)	ENVIRONMENTAL STUDIES MDC 1 COMMON POOL	AEC-1: ENGLISH COMMUNICATION (2)	BASICS OF ANALYTICAL CHEMISTRY: I CHS 1		VAC-1 (2) CONSTITUTIONAL VALUES VAC 1	22
П	ORGANIC CHEMISTRY: I CHC 2.1 INORGANIC CHEMISTRY: II CHC 2.2	ORGANIC CHEMISTRY: I CHM 2 (Minor-2)	PROGRAMMING USING PYTHON MDC 2 (COMMON POOL)	AEC-2: BASIC FUNCTIONAL ENGLISH (2)	BASICS OF ANALYTICAL CHEMISTRY: II CHS 2		VAC-2(2) CONSUMER RIGHTS VAC 2	22
		dents on exit sha	ll be awarded <mark>U</mark>	ndergraduate Certific	cate		Total = 44 Ci	redits
ш	PHYSICAL CHEMISTRY II CHC 3.1 ORGANIC CHEMISTRY: II CHC 3.2 INORGANIC CHEMISTR: III CHC 3.3	PHYSICAL CHEMISTRY: I CHM 3 (Minor-3)	INTELLECTUAL PROPERTY RIGHTS MDC 3 (COMMON POOL)		CHEMISTRY OF FI FLAVOURS: A PERSPI CH (2	N INDUSTRY'S Ective S 3		22
IV	PHYSICAL CHEMISTRY: III CHC 4.1 ORGANIC CHEMISTRY: III CHC 4.2 INORGANIC CHEMISTRY: IV CHC 4.3	ORGANIC CHEMISTRY: II CHM 4 (Minor-4)		AEC-3: POETRY, PROSE AND SHORT STORIES(2)	ROLE OF METALS IN MEDICINES CHS 4 (2)		VAC -3(2) WORK ETHICS VAC 3	22
	CHC 4.5	Students on e	xit shall he awar	ded Undergraduate 1	Dinloma		Total = 44 Ci	redits
v	ORGANIC CHEMISTRY: IV CHC 5.1 PHYSICAL CHEMISTR: IV CHC 5.2 ANALYTICAL METHODS IN CHEMISTRY CHC 5.3	PHYSICAL CHEMISTRY: II CHM 5 (Minor-5)		AEC-4: NOVEL AND DRAMA (2)	CHEMISTRY IN I CH	CHEMISTRY IN DAIRY PRODUCTS CHS 5 (2)		22
VI	PHYSICAL CHEMISTRY: V CHC 6.1 ORGANIC CHEMISTRY: V CHC 6.,2 GREEN CHEMISTRY CHC 6.3 SPECTROSCOPY CHC 6.4	INORGANIC CHEMISTRY: II CHM 6 (Minor-6)			CI	AND SOCIETY HS 6 (2)		22
		Students on e	exit shall be awa	rded Undergraduate	Degree		Total = 44 Ci	redits
VII	CHEMISTRY OF FOOD NUTRIENTS CHC 7.1	ORGANIC CHEMISTRY: III CHM 7.1 (Minor-7)					RESEARCH DISSERTATION	20
VII	RESEARCH METHODOLGY IN CHEMISTRY CHC 7.2	BIOINORGANIC CHEMISTRY CHM 7.2 (Minor-8)					WILL START	20
VIII	NANOSCALE MATERIALS AND THEIR APPLICATIONS CHC 8.1	MEDICINES IN DAILY LIFE CHM 8 (Minor-9)					DISSERTATION ON MAJOR OR THREE PAPERS (4X3=12) 1 MINOR & 2 MAJOR PAPERS	20
							Total = 40 Credits	
	Students on exit shall be awarded Undergraduate Degree (Honours with Research)						Total Credits=	= 172

(1) Core Course/ Major (20x 4) = 80 Credits

(3) Research methodology = 4 Credits

(5) Ability Enhancement = 8 Credits

8 Credits

(7) Value Added Course = 8 Credits

(2) Minor (9x4) = 36 Credits

(4) Multi-disciplinary (4x3) = 12 Credits

(6) Skill Enhancement (6x2) = 12 Credits

(8) Dissertation on Major = 12 Credits

Note: Honours Students not undertaking research project will do three theory courses for 12 credits in lieu of a research project/ dissertation.

PREAMBLE

The syllabus for the B.Sc. Chemistry (Honours) subject was long due for revision. It was incidental that timing of the revision overlapped with that of framing new syllabus in accordance to NEP framework to be implemented in higher educational institutions throughout the state.

Prof. Upasana B. Sinha, Nagaland University Representative, Department of Chemistry Nagaland University Lumami, provided the directions and vital inputs to undertake this uphill task of framing new syllabus for Chemistry subject of the B. Sc. programme. The model syllabus was to be provided by the state level expert committee, but this was to be modified and adopted according to our ingenious needs. The syllabus had to be compatible with the B.Sc. (Honours) programme.

To accomplish the task, Board of Studies nominee, Prof. Upasana B. Sinha, Nagaland University Lumami, Department of Chemistryaligned with the Core Group of Teachers of the Chemistry Dept. SJC (A). The Core Group participated in a meeting on 22.11.23 and shaped a draft in accordance with the objectives of the NEP model curriculum. Several new elements like development of interdisciplinary skills, bridging the skill gap and knowledge-application to local problems were introduced.

Studying Chemistry subject in the B.Sc. and BSc. (Honours) is moulded to Choice Based Credit System (CBCS) and the courses are spread over all semesters. The syllabus is intended to familiarize students with the sound basic understanding of the subject as well as expose them to advanced learning which would link to postgraduate and/or research programmes. Due importance is also given to the study of applicationoriented topics so as to build a foundation to acquiring skills.

The exercise of framing syllabus was a collective endeavour. Four Faculty members of various branches of Chemistry had separate as well as joint brainstorm sessions and arrived at a draft syllabus for Eight semesters.

The Draft was brought to the attention of a wider group of teachers for further refinement and the final version incorporating the suggestions was placed be for the Board of Studies in Chemistry (UG) on 02.12.2023 for approval.

MAJOR/CORE/DISCIPLINE SPECIFIC CORE COURSE (4 CREDITS)

I-SEMESTER

NAME OF THE PAPER (CODE)	: INORGANIC CHEMISTRY-I (CHC-1.1)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper–**Inorganic Chemistry– I:**

CO 1:	To solve the conceptual questions using the knowledge gained on the quantum mechanical model of the atom, quantum numbers, electronic configuration, radial and angular distribution curves. The shapes of s,p and d Orbitals.
CO 2:	To Understand the periodic trends in properties of elements in atomic radii, ionic radii, ionization energy and electron affinity of elements
CO 3:	To Understand the concept of lattice energy through Born-Lande and Kapustinskii equation.
CO 4:	To draw the plausible structures and geometries of molecules using radius ratio rules, VSEPR theory and MO diagrams.
CO 5:	To comprehend and understand the theory and application of different acid-base and redox titrations.

Unit &	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Recapitulation of the concept of	CSO 1.1: to explain the	15	25	
Atomic	atom in ancient India, Bohr's	setbacks of Bohr's Atomic			
Structure	theory, its limitations and atomic	Model the triggers the			
	spectrum of hydrogen atom. de	development of quantum			
	Broglie equation, Heisenberg's	mechanic theory. (K)			
	Uncertainty Principle and its	CSO 1.2: to discuss the			
	significance, Schrödinger's wave	quantum mechanical model			
	equation, well behaved wave	of the atom. (K)			
	function, significance of ψ and	CSO 1.3:to know the de			
	ψ 2. Quantum mechanical	Broglie equation,			
	treatment of H-atom, Quantum	Heisenberg's Uncertainty			
	numbers and their significance.	Principle and its			
	Normalized and orthogonal wave	significance. (K)			
	functions. Sign of wave functions.	CSO 1.4: to derive the			
	Radial and angular wave	Schrödinger's wave			
	functions for hydrogen atom.	equation. (A)			

	Radial function plots, radial probability distribution plots and angular distribution curves. Shapes of <i>s</i> , <i>p</i> , <i>d</i> and <i>f</i> orbitals. Relative energies of orbitals. Pauli's Exclusion Principle, Hund's rule of maximum spin multiplicity, Aufbau's principle and its limitations.	CSO 1.5:to understand the significance of ψ and ψ 2. (U) CSO 1.6:to discuss the quantum numbers (n,1,m,s). (K) CSO 1.7: to discuss the normalized and orthogonal wave function and the sign of wave functions. (U) CSO 1.8: to learn radial and angular distribution curves. (K) CSO 1.9: to understand the shapes of s, p and d atomic orbitals (U) CSO 1.10:to know the rules for filling electrons in various orbitals, electronic configurations of the atoms (K) CSO 1.11:to discuss the stability of half-filled and completely filled orbitals. (U) CSO 1.12:to understand the concept of exchange energy and relative energies of atomic orbitals. (U)			
UNIT 2 Periodicity of Elements	Brief discussion of the following properties of the elements, with reference to <i>s</i> and <i>p</i> - block and their trends: (a) Effective nuclear charge, shielding or screening effect, Slater rules (b) Atomic and ionic radii (e) Ionization enthalpy (Successive ionization enthalpies). (f) Electron gain enthalpy (g)Electronegativity: Pauling's electronegativity scales. Variation of electronegativity with bond order and hybridization.	CSO 2.1:to compare and study the different properties of s and p block elements. (K) CSO 2.2:to calculate the Effective Nuclear Charge of various atoms with regard to the shielding or screening effect. (A) CSO 2.3:to understandthe concepts of electronic configuration, atomic and ionic size and their trends in the periodic table. (U) CSO 2.4: to discuss ionisation enthalpy, electron gain enthalpy of s- and p- block elements. (U) CSO 2.5:to understandthe concepts of electronegativity and the Pauling's electronegativity scales. (U) CSO 2.6:to explain	06	18	

		variation of			
		electronegativity with bond			
		order and hybridization. (U)			
UNIT 3	General characteristics, types of	CSO 3.1: to discuss on the	08	20	
Ionic bond	ions, size effects, radius ratio	general characteristics,			
	ruleand its limitations.Packing of	types of ions. (U)			
	ions in crystals. Lattice energy,	CSO 3.2:to understand the			
	Born-Landé equation with	lattice enthalpy and its			
	derivation, Madelungconstant, and	relation to stability of and			
	importanceofKapustinskiiequation	solubility of ionic			
	for lattice energy. Born-Haber	compounds. (U)			
	cycle and its applications.	CSO 3.3:to derive the			
	Covalent character in ionic	Born-Landé equation. (A)			
	compounds, polarizing power and	CSO 3.4:to derive the			
	polarizability. Fajan's rules and	Kapustinskiiequation and			
	consequences of polarization.	discuss its importance for			
		lattice energy. (A)			
		CSO 3.5: to discuss the			
		Born-Haber cycle and its			
		applications. (U)			
		CSO 3.6:to understand the			
		concept of polarizing power			
		and polarizability. (U)			
		CSO 3.7: to discuss the			
		Fajan's rules.(K)	10		
UNIT 4	Valence shell electron pair	CSO 4.1: to discuss the	10	22	
Covalent	repulsion theory (VSEPR), shapes	VSEPR theory. (A)			
Bond	ofsimple molecules and ions	CSO 4.2: to draw the			
	containing lone pairs and bond	plausible structures and			
	pairs of electrons: H2O, NH ₃ ,	geometries of molecules			
	PCl ₃ , PCl ₅ , SF ₆ , ClF ₃ . I ₃ , BrF ₂ ⁺ , PCl ₆ , ICl ₂ and SO ₄ ⁻² . Application	using VSEPR theory. (A)			
		CSO 4.3: to understand the			
	of VSEPR theory in predicting	application of VSEPR theory in predicting trends			
	trends in bond lengths and bond	in bond lengths and bond			
	angles. Valence Bond theory (Heitler-	angles. (U)			
	London approach).Hybridisation,	CSO 4.4: to explain the			
	equivalent and non-equivalent	covalent bonding using the			
	hybrid orbitals, Bent's rule.	Valence Bond theory. (U)			
	Molecular orbitaldiagrams of	CSO 4.5: to understand the			
	homo and hetero diatomic	concept of hybridisation			
	molecules: N_2 , O_2 , F_2 , CO , NO ,	with suitable examples. (U)			
	and theirions; HCl (idea of s-p	CSO 4.6: to draw the			
	mixing and orbital interaction to	plausible structures and			
	be given).	geometries of homo			
		diatomic molecules using			
		molecular orbital diagrams.			
		(A)			
		CSO 4.7: to draw the			
		plausible structures and			
		geometries of hetero			
		diatomic moleculesusing			
		molecular orbital			
		diagrams.(A)		•	

UNIT 5 Oxidation-	General concept. Electrochemical	CSO 5.1: to evaluate fundamentals of	06	15	
	series and its applications,Latimer diagram (chlorine in acidic and basic medium), disproportionation of H_2O_2 into O_2 and H_2O under acidic conditions, Pourbaix diagram (iron species in natural water).	fundamentals of electrochemistry. (K)			
		disproportionation reactions with suitable examples. (U) CSO 5.6: to predict spontaneous direction of electrochemical reactions, identifying corrosion products using pourbaix diagram. (K)			

- 1. J.D. Lee, Concise Inorganic Chemistry ELBS, 1991.
- 2. B.E. Douglas, and D.H. McDaniel, Concepts & Models of Inorganic Chemistry Oxford, 1970
- 3. P.W. Atkins&J. Paula, *Physical Chemistry*, 10th Ed., Oxford University Press, 2014.
- 4. M.C. Day, and J. Selbin, *Theoretical Inorganic Chemistry*, ACS Publications, 1962.
- 5. G.E. Rodger, Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.
- 6. C.E. Housecraft, A.G. Sharpe, *Inorganic chemistry*, 5th edition, Pearson, 2018.

Practical

Name of the Paper: Inorganic Chemistry-I Paper code: CHC-1.1 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

- (A) Titrimetric Analysis
- (i) Calibration and use of apparatus
- (ii) Preparation of solutions of different Molarity/Normality

(B) Acid-Base Titrations

- (i) Estimation of oxalic acid using standardized NaOH solution
- (ii) Estimation of sodium carbonate using standardized HCl.
- (iii) Estimation of carbonate and hydroxide present together in mixture.
- (iv)Estimation of carbonate and bicarbonate present together in a mixture.

(C) Oxidation-Reduction Titrimetry

(i) Estimation of oxalic acid using standardized KMnO4 solution.

(ii) Estimation of oxalic acid and sodium oxalate in a given mixture.

(iii) Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄.

Suggested Readings: Practicals

- 1. J.A. I. Mendham, Vogel's *Quantitative Chemical Analysis 6th Ed.*, Pearson, 2009.
- 2. D.C. Harris, C. A.Lucy, *Quantitative Chemical Analysis*, 9th Edition, Freeman and company, 2016.

NAME OF THE PAPER (CODE)	: PHYSICAL CHEMISTRY-I (CHC-1.2)
Number of Credit	03
Number of Hours of Lecture	45

The following are the course Objectives (Cos) for the paper– Physical Chemistry– I:

CO 1:	Derive the mathematical expressions on different properties of gas and liquids.
CO 2:	Determine the density of aqueous solutions and dilute solutions as per required concentrations.
CO 3:	Acquire knowledge about viscosity of fluids.
CO 4:	Understand the theory of the surface tensions of liquids.
CO 5:	Learn the theory of dilute solutions, distribution laws and applications.

UNIT 2	origin of viscosity of gases, relation between mean free path and coefficient of viscosity, temperature and pressure dependence of viscosity of a gas, calculation of molecular diameter from viscosity. Barometric distribution law, its derivation and applications, alternative forms of barometric distribution law in terms of density and number of molecules per unit volume, effect of height, temperature and molecular mass of the gas on barometric distribution.	viscosity. (U) CSO 1.6:to derive relationship between mean free path and coefficient of viscosity. (K) CSO 1.7:to explain the temperature and pressure dependence of viscosity of a gas. (K) CSO 1.8:to calculate molecular diameter from viscosity. (A) CSO 1.9:to derive the Barometric distribution law. (A) CSO 1.10:to discuss the applications of Barometric distribution law. (U) CSO 1.11:to explain the effect of height, temperature and molecular mass of the gas on barometric distribution. (U) CSO 2.1:to explain the	10	20	
Gaseous state-II	compressibility factor Z, variation of compressibility factor with pressure at constant temperature (plot of Z vs P) for different gases (H ₂ , CO ₂ , CH ₄ , and NH ₃), cause of deviation from ideal gas behaviour and explanation of the observed behaviour of real gases in the light of molecular interactions. Vander Waals equation of state, limitations of ideal gas equation of state and its modifications in the form of Vander Waals equation, physical significance of Vander Waals constants,	differences between the behaviour of an ideal gas and a real gas. (K) CSO 2.2: to define compressibility factor Z and discuss its variation with pressure at constant temperature for different gases. (K) CSO 2.3: to understand how molecular volumes and intermolecular attractions cause the properties of real gases to deviate from those predicted by the ideal gas law. (U) CSO 2.4: to understand the behaviour of real gases using Vander Waals equation of state. (U) CSO 2.5: to discuss the			

r					
	application of Vander Waals	limitations of ideal gas			
	equation to explain the observed	equation of state and its			
	behaviour of real gases.	modifications in the form of Vander Waals equation. (K)			
	Isotherms of real gases; critical	CSO 2.6: to explain the			
	state, relation between critical	physical significance of			
	,	Vander Waals constants. (U)			
	constants and Vander Waals	CSO 2.7: to label the			
	constants, correlation of critical	different phases, the critical			
	temperature of gases with	point and the critical			
	intermolecular forces of	isotherm. (A) CSO 2.8: to derive the			
	attraction, continuity of states,	relation between critical			
	limitations of Vander Waals	constants and Vander Waals			
	equation, reduced equation of	constants. (A)			
	state and law of corresponding	CSO 2.9: to discuss			
		correlation of critical			
	states (statements).	temperature of gases with intermolecular forces of			
	Viral equation of state: physical	attraction. (K)			
	significance of second and third	CSO 2.10: to discuss the			
	viral coefficients, Vander Waals	reduced equation of state and			
	equation expressed in virial	law of corresponding states.			
	form, relation between virial				
	coefficient and Vander Waals	CSO 2.11: to explain the concept of viral coefficients.			
	constants	(K)			
		CSO 2.12:to discuss the			
		relation between virial			
		coefficient and Vander Waals			
		constants. (U)			
UNIT 3	Qualitative treatment of the	CSO 3.1: to understand liquid	10	18	
Liquid	structure of the liquid state;	state and its importance in			
state I	physical properties of liquids-	solution. (U) CSO 3.2: to understand			
	vapour pressure, its origin and	equilibrium vapor pressure of			
	definition, vapour pressure of	a liquid depending on the			
	liquids and intermolecular	temperature and the			
	forces and boiling point.	intermolecular forces present. (U)			
	Surface tension, its origin and	CSO 3.3: to explain the			
	definition, Capillary action in	concept of Surface tension.			
	relation to cohesive and				
		CSO 3.4: to explain certain properties of water using the			
	adhesiveforces, determination of	concepts of cohesive and			
		r i contra			

	surface tension by (i) using stalagmometer (drop number and dropmass method) and (ii) capillary rise method, Effects of addition of sodium chloride,ethanol and detergent on the surface tension of water and its interpretation in terms ofmolecular interactions, Role of surface tension in the cleansing action of detergents.	adhesive forces and surface tension. (U) CSO 3.5:to understand the determination of surface tension of a given liquid at room temperature using stalagmometer. (U) CSO 3.6:to explain the determination of surface tension by capillary rise method. (U) CSO 3.7: to understand the effects of addition of sodium chloride, ethanol and detergent on the surface tension of water. (U) CSO 3.8:to explain the role of surface tension in the cleansing action of detergents. (K)			
UNIT 4 Liquid state II	Coefficient of viscosity and its origin in liquids, Interpretation of viscosity data of pure liquids (water, ethanol, ether and glycerol) in the light of molecular inter actions, Effects of addition of sodium chloride, ethanol and polymer on the viscosity of water, relative viscosity,specific viscosity and reduced viscosity of a solution, comparison of the origin of viscosity of the origin of viscosity of a liquid and its comparison with that of a gas.	CSO 4.1:to explain the viscosities of the liquids at the desired temperature kinematically and dynamically. (K) CSO 4.2: to interpret viscosity data of pure liquids in the light of molecular inter actions. (A) CSO 4.3:to explain theeffects of addition of sodium chloride, ethanol and polymer on the viscosity of water. (K) CSO 4.4:to define relative viscosity, specific viscosity and reduced viscosity of a solution. (K) CSO 4.5:to understand the origin of viscosity of liquids and gases. (U) CSO 4.6: to discuss on the effect of temperature on the viscosity of a liquid and its	07	20	

		comparison with that of a gas.		
		(U)		
UNIT 5	Review of colligative properties	CSO 5.1: to describe the	07	15
Dilute	and concentration terms.	relationship between solute		
Solutions	Determination of molecular	concentration and the		
		physical properties of a		
	mass of a solute by; Berkeley-	solution. (K)		
	Hartley's method, Beckmann's	CSO 5.2: to explain the		
	method (ΔT^{f}) and Landsberger	determination of molecular		
		mass of a solute by;		
	method. Nernst distribution law-	Berkeley-Hartley's method.		
	statement, distribution constant,	(A)		
	factors affecting distribution	CSO 5.3: to explain the		
	C	determination of molecular		
	constant, validity of distribution	mass of a solute by		
	law, modification of distribution	Beckmann's method (ΔT^{f})		
	law when molecules undergo a)	and Landsberger method. (A)		
	_	CSO 5.4:to understand the		
	association b) dissociation.	Nernst distribution law. (U)		
	Application of distribution law	CSO 5.5: to explain		
	in solvent extraction.	distribution constant and the		
		factors affecting distribution		
		constant. (U)		
		CSO 5.6: to explain the		
		modification of distribution		
		law when molecules undergo		
		association and		
		dissociation.(U)		
		CSO 5.7: to discuss the		
		application of distribution		
		law in solvent extraction. (K)		
			L	

- 1. P.W. Atkins &J. Paula, de Atkin's Physical Chemistry 10th Ed., Oxford University Press, 2014.
- 2. B.W. Ball, *Physical Chemistry* Thomson Press, India, 2007.
- 3. G.W. Castellan, *Physical Chemistry* 4th Ed. Narosa, 2004.
- 4. R.G. Mortimer, *Physical Chemistry* 3rd Ed. Elsevier: NOIDA, UP, 2009.

Practical:

Name of the Paper: Physical Chemistry-I Paper Code: CHC-1.2 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

1. Gases

- a. To verify the Charles law using Charles law apparatus
- b. To determine the value of universal gas constant R using the reaction

Mg(s) + 2HCl (aq) MgCl2 (aq) + H2 (g)

2. Surface tension measurements using stalagmometer.

a. Determine the surface tension by (i) drop number (ii) drop weight method.

b. Study the variation of surface tension of detergent solutions with concentration of detergent solutions. Determine CMC

c. Study the variation of surface tension with different concentration of sodium chloride solutions.

3. Viscosity measurement using Ostwald's viscometer.

- a. Determination of viscosity of aqueous solutions of
- (i) Ethanol and (ii) sugar at room temperature.
- b. Study the variation of viscosity of sucrose solution with the concentration of solute.
- c. Determination of co-efficient of viscosity of two unknown aqueous solution.

Suggested Readings: Practical

- B. D. Khosla, V. C. Garg, &A. Gulati, *Senior Practical Physical Chemistry*, R. Chand & Co.: New Delhi, 2011.
- C. W.Garland, J. W. Nibler, &D. P. Shoemaker, *Experiments in Physical Chemistry 8th Ed.*; McGraw-Hill: New York, 2003.
- 3. A. M. Halpern, &G. C. McBane, *Experimental Physical Chemistry 3rd Ed.;* W.H. Freeman & Co.: New York, 2003.

SEMESTER

NAME OF THE PAPER (CODE): ORGANIC CHEMISTRY – I (CHC-2.1)Number of Credit03Number of Hours of Lecture45

COURSE OBJECTIVES (COs)

Π

The following are the course Objectives (Cos) for the paper– Organic Chemistry– I:

CO 1:	Understand the concepts of organic reactions and techniques of writing the movement of electrons,
	bond breaking, bond forming and acquire basic knowledge of reactive intermediates.
CO 2:	Recognize and draw constitutional isomers, stereoisomers, including enantiomers and diasteromers,
	racemic mixture and mesocompounds.
CO 3:	Understand the synthesis, isomerism, properties and stabilities of alkanes and cycloalkanes.
CO 4:	Understand the nomenclature, synthesis, physical and chemical properties of alkanes.
CO 5:	Know the fundamental principles of organic chemistry and predict outcomes and derive mechanism of
	various types of organic reactions.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Electronic	CSO 1.1: to understand the	09	25	
Basics of	Displacements:Inductive,elect	basic concepts in organic			
Organic	romeric, resonance and	chemistry. (U)			
Chemistry	mesomeric effects,	CSO 1.2: to understand the			
	hyperconjugation and their	electron displacement effect			
	applications; Dipole moment;	providing a fundamental			
	Organic acids and bases; their	understanding of bond			
	relative strength.	polarisation and molecular			
	Homolytic and Heterolytic	reactivity. (U)			
	fission with suitable	CSO 1.3: to explain			
	examples. Curly arrow rules,	inductive, electromeric,			
	formal charges; Electrophiles	resonance and mesomeric			
	and Nucleophiles;	effects, hyperconjugation and			
	Nucleophlicity and	their applications			
	basicity;Types, shape and	CSO 1.4: to discuss the			
	their relative stability of	relative strength of organic			

	Carbocations, Carbanions,	acids and bases. (K)			
	Free radicals and Carbenes.	CSO 1.5: to discuss the			
	Introduction to types of				
	organic reactions and their	bond fission. (U)			
	mechanism: Addition,				
	,	1			
	Elimination and Substitution	electrophiles and			
	reactions.	eucleophiles, nucleophilcity			
		and basicity. (U)			
		CSO 1.7: to discuss on the			
		types, shape and relative			
		stability of Carbocations,			
		Carbanions. (U)			
		CSO 1.8: to discuss on the			
		types, shape and relative			
		stability of Free radicals and			
		Carbenes. (U)			
		CSO 1.9: to explain the			
		reaction mechanisms of			
		various organic reactions.			
		(U)			
UNIT 2	Stereoisomerism: Optical	CSO 2.1: to understand the	12	22	
Stereoche	activity and optical	fundamental concepts of			
mistry	isomerism, asymmetry,	stereochemistry. (U)			
	chirality,	CSO 2.2: to explain optical			
	enantiomers, diastereomers.	activity and optical isomerism.			
	Specific rotation;	(K)			
	Configuration and projection	CSO 2.3:to define symmetry,			
	formulae: Newman,	chirality, enantiomers,			
	Sawhorse,	diastereomers. (K)			
	Fischer and their	CSO 2.4: to explain the			
	interconversion. Chirality in	distinction between			
	molecules with one and two	enantiomers, diastereomers and			
	stereocentres;	explain their physical			
	meso configuration.	properties. (U)			
	Racemic mixture and their	CSO 2.5: to draw the Newman,			
1	resolution. Relative and	Sawhorse, Fischer projection			

	absolute configuration: D/L	(A)			
	and R/Sdesignations (CIP				
	rules).	interconversion of Newman,			
	Geometrical isomerism: cis-	Sawhorse, Fischer projection.			
	trans, syn-anti and E/Z	(A)			
	notations.	CSO 2.7: to discuss the			
		chirality in molecules with one			
		and two stereocentres. (K)			
		CSO 2.8: to explain meso			
		compounds with suitable			
		examples. (U)			
		CSO 2.9: to understand			
		racemic mixture and the			
		resolution of enantiomers. (U)			
		CSO 2.10:to discuss D/L and			
		R/S configurations of various			
		compounds. (K)			
		CSO 2.11: to understand			
		geometrical isomerism with			
		examples. (U)			
UNIT 3	Conformational Isomerism:	CSO 3.1: to understand the	06	16	
Cycloalkan	Alkanes (Conformations,	concept of stereochemistry and			
es and	relative stability and energy	conformational analysis in			
Conformat	diagramsof Ethane, Propane	cyclic compounds. (U)			
ional	and butane). Relative	CSO 3.2:to understand the			
Analysis	stability of cycloalkanes	types of strain inherent in			
	(Baeyerstrain	cycloalkanes. (U)			
	theory),Cyclohexane	CSO 3.3:to draw the energy			
	conformations with energy	diagrams of Ethane, Propane			
	diagram. Conformations of	and butane. (A,K)			
	monosubstitutedcyclohexane	CSO 3.4:to analyse and			
	S.	explain conformational			
		stabilities of Ethane, Propane			
		and butane. (U)			
		CSO 3.5:to discuss the Baeyer			
		Strain Theory. (A)			

		CSO 3.6: to draw the energy			
		diagrams of cyclohexane			
		conformations and discuss its			
		relative stabilities. (A,U)			
UNIT 4	(06 Lectures,10 marks)	CSO 4.1:to explain various	06	12	
Aliphatic	Alkanes:Preparation,	physical properties of alkanes.			
Hydrocarb	Halogenation of alkanes,	(K)			
ons:	Concept of relative reactivity	CSO 4.2: to discuss the			
Carbon-	v/s selectivity.	chemical properties of alkanes.			
Carbon		(K)			
sigma		CSO 4.3: to discuss the			
bonds		laboratory preparations of			
		alkanes. (K)			
		CSO 4.4: to discuss the			
		industrial preparations of			
		alkanes. (K)			
		CSO 4.5: to explain the			
		reaction mechanism for			
		halogenation of alkanes. (U)			
		CSO 4.6: to understand the			
		concept of relative reactivity			
		v/s selectivity. (U)			
UNIT 5	Alkenes and Alkynes:	CSO 5.1: to discuss the general	12	25	
Aliphatic	Methods of preparation of	physical and chemical			
Hydrocarb	alkenes using Mechanisms	properties of Alkenes and			
ons:	of E1, E2, E1cbreactions,	Alkynes. (K)			
Carbon-	Saytzeff and Hoffmann	CSO 5.2: to discuss the			
Carbon pi-	eliminations. Electrophilic	methods of preparation of			
bonds	additions, mechanism	alkenes using Mechanisms of			
	withsuitableexamples,	E1, E2, E1cbreactions. (U)			
	(Markownikoff/Anti-	CSO 5.3: to discuss the			
	markownikoff addition), syn	reaction mechanisms of			
	andanti-addition;addition of	Saytzeff and Hoffmann			
	H2, X2, oxymercuration-	eliminations. (A)			
	demercuration,	CSO 5.4: to explain			
	hydroboration-oxidation,	markownikoff and anti-			

ozonolysis, hydroxylation,	markownikoff addition with
reaction with NBS,	suitable examples. (A)
Reactions of alkynes;	CSO 5.5: to explain the syn
acidity, Alkylation of	and anti-addition of H2, X2.
terminalalkynes,	(K)
electrophilic addition:	CSO 5.6: to discuss the
hydration to form carbonyl	reaction mechanisms of
compounds, Relative	oxymercuration-demercuration,
reactivity ofalkenes and	hydroboration-oxidation,
alkynes, 1,2-and 1,4-addition	ozonolysis, hydroxylation,
reactions in conjugated	reaction. (A)
dienes, Diels Alder	CSO 5.7:to explain on the
reaction(excluding	acidic character of alkynes.
stereochemistry).	(U)
	CSO 5.8: to explain the 1,2-
	and 1,4-addition reactions in
	conjugated dienes. (U)
	CSO 5.9: to discuss on the
	elative reactivity and stability
	of alkenes and alkynes. (U)
	CSO 5.10:to discuss the
	reaction mechanism of Diels
	Alder reaction. (A)

- R.N.Morrison&R.N. Boyd, *Organic Chemistry*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 2010
- I.L. Finar, Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 2002
- I.L. Finar, Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 2002
- 4. E.L. Eliel&S.H. Wilen, Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 5. P.S. Kalsi, Stereochemistry Conformation and Mechanism, New Age International, 2005
- 6. J.E. McMurry, Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

Practical:

Name of the Paper: Organic Chemistry-I

Paper Code: CHC-2.1 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Note: Students should be provided with handouts prior to the practical class.

- 1. Calibration of a thermometer and determination of the melting points of the organic compounds using any one of the following methods-Kjeldahl method, electrically heated melting point apparatus and BODMEL).
- 2. Concept of melting point and mixed melting point.
- 3. Concept of recrystallisation using alcohol/water/alcohol-water systems (Any two).
- 4. Determination of boiling point of liquid compounds (boiling point lower than and morethan 100 °C by distillation, capillary method and BODMEL method).
- 5. Separation of a mixture of two amino acids/sugars by radial/ascending paper chromatography.
- 6. Separation of a mixture of o-and p-nitrophenol or o- and p-aminophenol by thin layerchromatograph y (TLC).
- 7. Detection of extra elements.

Suggested Readings: Practical

- 1. F.G. Mann, &B.C. Saunders, Practical Organic Chemistry, Pearson Education, 2009.
- B.S.Furniss, A.J. Hannaford, P.W.G.Smith, Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson, 2012.
- 3. V.K. Ahluwalia, &R. Aggarwal, Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press, 2000.
- 4. V.K.Ahluwalia, &S. Dhingra, Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press, 2000.

NAME OF THE PAPER (CODE)	: INORGANIC CHEMISTRY-II (CHC-2.2)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper– Inorganic Chemistry-II:

CO 1:	Understand the occurrence, extraction, reactivity and important processes of metals used in metallurgy.
CO 2:	Understand the bonding in inorganic molecules of s- block elements and its salient feature.
CO 3:	Know the general trends in the chemistry behind p-block elements.

CO 4:	Develop fundamental concepts of the compounds of p-block elements, their acidic and basic nature, ionic and covalent nature and chemical reactions.
CO 5:	Learn the properties, preparation and uses of noble gases.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Chief modes of	CSO 1.1: to understand the	06	20	
General	occurrence of metals	principles of different			
Principles of	based on standard	metallurgical procedures with			
Metallurgy	electrode potentials.	respect to different metals. (U)			
	Ellingham diagrams	CSO 1.2:to discuss the chief			
	for reduction of metal	modes of occurrence of metals			
	oxides using carbon	based on standard electrode			
	and carbon monoxide	potentials. (K)			
	as reducing agent.	CSO 1.3: to depict a reaction's			
	Electrolytic	standard free energy as a function			
	Reduction,	of temperature through Ellingham			
	Hydrometallurgy	diagrams. (A)			
	with reference to				
	cyanide process for	CSO 1.4: to define Electrolytic			
	silver and gold.	Reduction. (K)			
	Methods of	CSO 1.5:to explain			
	purification of	Hydrometallurgy with reference to			
	metals: Electrolytic	cyanide process for silver and gold.			
	process, Van Arkel-	(K)			
	De Boer process,	CSO 1.6: to discuss the purification			
	Zone refining. Brief	of metals using the Electrolytic			
	discussion of metals	process, Van Arkel-De Boer			
	and alloys used in	process, Zone refining. (U)			
	ancient and medieval	CSO 1.7: to explain the use of			
	India.	metals and alloys in ancient and			
		medieval India. (K)			

UNIT 2	General	CSO 2.1: to study different	14	27
Chemistry of	characteristics:	physical and chemical properties of		
s- Block	melting point, flame	s block elements. (K)		
Elements	colouration, reducing	CSO 2.2: to discuss on the		
	nature, diagonal	similarities in chemical properties		
	relationships and	of first member of each group of s		
	anomalous behavior	block elements. (K)		
	of first member of	CSO 2.3: to explain the reactions		
	each group.	of group 1 elements with oxygen,		
	Reactions of alkali	hydrogen, nitrogen and water. (U)		
	and alkaline earth	CSO 2.4: to explain the reactions		
	metals with oxygen,	of group 2 elements with oxygen,		
	hydrogen, nitrogen	hydrogen, nitrogen and water. (U)		
	and water.	CSO 2.5: to discuss ease of		
	Common features	formation, thermal stability,		
	such as ease of	energetics of dissolution, and		
	formation, thermal	solubility of hydrides and oxides.		
	stability, energetics	(K)		
	of dissolution, and	CSO 2.6: to explain thermal		
	solubility of the	stability, energetics of dissolution,		
	following alkali and	and solubility of peroxides,		
	alkaline earth metal	superoxides. (K)		
	compounds: hydrides,	CSO 2.7:to discuss ease of		
	oxides, peroxides,	formation, thermal stability,		
	superoxides,	energetics of dissolution, and		
	carbonates, nitrates,	solubility of carbonates, nitrates,		
	sulphates.	sulphates. (K)		
	Complex formation	CSO 2.8: to understand the		
	tendency of s-block	tendendy of formation of		
	elements; structure of	complexes of s-block elements.		
	the following	(U)		
	complexes: crown	CSO 2.9: to discuss the structure		
	ethers and cryptates	of crown ethers complexes. (U)		
	of Group I; basic	CSO 2.10: to explain the structure		
	beryllium acetate,	of cryptates of Group I: beryllium		
	beryllium nitrate,	acetate and beryllium nitrate. (K)		

	EDTA complexes of	CSO 2.11: to study EDTA			
	calcium and	complexes of calcium and			
	magnesium.	magnesium. (K)			
	Solutions of alkali	CSO 2.12: to discuss the			
	metals in liquid	properties of alkali metal and their			
	ammonia and their	solutions in liquid ammonia. (K)			
	properties				
UNIT 3	Electronic	CSO 3.1:to study specific	08	17	
Chemistry of	configuration, atomic	compounds of p block elements			
<i>p</i> -Block	and ionic size,	w.r.t. their synthesis, structure,			
Elements	metallic/non-metallic	properties, bonding and uses. (K)			
	character, melting	CSO 3.2: to discuss the electronic			
	point, ionization	configuration, atomic and ionic			
	enthalpy, electron	size, metallic/non-metallic			
	gain enthalpy,	character of p block elements and			
	electronegativity,	their trends in the periodic table.			
	Catenation, Allotropy	(U)			
	of C, P, S; inert pair	CSO 3.3: to explain the ionization			
	effect, diagonal	enthalpy, electron gain enthalpy,			
	relationship between	electronegativity of p block			
	B and Si and	elements and their trends in the			
	anomalous behaviour	periodic table. (U)			
	of first member of	CSO 3.4: to explain the linkage of			
	each group.	atoms of the same element into			
		longer chains. (K)			
		CSO 3.5: to discuss the allotropy			
		of C, P, S. (K)			
		CSO 3.6: to discuss the high			
		stability of low oxidation states of			
		heavy p block elements using the			
		inert pair effect. (U)			
		CSO 3.7: to discuss the similarities			
		in chemical properties of B and Si.			
		(K)			
		CSO 3.8: to discuss the anomalous			
		behaviour of first member of each			

		group of p block elements. (K)		
UNIT 4	Acidic/basic nature,	CSO 4.1: to discuss the acidic and	10	20
Compounds	stability,	basic nature of p block elements.		
of <i>p</i> -Block	ionic/covalent nature,	(U)		
Elements	oxidation/reduction,	CSO 4.2:to explain different		
	hydrolysis, action of	chemical reactions of p block		
	heat on the following:	elements. (K)		
	Hydrides of Group 13	CSO 4.3: to understand the action		
	(only diborane),	of heat on diborane. (U)		
	Group 14, Group 15	CSO 4.4: to explain the action of		
	(EH3 where $E = N$,	heat on Group 14, Group 15,		
	P,As, Sb, Bi), Group	Group 16 and Group 17 of p block		
	16 and Group 17.	elements. (U)		
	Oxoacids of phosphorus, sulphur	CSO 4.5: to discuss the structure and oxidation states of oxoacids of phosphorus. (A)		
	and chlorine	CSO 4.6: to discuss the structure		
	Interhalogen and	and oxidation states of oxoacids of		
	pseudohalogen	sulphur. (A))		
	compound.	CSO 4.7: to discuss the structure		
	Clathrate compounds of noble gases, xenon	and oxidation states of oxoacids of chlorine. (A)		
	fluorides (MO	CSO 4.8: to understand		
	treatment of XeF ₂)	Interhalogen and pseudohalogen compounds with suitable examples. (U)		
		CSO 4.9: to explain the clathrate compounds of xenon fluorides. (K)		
UNIT 5	Separation and	CSO 5.1: to discuss on the	07	16
Noble Gases	isolation of helium,	separation and isolation of helium		
	neon and argon from	from liquid air. (U)		
	liquid air, study of	CSO 5.2: to explain the separation		
	the following	and isolation of neon (U)		
	compounds	CSO 5.3:to study the separation		

(preparation,	and isolation of argon. (U)
structure	and CSO 5.4:to explain the
properties of Xe	F ₂ , preparation, structure and
XeF ₄ , and XeO ₃	and properties of XeF ₂ . (U)
XeOF _{4.}	CSO 5.5: to explain the
	preparation, structure and
	properties of XeF ₄ . (U)
	CSO 5.6: to disuss the preparation,
	structure and properties of XeO ₃ .
	(U)
	CSO 5.7: to understand the
	preparation, structure and
	properties of XeOF _{4.} (U)

- 1. J.D.Lee, Concise Inorganic Chemistry, Wiley India, 2010.
- 2. J.E. Huheey, E.A. Keiter, R.L. Keiter, O.K. Medhi, *Inorganic Chemistry-Principles of Structure and Reactivity*, Pearson Education, 2009.
- P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, F.A. Armstrong, *Shriver and Atkins Inorganic Chemistry*, 5th Edition, Oxford University Press, 2010.
- 4. G.L.Miessler, P.J. Fischer, D.A. Tarr, Inorganic Chemistry, 5th Edition, Pearson, 2014.
- 5. C.E. Housecraft, A.G. Sharpe, *Inorganic Chemistry*, 5thEdition, Pearson, 2018.
- 6. G.R. Canham, T. Overton, *Descriptive Inorganic Chemistry*, 6th Edition, Freeman and Company, 2014.
- 7. N.N. Greenwood, A.Earnsaw, *Chemistry of Elements*, 2nd Edition, Elsevier, 1997.

Practical:

Name of the Paper: Inorganic Chemistry-II Paper Code: CHC-2.2 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

2. Redox Titrations

- (i) Estimation of Fe(II) with K2Cr2O7 using diphenylamine as internal indicator.
- (ii) Estimation of Fe(II) with K2Cr2O7 using N-phenyl anthranilic acid as internal indicator.

(iii) Estimation of Fe(II) with $K_2Cr_2O_7$ using external indicator.

3. Iodo/IodimetricTitrations

- (i) Estimation of Cu(II) using sodium thiosulphate solution(Iodometrically).
- (ii) Estimation of $K_2Cr_2O_7$ using sodium thiosulphatesolution(Iodometrically).
- (iii) Estimation of antimony in tartaremeticiodimetrically.
- (iv) Estimation of Iodine content in iodizedsalt.

Suggested Readings: Practicals

- 1. G. H.Jeffery, J.Bassett, J.Mendham, R. C. Denney, Vogel's Text book of *Quantitative Chemical Analysis*, John Wiley and Sons, 1989
- D. C.Harris, C. A.Lucy, *Quantitative Chemical Analysis*, 9th Edition, Freeman and Company, 2016.
- R.A.Day,A.L. Underwood, *Quantitative Analysis*, 6th Edition, PHI Learning Private Limited, 2012.

ш	<u>SEMESTER</u>
NAME OF THE PAPER (CODE)	: PHYSICAL CHEMISTRY- II (CHC-3.1)
Number of Credit	03
Number of Hours of Lecture	45

The following are the course Objectives (Cos) for the paper– Physical Chemistry-II:

CO 1:	The laws of thermodynamics, concept of properties (extensive, intensive), state and path functions.
CO 2:	Ability to apply the first law of thermodynamics on closed and control volume systems.
CO 3:	Ability to apply the second law of thermodynamics and entropy concepts in analyzing the thermal efficiencies of heat engines such as the Carnot Cycle.
CO 4:	Derive different expressions for thermodynamic functions (U, H, S, G, A).
CO 5:	Understand partial molar properties.

Unit&Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Intensive and	CSO 1.1: to understand the	06	13	
Basic Concepts of	extensive variables;	Laws of Thermodynamics,			
Chemical	state and path	State Functions, Path			
Thermodynamics	functions; isolated,	Functions, Intensive &			
	closed and open	Extensive variables. (U)			
	systems.Mathematical	CSO 1.2:to explain the			
	treatment- Exact and	exchange of energy and			
	inexact differential,	matter with its			
	Partial derivatives,	surroundings. (U)			
	Euler's reciprocity	CSO 1.3: to describe how			
	rule, cyclic rule.	the system changes in time.			
		(K)			
		CSO 1.4:to discuss the			
		Euler's reciprocity rule. (A)			
		CSO 1.5: to explain the			
		cyclic rule. (U)			
UNIT 2	Concept of heat, Q,	CSO 2.1: to state and	15	28	

First law and	work, W, internal	derive the various			
Thermochemistry	energy, U, and	mathematical expressions			
	statement of first law;	of First Law. (A)			
	enthalpy, H, relation	CSO 2.2: to define enthalpy			
	between heat	(H)			
	capacities, Joule	CSO 2.3: to explain the			
	Thompson Porous	principle of the Joule			
	Plug experiment,	Thompson Porous Plug			
	Nature of Joule	experiment. (K)			
	Thompson	CSO 2.4: to calculate Q, W,			
	coefficient,	ΔU and ΔH for reversible,			
	calculations of Q, W,	irreversible and free			
	ΔU and ΔH for	expansion of gases. (A)			
	reversible,	CSO 2.5: to explain			
	irreversible and free	various Enthalpies of			
	expansion of gases	reactions and derive the			
	(ideal and van der	mathematical relations for			
	Waals) under	these enthalpies of reaction.			
	isothermal and	(K)			
	adiabatic conditions.	CSO 2.6: to explain			
	Enthalpy of reactions:	enthalpy of neutralization,			
	standard states;	enthalpy of hydration,			
	enthalpy of	enthalpy of formation and			
	neutralization,	enthalpy of combustion and			
	enthalpy of hydration,	its applications. (U)			
	enthalpy of formation	CSO 2.7:to describe the			
	and enthalpy of	amount of energy stored in			
	combustion and its	a bond between atoms in a			
	applications, bond	molecule. (U)			
	dissociation energy	CSO 2.8:to describe the			
	and bond enthalpy;	enthalpy of a reaction			
	effect of temperature	variation with temperature			
	(Kirchhoff's	changes. (K)			
	equations) on				
	enthalpy of reactions.				
UNIT 3	Concept of entropy;	CSO 3.1:to understand the	15	27	

Second Law of	statement of the	concept of entropy. (U)
Thermodynamics	second law of	CSO 3.2:to explain the
	thermodynamics,	feasibility of a rection using
	Carnot cycle.	the second law of
	Calculation of	thermodynamics. (K)
	entropy change for	CSO 3.3:to analyse amount
	reversible and	of heat absorbed and net
	irreversible processes	work done during Carnot
	(for ideal gases). Free	Cycle. (A)
	Energy Functions:	CSO 3.4:to calculate
	Gibbs and Helmholtz	entropy change for
	energy; variation of	reversible and irreversible
	S, G, A with T, V, P;	processes for ideal gases.
	Free energy change	(A)
	and spontaneity (for	CSO 3.5:to define Gibbs
	ideal gases). Relation	free energy, and describe its
	between Joule-	relation to spontaneity. (K)
	Thomson coefficient	CSO 3.6:to explain the
	and other	variation of S, G, A with T,
	thermodynamic	V, P. (K)
	parameters; inversion	CSO 3.7: to derive relation
	temperature; Gibbs-	between Joule- Thomson
	Helmholtz equation;	coefficient and other
	Maxwell relations;	thermodynamic parameters.
	thermodynamic	(A)
	equation of state.	CSO 3.8: to define
		inversion temperature. (K)
		CSO 3.9:to derive the
		Gibbs-Helmholtz equation.
		(A)
		CSO 3.10:to calculate
		changes in the Gibbs free
		energy of a system as a
		function of temperature.
		(A)
		CSO 3.11:to derive the

		Maxwell relations. (A)			
UNIT 4	Statement of third	CSO 4.1: to state the third	04	15	
Third Law of	law, unattainability of	law. (K)			
Thermodynamics	absolute zero,	CSO 4.2:to calculate			
	calculation of	entropy changes for			
	absolute entropy of	chemical reactions. (A)			
	molecules, concept of	CSO 4.3: to understand the			
	residual entropy,	concept of residual entropy.			
	calculation of	(U)			
	absolute entropy of	CSO 4.4: to calculate			
	solid, liquid and	absolute entropy of solid,			
	gases.	liquid and gases. (A)			
UNIT 5	Partial molar	CSO 5.1: to explain and	05	17	
Systems of	quantities,	derive the mathematical			
Variable	dependence of	relations for partial molar			
Composition	thermodynamic	properties. (K, A)			
	parameters on	CSO 5.2:to discuss the			
	composition; Gibbs	dependence of			
	Duhem equation,	thermodynamic parameters			
	chemical potential of	on composition. (K)			
	ideal mixtures,	CSO 5.3: to derive the			
	Change in	Gibbs Duhem equation. (A)			
	thermodynamic	CSO 5.4: to understand the			
	functions on mixing	change in partial molar			
	of ideal gases.	properties with composition			
		at constant temperature and			
		pressure. (U)			
		CSO 5.5: to explain the			
		change in thermodynamic			
		functions on mixing of			
		ideal gases. (K)			

- 1. A. Peter & J.D. Paula, *Physical Chemistry*, 9th Edition, Oxford University Press, 2011.
- 2. G. W. Castellan, *Physical Chemistry*, 4th Edition, Narosa, 2004.

Practical:

Name of the Paper: Physcial Chemistry-II Paper Code: CHC-3.1 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

- (a) Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system (method of back calculation of heat capacity of calorimeter from known enthalpy of solution of sulphuric acid or enthalpy of neutralization).
- (b) Determination of heat capacity of a calorimeter for different volumes using heat gained equal to heat lost by cold water and hot water.
- (c) Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- (d) Determination of the enthalpy of ionization of ethanoicacid.
- (e) Determination of integral enthalpy solution of endothermicsalts.
- (f) Determination of integral enthalpy solution of exothermicsalts.
- (g) Determination of basicity of a diprotic acid by the thermochemical method in terms of the changes of temperatures observed in the graph of temperature versus time for different additions of a base. Also calculate the enthalpy of neutralization of the firststep.
- (h) Determination of enthalpy of hydration ofsalt.
- (i) Studyofthesolubilityofbenzoicacidinwateranddetermination of Δ H.

Any other experiment carried out in the class.

Suggested Readings: Practical

- 1. B.D.Khosla, V.C.Garg, A. Gulati, *SeniorPractical Physical Chemistry*, R. Chand & Co, New Delhi, 2015.
- 2. K.L.Kapoor, *ATextbook of Physical Chemistry*, Vol.7, 1st Edition, McGraw Hill Education, 2019.
- **3**. C. W.Garland, J. W.Nibler, D. P.Shoemaker, *Experiments in Physical Chemistry*, 8th Edition, McGraw-Hill, New York, 2003.
- 3. K.L. Kapoor, A Textbook of Physical Chemistry, Vol 2, 6th Edition, McGraw Hill Education, 2017.
- 4. K.L.Kapoor, ATextbook of Physical Chemistry, Vol 3, 5th Edition, McGraw Hill Education, 2015.
- 5. D.A.McQuarrie, J.D.Simon, *Molecular Thermodynamics*, Viva Books Pvt. Ltd, 2004.

NAME OF THE PAPER (CODE)	: ORGANIC CHEMISTRY – II (CHC-3.2)
Number of Credit	03
Number of Hours of Lecture	45

The following are the course Objectives (Cos) for the paper **Organic Chemistry – II (CHC-3.2)**

CO 1:	Have an understanding on the reactions of haloalkanes, haloarenes and oxygen containing functional
	group.
CO 2:	Interpret the concept of aromaticity and the main properties of aromatic compounds.
CO 3:	Recognize, differentiate and explain different reaction mechanism involving aryl halides.
CO 4:	Know the different classes of alcohols.
CO 5:	Understand the preparation and reactions of phenols, ethers and epoxides.

Unit & Title	Unit Contents	Course Specific Outcomes (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 Haloalkanes	Alkyl halides: Methods of preparation and properties, nucleophilic substitution reactions – SN1, SN2 and SNi mechanisms with Stereochemical aspects and effect of solvent; nucleophilic substitution v/s elimination. Organometallic compounds of Mg (Grignard reagent) – Use in synthesis of organic compounds.	CSO 2.1:to give a brief introduction of Alkyl Halides. (K) CSO 2.2:to discuss the methods of preparation of alkyl halides. (K) CSO 2.3:to study the different types of Nucleophilic substitution reactions. (K) CSO 2.4:to discuss the stereochemical aspects and effect of solvent on alkyl halides. (U) CSO 2.5:to give the difference between Elimination vs substitution reactions: (U) CSO 2.6:to explain the use of organometallic compounds of Mgin synthesis of organic	12	25	
		compounds. (U)			

UNIT 2	Concept of Aromaticity and	CSO 2.1:to understand	08	20
Aromatic	antiaromaticity;Electrophilic	the concept of		
Hydrocarbons	aromatic substitution:	aromaticity. (U) CSO 2.2: to apply criteria		
ily di ocui bons		to determine if a ring is		
	halogenation, nitration,	aromatic, anti-aromatic or		
	sulphonation, Friedel Crafts	non-aromatic. (A)		
	alkylation/acylation with	CSO 2.3: to study the preparation of some of		
	their mechanism. Directing	the compound containing		
	effects of groups in	benzene rings. (U)		
		CSO 2.4: to study the		
	electrophilic substitution.	reaction mechanism of the electrophilic		
		aromaticsubstitutuon. (A)		
		CSO 2.5:to study the		
		Friedel-Craft's reactions.		
		(U,A) CSO 2.6:to discuss the		
		directing effects of groups		
		in electrophilic		
		substitution. (U)	07	17
UNIT 3	Preparation(including	CSO 3.1: to give an introduction on the aryl	07	17
Aryl halides	preparation from diazonium	halides. (K)		
	salts) and properties,	CSO 3.2:to discuss the		
	nucleophilic aromatic	preparation of Aryl		
	substitution; SNAr,	halides. (U) CSO 3.3: To study the		
		reaction mechanism of		
	5	aromatic nucleophilic		
	Relative reactivity of alkyl,	substitution reactions.(A) CSO 3.5: to discuss the		
	allyl, benzyl, vinyl and aryl	reactivity of C-Halogen		
	halides towards nucleophilic	bond in alkyl, allyl,		
	substitution reactions.			
		benzyl, vinyl and aryl halides. (U)		
		CSO 3.6:to understand		
		therelativestrengthof C-		
		Halogen bond in alkyl,		
		allyl, benzyl, vinyl and		
		aryl halides. (U)		

UNIT 4 Alcohols	Alcohols:Relative reactivity of 1°, 2°, 3° alcohols, reactions of alcohols with sodium, HX (Lucas test), esterification, oxidation (with PCC, alkaline KMnO4, acidic dichromate, conc. HNO3). Oppenauer oxidation; Diols: oxidation of diols by periodic acid and lead tetraacetate, Pinacol- Pinacolone rearrangement.	CSO 4.1: to give the introduction on the alcohol. (K) CSO 4.2:to differentiate 1°, 2°, 3° alcohols and to explain their relative reactivity. CSO 4.3:to study the different chemical reaction mechanism of alcohols. (U,A) CSO 4.3: To study Lucas Test.(A) CSO 4.4: To explain esterification and oxidation.(U) CSO 4.5:To explain Oppenauer Oxidation.(U) CSO 4.6: To study the preparation of ethers.(U) CSO 4.7: to study some of the chemical reaction caused by the ethers. (U,A)	10	18
UNIT 5 Phenols, Ethers and Epoxides	Phenols: Preparation using Cumenehydroperoxide, Acidity and factors affecting it, Kolbe's–Schmidt reactions, Riemer-Tiemann reaction, Houben–Hoesch condensation, Schotten– Baumann reaction, Fries and Claisen rearrangements and their mechanism. Ethers and Epoxides: Acid and Base catalyzed cleavage reactions.	CSO 5.1: to study the preparation of phenol using different methods and reagent/ salts. (U) CSO 5.2:to discuss the acidity of phenols and factors affecting it. (U) CSO 5.3:to discuss the different chemical reaction mechanism of phenols. (U, A) CSO 5.4:to explain the acid and base catalyzed cleavage reactions of Ethers and Epoxides. (K)	08	20

- 1. R. N.Morrison, R. N.Boyd, S.K.Bhattacharjee, *Organic Chemistry*, 7th Edition, Dorling Kindersley (India) Pvt. Ltd., Pearson Education, 2010
- I.L. Finar, Organic Chemistry, Volume 1, 6th Edition, Dorling Kindersley (India) Pvt. Ltd., Pearson Education, 2002.
- **3**. V.K.Ahluwalia, P.Bhagat, R.Aggarwal, R. Chandra, *Intermediate for Organic Synthesis*, I.K. International, 2005.
- 4. T.W.G.Solomons, C.B.Fryhle, S.A.Snyder, Organic Chemistry, 12th Edition, Wiley, 2017.

Practical:

Name of the Paper: Physical Chemistry -II Paper Code: CHC-3.2 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Acetylation of any one of the following compounds: amines (aniline, *o*-, *m*-, *p*- toluidines and *o*-, *m*-, *p*-anisidine) and phenols (β-naph,thol, salicylic acid) by any one method:

i. Using conventional method ii. Using green approach

- 2. Benzolyation of one of the following amines (aniline, o-, m-, p-toluidines and o, m-, p-anisidine) or one of the following phenols (β -naphthol, resorcinol, p- cresol) by Schotten-Baumann reaction.
- 3. Bromination of acetanilide/aniline/phenol by anyone of the following:
 - (a) Green method b) Conventional method
- 4. Nitration of nitrobenzene/chlorobenzene.
- 5. Haloform reaction of ethanol.
- 6. Oxidation of benzyl alcohol to benzoic acid
- 7. Estimation of the given sample of phenol/amine by:
 - a) Acetylation b) Bromate-Bromidemethod
- 8. Functionalgrouptestsforalcohols, phenols, carboxylicacids, phenols, carbonyl compounds, esters.

Suggested Readings: Practical

- 1. F.G.Mann, B.C. Saunders, *Practical Organic Chemistry*, 4th Edition, Pearson Education, 2009.
- 2. B.S.Furniss, A.J.Hannaford, P.W.G.Smith, A.R.Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, Pearson, 2005.
- **3**. V.K.Ahluwalia, R. Aggarwal, *Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis*, University Press, 2004.

- 4. V.K.Ahluwalia,S.Dhingra, *ComprehensivePractical Organic Chemistry: Qualitative Analysis*, University Press, 2004.
- 5. S.Pasricha, A.Chaudhary, *Practical Organic Chemistry: Volume–I*, I K International Publishing house Pvt. Ltd, New Delhi, 2021.
- 6. S.Pasricha, A.Chaudhary, *Practical Organic Chemistry: Volume–II*, I K International Publishing house Pvt. Ltd, New Delhi, 2021.

NAME OF THE PAPER (CODE)	: INORGANIC CHEMISTRY-III (CHC-3.3)
Number of Credit	03
Number of Hours of Lecture	45

The following are the course Objectives (Cos) for the paper-Inorganic Chemistry- III:

CO 1:	Understand the fundamental principles of transition metal coordination chemistry and ligand field
	theory, to understand the structure and function of metal ion sites in bio molecules.
CO 2:	Understand the complex bonding principles and reactivity involving the main and transition metals
	and the key role the metal-carbon bonded systems can play in modern life.
CO 3:	Understand the characteristics and behaviour of inner transition elements.
CO 4:	Ability to describe the properties of f-block elements and give a comparative account with respect to
	their electronic configurations, oxidation states and chemical behaviour.
CO 5:	Understand the role of inorganic elements in biological processes.

Unit & Title	Unit Contents	Course Specific Outcomes (CSOs)	Lecture Hours	Marks	LOs
UNIT 1	Werner'stheory,	CSO 1.1: to explain the	17	29	
Coordination	valence bond theory	structure, formation and nature			
Chemistry	(inner and outer orbital	of bonding in the coordination			
	complexes),	compounds using the Werner's			
	electroneutrality	theory. (U)			
	principle and back	CSO 1.2: to describe the			
	bonding. Crystal field	covalent bond formation as well			
	theory, measurement	as the electronic structure of			
	of 10 Dq (Δo), CFSE	molecules using the Valence			
	in weak and strong	Bond Theory. (K)			
	fields, pairing energies,	CSO 1.3: to know the principle			
	factors affecting the	of electroneutrality and back			

magnitude of 10 Dq	bonding. (K)	
$(\Delta o, \Delta t).$	CSO 1.4: to describe the	
Octahedral vs.	breaking of orbital degeneracy in	
tetrahedral	transition metal complexes due	
coordination,	to presence of ligands. (U)	
tetragonal distortions	CSO 1.5: to predict the stability	
from octahedral	and reactivity of coordination	
geometry Jahn-Teller	complexes using the crystal field	
theorem, square planar	stabilization energy. (A)	
geometry. Qualitative	CSO 1.6:to explain factors	
aspect of Ligand field	affecting the magnitude of 10	
and MO theory.	Dq (Δo , Δt). (U)	
IUPAC nomenclature	CSO 1.7: to depict on the	
of coordination	relationship between octahedral	
compounds, isomerism	vs. tetrahedral complexes. (K)	
in coordination	CSO 1.8: to explain the	
compounds.	geometric distortion of a non-	
Stereochemistry of	linear molecular system using	
complexes with 4 and	the Jahn-Teller theorem. (A)	
6 coordination	CSO 1.9: to study the Qualitative	
numbers. Chelate	aspect of Ligand field and MO	
effect, polynuclear	theory.(A)	
complexes, Labile and	CSO 1.10:to understand	
inert complexes.	bonding and anti-bonding	
	orbitals arising from atomic	
	orbitals. (A)	
	CSO 1.11: to know the IUPAC	
	nomenclature of coordination	
	compounds. (K)	
	CSO 1.12:to describe isomerism	
	in coordination compounds. (U)	
	CSO 1.13: to study the	
	Stereochemistry of complexes	
	with 4 and 6 coordination	
	numbers. (A)	
	CSO 1.14: to understand the	

		stability of complexes. (U)			
		CSO 1.15: to define the			
		polynuclear complexes, Labile			
		and inert complexes. (K)			
UNIT 2	General group trends	CSO 2.1: to describe the	10	22	
Transition	with special reference	compounds and reactivities of			
Elements	to electronic	transition metals and trends in			
	configuration, colour,	their physical and chemical			
	variable valency,	properties. (K)			
	magnetic and catalytic	CSO 2.2: to know the electronic			
	properties, and ability	configuration of transition			
	to form complexes.	metals. (K)			
	Stability of various	CSO 2.3:to understand the			
	oxidation states.	magnetic and catalytic			
	Difference between	properties of transition metals.			
	the first, second and	(U)			
	third transition series.	CSO 2.4:to demonstrate the			
	Chemistry of Ti, V,	relationship between colour and			
	Cr, Mn, Fe and Co in	oxidation number of transition			
	various oxidation	elements. (A)			
	states (excluding their	CSO 2.5:to understand the			
	metallurgy).	ability of transition metals to			
		form complexes. (U)			
		CSO 2.6: to explain thestability			
		of oxidation states of various			
		transition metals. (U)			
		CSO 2.7: to compare the			
		properties of first, second and			
		third transition series. (K)			
		CSO 2.8:to describe the			
		Chemistry of Ti, V, Cr, Mn, Fe			
		and Co in various oxidation			
		states. (K)			
UNIT 3	Electronic	CSO 3.1: to analyse	06	16	

Lanthanoids	configuration,	characteristics of 4f and 5f		
	oxidation states, ionic	elements. (A)		
	radii, lanthanide	CSO 3.2:to discuss the		
	contraction, tendency	electronic configuration,		
	to form complexes,	oxidation states, ionic radii of		
	colour, separation of	lanthanoids. (K)		
	lanthanides (ion-	CSO 3.3: to explain the		
	exchange method	behaviour of lanthanides to		
	only).	exhibit variable oxidation states.		
		(U)		
		CSO 3.4: to understand		
		lanthanide contraction and its		
		reasons. (U)		
		CSO 3.5: to explain the		
		behaviour of lanthanides to form		
		complexes. (U)		
		CSO 3.6: to discuss the		
		separation of lanthanides using		
		the ion-exchange method. (K)		
UNIT 4	Chemistry of	CSO 4.1: to explain the	06	11
Actinoids	separation of Np, Pu	properties of actinides (U)		
	and Am from U.	CSO 4.2:to differentiate		
	Preparation, reactions,	between lanthanides and		
	structure and uses of	actinides. (U)		
	uraniumhexafluoride.	CSO 4.3: to discuss the		
		chemistry of separation of Np,		
		Pu and Am from U. (K)		
		CSO 4.4: to explain the		
		preparation and reactions of		
		uraniumhexafluoride. (U,A)		
		CSO 4.5:to discuss on the		
		structure and uses of		
		uraniumhexafluoride. (K)		
UNIT 5	Metal ions present in	CSO 5.1: to understand the role	06	22
Bioinorganic	biological systems,	of elements in biological		
Chemistry	classification of	systems. (U)		

 ſ		
elements according to	CSO 5.2: to study the various	
their action in	metal ions present in biological	
biological system.	systems. (K)	
Geochemical effect on	CSO 5.3:to explain the	
the distribution of	classification of elements	
metals. Sodium / K-	according to their action in	
pump, carbonic	biological system. (U)	
anhydrase and	CSO 5.4: to study the relative	
carboxypeptidase.	and absolute abundance of	
Excess and deficiency	metals at different regions. (K)	
of some trace metals.	CSO 5.5: to explain the toxicity,	
Toxicity of metal ions	mechanism and health effects of	
(Hg, Pb, Cd and As),	metal ions (Hg, Pb, Cd and As).	
reasons for toxicity,	(K)	
Use of chelating	CSO 5.6: to discuss the	
agents inmedicine.Iron	significance of chelating agents	
and its application in	in medicine. (K)	
biosystems,	CSO 5.7: to understand the	
Haemoglobin; Storage	biochemistry application of iron.	
and transfer of iron.	(U)	

Suggested Readings: Theory

- 1. K.F. Purcell, J.C. Kotz, Inorganic Chemistry W.B. Saunders Co, 1977.
- 2. J.E.Huheey, Inorganic Chemistry, Prentice Hall, 1993.
- 3. S.J. Lippard, &J.M. Berg, Principles of Bioinorganic Chemistry Panima Publishing Company, 1994.
- 4. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry Wiley-VCH, 1999
- F. Basolo, and R.C. Pearson, *Mechanisms of Inorganic Chemistry*, John Wiley & Sons, NY, 1967.
- 6. N.N. Greenwood, A. Earnshaw Chemistry of the Elements, Butterworth-Heinemann, 1997.

Practical:

Name of the Paper: Inorganic Chemistry-III Paper Code: CHC 3.3 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Gravimetric Analysis

- i. Estimation of nickel (II) using Dimethylglyoxime (DMG).
- ii. Estimation of copper as CuSCN
- iii. Estimation of iron as Fe_2O_3 by precipitating iron as $Fe(OH)_3$.
- iv. Estimation of Al (III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate).

Inorganic Preparations

- i. Tetraamminecopper (II) sulphate, $[Cu(NH_3)_4]SO_4.H_2O$
- ii. Cis and trans K[Cr(C₂O₄)₂. (H₂O)₂] Potassium dioxalatodiaquachromate (III)
- iii. Tetraamminecarbonatocobalt (III) ion
- iv. Potassium tris(oxalate)ferrate(III)

Suggested Readings: Practical

1. J. A. I. Mendham, Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009

SEMESTER IV

NAME OF THE PAPER (CODE)	: PHYSICAL CHEMISTRY-III (CHC-4.1)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper-**Physical Chemistry-III:**

CO 1:	Introduction to Phase Equilibria.
CO 2:	Discuss the concept and applications of phase.
CO 3:	Analyse the study of the kinetics of chemical reactions.
CO 4:	Understand and apply core principles and concepts in catalysis.
CO 5:	Understand the concept of surface tension.

Unit &	Unit Contents	Course Specific Outcomes	Lectures	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Concept of phases, components	CSO 1.1: To explain the concept of	12	27	
Phase	and degrees of freedom,	phases, component and degree of			
Equilibr	derivation of Gibbs Phase Rule	freedom (U)			
-	derivation of Globs Phase Rule	CSO 1.2: To derive the Gibbs			
ia I	for non-reactive and reactive	Phase Rule. (A) CSO 1.3: To derive the Clausius-			
	systems; Clausius-Clapeyron	Clapeyron equation. (A)			
	equation and its applications to	CSO 1.4: To give the application of Clausius-Clapeyron to solid-liquid			
	solid-liquid, liquid-vapour and	equilibria. (A)			
	solid-vapour equilibria, phase	CSO 1.5: To give the application of Clausius-Clapeyron to liquid-			
	diagram for one component	vapour equilibria. (A)			
	systems, with applications.	CSO 1.6: To give the application of Clausius-Clapeyron to solid-vapour			
	Phase diagrams for systems of	equilibria. (A)			
	solid-liquid equilibria involving	CSO 1.7: To explain the concept of phase diagram for one component			
	eutectic, congruent and	systems (U)			
	incongruent melting points, solid	CSO 1.8: To outline the			
	solutions.	applications of phase diagram. (K) CSO 1.9: To explain the phase			
		diagrams for system of solid-liquid			
		equilibria. (U)			
		CSO 1.10: To explain the			
		congruent and incongruent melting			
		points. (U)			
		CSO 1.11: To make student understand the solid solution. (K)			

UNIT 2	Three component systems,	CSO 2.1: To give the three	11	22
Phase 2		component system of phase rule.	11	
Equilibr	water-chloroform-acetic acid	(K)		
ia II	system, triangular plots.	CSO 2.2: To define binary solution. (K)		
	Binary solutions: Gibbs-Duhem-	CSO 2.3: To derive the Gibbs-		
	Margules equation, its derivation	Duhem-Margules equation. (A)		
	and applications to fractional	CSO 2.4: To Explain the application of the Gibbs-Duhem-		
	distillation of binary miscible	Margules equation to fractional		
	liquids (ideal and nonideal),	distillation.(U) CSO 2.5: To introduce the Lever		
	azeotropes, lever rule, partial	rule. (K)		
	miscibility of liquids, CST,	CSO 2.6: To explain the partial miscibility of liquids. (U)		
	miscible pairs, steam distillation.	CSO 2.7: To give the student idea		
	Nernst distribution law: its	about the CST. (U)		
	derivation and applications.	CSO 2.8: To give the Nernst		
		distribution law and its applications. (U)		
		CSO 2.9: To derive the Nernst		
		distribution law. (A)	10	27
UNIT 3 Chemic	Order and molecularity of a reaction, rate laws in terms of	CSO 3.1: To give the order and molecularity of a reaction. (k)	12	27
al	the advancement of a reaction,	CSO 3.2: To explain the rate law in terms of the advancement of		
Kinetics		reactions. (U)		
	differential and integrated form	CSO 3.3: To explain the		
	of rate expressions up to second	differential and integrated from of expressions.(U)		
	order reactions, experimental	CSO 3.4: To determine the rate		
	methods of the determination of	law. (A) CSO 3.5: To give the Kinetics of		
	rate laws, kinetics of complex	complex reactions. (U)		
	reactions (integrated rate	CSO 3.6: To derive the Arrehenius Equations. (A)		
	expressions up to first order	CSO 3.7: To give the Collision		
	only): (i) Opposing reactions (ii)	theory of reaction rate. (U)		
	parallel reactions and (iii)	CSO 3.8: To explain the Lindemann mechanism. (A)		
	consecutive reactions and their	CSO 3.9: To give the quantitative		
	differential rate equations	treatment of the theory of absolute reaction rate. (U)		
	(steady-state approximation in			
	reaction mechanisms) (iv) chain			
	reactions.			
	Temperature dependence of			
	reaction rates; Arrhenius			
	equation; activation energy.			
L				

UNIT 4 Catalysi s	Collision theory of reaction rates, Lindemann mechanism, qualitative treatment of the theory of absolute reaction rates. Types of catalyst, specificity and selectivity, mechanisms of catalysed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis.	CSO 4.1: To give the type of catalyst. (K) CSO 4.2: To explain the specificity and selectivity of catalysed reaction. (U) CSO 4.3: To explain the effect of particle size and efficiency of nano particles as catalyst. (U) CSO 4.4: To explain the enzyme catalysis. (U) CSO 4.5: To explain the Michaelis- Menten mechanism. (A) CSO 4.6: To explain the acid-base catalysis. (A)	6	15	
UNIT 5 Surface Chemist ry	Physical adsorption, chemisorption, adsorption isotherms. Nature of adsorbed state.	 CSO 5.1: To explain the physical adsorption. (U) CSO 5.2: To define chemisorption. (K) CSO 5.3: To explain adsorption isotherms. (U) CSO 5.4: To explain the nature of adsorbed state. (U) 	4	9	

Suggested Readings: Theory

- 1. P. Atkins & J.D. Paula, *Physical Chemistry 10th Ed.*, Oxford University Press, 2014.
- 2. G. W. Castellan, Physical Chemistry4th Ed., Narosa, 2004.
- 3. D. A. McQuarrie&J. D. Simon, *Molecular Thermodynamics*, Viva Books Pvt. Ltd. New Delhi, 2004.
- 4. T. Engel & P. Reid, *Physical Chemistry 3rd Ed.*, Prentice-Hall, 2012.
- 5. M. J. Assael, A. R. H. Goodwin, M.Stamatoudis, W. A. Wakeham &S.Will, *Commonly Asked Questions in Thermodynamics*, CRC Press, New York, 2011.
- 6. S.S.Zundhal, *Chemistry concepts and applications*, Cengage India, 2011.
- 7. D. W. Ball, *Physical Chemistry*, Cengage India, 2012.
- 8. R. G. Mortimer, Physical Chemistry 3rd Ed., Elsevier: NOIDA, UP, 2009.
- 9. I. N.Levine, *Physical Chemistry 6th Ed.*, Tata McGraw-Hill, 2011.
- 10. C. R Metz, *Physical Chemistry 2nd Ed.*, Tata McGraw-Hill, 2009.

Practical

Name of the Paper: Physical Chemistry-III Paper Code: CHC 4.1 P Number of Credit: 01

Number of Hours of Lecture: 30 Lectures

I. Determination of critical solution temperature and composition of the phenol-water system and to study the effect of impurities on it.

II. Phase equilibria: Construction of the phase diagram using cooling curves or ignition tube method:

- a. simple eutectic and
- b. congruently melting systems.
- III. Distribution of acetic/ benzoic acid between water and cyclohexane.
- IV. Study the equilibrium of at least one of the following reactions by the distribution method:
 - (i) $I_2(aq) + I \rightarrow I_3(aq)^{2+}$
 - (*ii*) $\operatorname{Cu}_2+(\operatorname{aq}) + n\operatorname{NH}_3 \rightarrow \operatorname{Cu}(\operatorname{NH}_3)_n$
- V. Study the kinetics of the following reactions.
 - 1. Initial rate method: Iodide-persulphate reaction
 - 2. Integrated rate method:
 - a. Acid hydrolysis of methyl acetate with hydrochloric acid.
 - b. Saponification of ethyl acetate.
 - 3. Compare the strengths of HCl and H₂SO₄ by studying kinetics of hydrolysis of methyl acetate.
- VI. Adsorption
 - 1. Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on activated charcoal.

Suggested Readings: Practical

- B. D.KhoslaGarg, V. C. &A. Gulati, Senior Practical Physical Chemistry, R. Chand &Co.New Delhi, 2011.
- 2. C. W.Garland, J. W Nibler, &D. P. Shoemaker, *Experiments in Physical Chemistry 8th Ed.*, McGraw-Hill: New York, 2003.
- 3. A. M. Halpern, &G. C McBane, *Experimental Physical Chemistry 3rd Ed.*, W.H. Freeman & Co. New York, 2003.

NAME OF THE PAPER (CODE)	: ORGANIC CHEMISTRY-III (CHC-4.2)
Number of Credit	03
Number of Hours of Lecture	45

The following are the course Objectives (Cos) for the paper-**Organic Chemistry-III:**

CSO 1:	Understand the important reactions of nitro and compounds.
CSO 2:	Know the various properties and synthesis of polynuclear aromatic compounds.
CSO 3:	Have a broad understanding of the classes of heterocyclic compounds.
CSO 4:	Understand the structure and functions of alkaloids and its Reactions.
CSO 5:	Understand the structure and functions of Terpenes and its Reactions.

Unit & Title	Unit Contents	Course Specific Objectives	Lectures	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Preparation and important	CSO 1.1: An introduction to the	12	30	
Nitrogen	reactions of nitro and	nitro Compound. (K)			
Containing	compounds, nitriles and	CSO 1.2: To explain the			
Functional	isonitriles Amines: Effect	preparation of the nitro			
Groups	of substituent and solvent	compound. (U)			
	on basicity; Preparation and	CSO 1.3: To give the physical			
	properties: Gabriel	properties of the nitro			
	phthalimide synthesis,	compounds. (K)			
	Carbylamine reaction,	CSO 1.4: To give the mechanism			
	Mannich reaction,	of Gabriel phthalimide. (A)			
	Hoffmann's exhaustive	CSO 1.5: To give the mechanism			
	methylation, Hofmann-	of Carbylamine reaction. (A)			
	elimination reaction;	CSO 1.6: To give the mechanism			
	Distinction between 1°, 2°	of Mannich reaction. (A)			
	and 3° amines with	CSO 1.7: To give the mechanism			
	Hinsberg reagent and	of Hoffmann's exhaustive			
	nitrous acid.	methylation and Hofmann-			
	Diazonium Salts:	elimination reaction. (A)			
	Preparation and their	CSO 1.8: To explain the different			
	synthetic applications	methods to distinguished between			

		1° , 2° and 3° amines. (U)			
		CSO 1.9: To give an introduction			
		on Diazonium Salts. (K)			
		CSO 1.10: To explain the			
		preparation of Diazonium			
		Salts.(U)			
		CSO 1.11: To give the synthetic			
		application of Diazonium Salts.			
		(U)			
UNIT 2	Reactions of naphthalene,	CSO 2.1: To give an introduction	6	19	
Polynuclear	phenanthrene and	on the polynuclear			
Hydrocarbons	anthracene Structure,	hydrocarbonds. (K)			
	Preparation and structure	CSO 2.2: To explain the reaction			
	elucidation and important	of naphthalene, phenanthrene and			
	derivatives of naphthalene	anthracene. (U)			
	and anthracene;	CSO 2.3: To explain the structure			
	Polynuclear hydrocarbons.	of naphthalene, phenanthrene and			
		anthracene. (U)			
		CSO 2.4: To give the preparation			
		of naphthalene, phenanthrene and			
		anthracene. (U)			
		CSO 2.5: To explain the structure			
		elucidation of naphthalene,			
		phenanthrene and anthracene. (U)			
		CSO 2.6: To give some of the			
		important derivatives of			
		naphthalene, phenanthrene and			
		anthracene. (U)			
UNIT 3	Classification and	CSO 3.1: An introduction to	17	27	
Heterocyclic	nomenclature, Structure,	heterocyclic compound. (K)			
Compounds	aromaticity in 5-numbered	CSO 3.2: To classified different			
	and 6-membered rings	types of heterocyclic compound.			
	containing one heteroatom;	(U)			
	Synthesis, reactions and	CSO 3.3: To explain the structure			
	mechanism of substitution	of aromaticity in 5-numbered			
	reactions of: Furan, Pyrrole	rings containing one heteroatom.			

(Paal-Knorr synthesis,	(U)
Knorr pyrrole synthesis,	CSO 3.4: To explain the structure
Hantzsch synthesis),	of aromaticity in 6-numbered
Thiophene, Pyridine	rings containing one heteroatom.
(Hantzsch synthesis),	(U)
Pyrimidine, Structure	CSO 3.5: To explain the
elucidation of indole,	mechanism of Paal-Knorr
Fischer indole synthesis	reactions. (A)
and Madelung synthesis),	CSO 3.6: To explain the
Structure elucidation of	mechanism of Knorr pyrrole. (A)
quinoline and isoquinoline,	CSO 3.7: To explain the
Skraup synthesis, Fried-	mechanism of Hantzsch
lander's synthesis, Knorr	synthesis. (A)
quinoline synthesis,	CSO 3.8: To explain the structure
Doebner- Miller synthesis,	elucidation of indole. (U)
Bischler-Napieralski	CSO 3.9: To explain the
reaction, Pictet-Spengler	mechanism of Hantzsch
reaction, Pomeranz-Fritsch	synthesis. (A)
reaction.	CSO 3.10: To explain the
Derivatives of furan:	mechanism of Madelung
Furfural and furoic acid.	synthesis.(A)
	CSO 3.11: To explain the
	structure elucidation of quinoline
	and isoquinoline (U)
	CSO 3.12: To explain the
	mechanism of Skraup synthesis.
	(A)
	CSO 3.13: To explain the
	mechanism of Fried-lander's
	synthesis. (A)
	CSO 3.14: To explain the
	mechanism of Knorr quinoline
	synthesis. (A)
	CSO 3.15: To explain the
	mechanism of Doebner- Miller
	synthesis (A)

AlkaloidsGeneral structural features, Isolation and their physiological action Hoff- mann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine. Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.alkaloids (K) CSO 4.2: To explain the general structure of the alkaloids. (U) CSO 4.4: To explain how the alkaloids are isolated and give their physiological actions. (U)Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism of Hoff-mam's exhaustive methylation. (A) CSO 4.6: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5Occurrence, classification,CSO 5.1: A brief introduction on4			CSO 3.16: To explain the			
CSO 3.17: To explain the mechanism of Picter-Spengler reaction, (A)Image: CSO 3.18: To explain the mechanism of Pomeranz-Fritsch reaction. (A)UNIT 4Natural occurrence, derived from furan. (U)CSO 3.19: To explain how the Furfural and furoic acid are derived from furan. (U)UNIT 4Natural occurrence, General structural features, Isolation and their physiological action Hoff- methylation, Emde's methylation, Emde's Morphine, Cocaine, and Nicotine, Hygrine and Nicotine.CSO 4.2: To explain the natural occurrence of alkaloids. (U) CSO 4.3: To explain the general structure of the alkaloids. (U) CSO 4.3: To explain how the elucidation and synthesis of HkaloidsImage: CSO 4.2: To explain the general structure of the alkaloids. (U) CSO 4.3: To explain the general structure of the alkaloids. (U) CSO 4.3: To explain the methylation, Emde's modification, Structure elucidation and synthesis of Hoff-mann's exhaustive methylation. (A) CSO 4.5: To explain the mechanism of Hoff-mann's exhaustive methylation. (A) CSO 4.5: To explain the Emde's modification CSO 4.5: To explain the Emde's modification CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.5: To make student aware the medicinal importance of alkaloids. (U)9UNIT 5 Toppenes isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49			mechanism of Bischler-			
CSO 3.17: To explain the mechanism of Picter-Spengler reaction, (A)Image: CSO 3.18: To explain the mechanism of Pomeranz-Fritsch reaction. (A)UNIT 4Natural occurrence, derived from furan. (U)CSO 3.19: To explain how the Furfural and furoic acid are derived from furan. (U)UNIT 4Natural occurrence, General structural features, Isolation and their physiological action Hoff- methylation, Emde's methylation, Emde's Morphine, Cocaine, and Nicotine, Hygrine and Nicotine.CSO 4.2: To explain the natural occurrence of alkaloids. (U) CSO 4.3: To explain the general structure of the alkaloids. (U) CSO 4.3: To explain how the elucidation and synthesis of HkaloidsImage: CSO 4.2: To explain the general structure of the alkaloids. (U) CSO 4.3: To explain the general structure of the alkaloids. (U) CSO 4.3: To explain the methylation, Emde's modification, Structure elucidation and synthesis of Hoff-mann's exhaustive methylation. (A) CSO 4.5: To explain the mechanism of Hoff-mann's exhaustive methylation. (A) CSO 4.5: To explain the Emde's modification CSO 4.5: To explain the Emde's modification CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.5: To make student aware the medicinal importance of alkaloids. (U)9UNIT 5 Toppenes isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49			Napieralski reaction (A)			
mechanism of Pictet-Spengler reaction, (A)mechanism of Pictet-Spengler reaction, (A)Image: CSO 3.18: To explain the mechanism of Pomeranz-Fritsch reaction. (A)UNIT 4Natural occurrence, derived from furan. (U)CSO 3.19: To explain how the Furfural and furoic acid are derived from furan. (U)615UNIT 4Natural occurrence, General structural features, lsolation and their methylation, Emde's methylation, Emde's Hygrine and Nicotine.CSO 4.2: To explain the natural occurrence of alkaloids. (U)615Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.3: To explain how the elucidation and synthesis of Hoff-mann's exhaustive methylation. (I)11Morphine, Cocaine, and Reserpine.Hoff-mann's exhaustive methylation. (I)CSO 4.5: To explain the Emde's modification CSO 4.7: To explain the Emde's modification11Morphine, Cocaine, and Reserpine.Hoff-mann's exhaustive methylation. (A) CSO 4.3: To explain the Emde's modification11CSO 4.5: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)29UNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on49			-			
reaction, (A)reaction, (A)CSO 3.18: To explain the mechanism of Pomeranz-Fritsch reaction (A)SCSO 3.19: To explain how the Furfural and furoic acid are derived from furan. (U)UNIT 4Natural occurrence, General structural features, alkaloids. (K)CSO 4.1: An introduction to the alkaloids. (K)615JakaloidsGeneral structural features, physiological action Hoff- methylation, Emde's methylation, StructureCSO 4.2: To explain the natural occurrence of alkaloids. (U)615Matural occurrence, endersityCSO 4.2: To explain the general structure of the alkaloids. (U)515methylation, Emde's modification, StructureCSO 4.3: To explain the general alkaloids are isolated and give their physiological actions. (U)11Medicinal importance of Nicotine, Hygrine, Quinie, Morphine, Cocaine, and Reserpine.Hoff-mann's exhaustive methylation. (A)11CSO 4.6: To explain the Emde's modification CSO 4.7: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)11CSO 4.6: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)29UNIT 5 To prene rule; ElucidationCSO 5.1: A brief introduction on49			_			
Image: Note of the second se			reaction, (A)			
Image: series of the series			CSO 3.18: To explain the			
CSO 3.19: To explain how the Furfural and furoic acid are derived from furan. (U)Image: constant of the second secon			mechanism of Pomeranz-Fritsch			
Furfural and furcic acid are derived from furan. (U)Furfural and furcic acid are derived from furan. (U)UNIT 4Natural occurrence, General structural features, Isolation and theirCSO 4.1: An introduction to the alkaloids. (K)615AlkaloidsGeneral structural features, physiological action Hoff- mann's exhaustiveCSO 4.2: To explain the natural occurrence of alkaloids. (U) mann's exhaustiveCSO 4.3: To explain the general alkaloids. (U)15methylation, Emde's methylation, StructureCSO 4.4: To explain the general alkaloids are isolated and give their physiological actions. (U) Medicinal importance of Nicotine, Hygrine, Quinne, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the methylation. (A) CSO 4.6: To explain the Emde's modification CSO 4.6: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.6: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.6: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49			reaction (A)			
UNIT 4Natural occurrence, General structural features, Isolation and theirCSO 4.1: An introduction to the alkaloids. (K)615AlkaloidsGeneral structural features, physiological action Hoff- occurrence of alkaloids. (U) mann's exhaustiveCSO 4.2: To explain the natural occurrence of alkaloids. (U) mann's exhaustiveCSO 4.3: To explain the general alkaloids. (U)methylation, Emde's elucidation and synthesis of Hygrine and Nicotine.CSO 4.4: To explain how the alkaloids are isolated and give their physiological actions. (U)Medicinal importance of Nicotine, Hygrine, Quinne, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the methylation. (A)CSO 4.6: To explain the Emde's modification Nicotine, Hygrine and Nicotine.Hoff-mann's exhaustive methylation. (A)CSO 4.7: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)4UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4			CSO 3.19: To explain how the			
UNIT 4Natural occurrence, General structural features, Isolation and their physiological action Hoff- mann's exhaustiveCSO 4.1: An introduction to the alkaloids. (K)615MarkabidsGeneral structural features, physiological action Hoff- mann's exhaustiveCSO 4.2: To explain the natural occurrence of alkaloids. (U)615Mann's exhaustive elucidation, Structure elucidation and synthesis of Hygrine and Nicotine.CSO 4.3: To explain the general structure of the alkaloids. (U)1616Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism of Hoff-mann's exhaustive methylation. (A)1616CSO 4.7: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)1616Worthine, Cocaine, and Reserpine.CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)1616CSO 4.5: To explain the Emde's modification CSO 4.5: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)1616UNIT 5 To prene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49			Furfural and furoic acid are			
AlkaloidsGeneral structural features, Isolation and their physiological action Hoff- mann's exhaustivealkaloids. (K)Isolation and their physiological action Hoff- mann's exhaustiveCSO 4.2: To explain the natural occurrence of alkaloids. (U)methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine.CSO 4.4: To explain how the alkaloids are isolated and give their physiological actions. (U)Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism of Hoff-mann's exhaustive methylation. (A)CSO 4.6: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationUNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4			derived from furan. (U)			
Isolation and their physiological action Hoff- mann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine.CSO 4.2: To explain the natural occurrence of alkaloids. (U) CSO 4.3: To explain the general structure of the alkaloids. (U)Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the methylation. (A)CSO 4.6: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine.Hoff-mann's exhaustive methylation. (A)CSO 4.7: To explain the Emde's modification CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)4VINIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpens. (K)4	UNIT 4	Natural occurrence,	CSO 4.1: An introduction to the	6	15	
physiological action Hoff- mann's exhaustiveoccurrence of alkaloids. (U)Image: CSO 4.3: To explain the general structure of the alkaloids. (U)methylation, Emde'sstructure of the alkaloids. (U)modification, StructureCSO 4.4: To explain how the elucidation and synthesis of Hygrine and Nicotine.Hygrine and Nicotine.their physiological actions. (U)Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism of Hoff-mann's exhaustive methylation. (A)CSO 4.6: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4	Alkaloids	General structural features,	alkaloids. (K)			
mann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine.CSO 4.3: To explain the general structure of the alkaloids. (U)Medicinal importance of Nicotine, Hygrine, Quinne, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism of Hoff-mann's exhaustive methylation. (A)CSO 4.6: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine.Morphine, Cocaine, and Reserpine.CSO 4.7: To explain the Emde's modification CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49		Isolation and their	CSO 4.2: To explain the natural			
methylation, Emde'sstructure of the alkaloids. (U)modification, StructureCSO 4.4: To explain how theelucidation and synthesis ofalkaloids are isolated and giveHygrine and Nicotine.their physiological actions. (U)Medicinal importance ofCSO 4.5: To explain theNicotine, Hygrine, Quinine,mechanism ofMorphine, Cocaine, andHoff-mann's exhaustiveReserpine.methylation. (A)CSO 4.7: To explain the Emde'smodificationCSO 4.7: To explain the structureelucidation and synthesis ofHygrine and Nicotine.KSO 4.7: To explain the structureelucidation and synthesis ofHygrine and Nicotine.CSO 4.8: To make student awarethe medicinal importance ofalkaloids. (U)CSO 4.8: To make student awarethe medicinal importance ofalkaloids. (U)UNIT 5Occurrence, classification,Terpenesisoprene rule; Elucidation		physiological action Hoff-	occurrence of alkaloids. (U)			
modification, Structure elucidation and synthesis of Hygrine and Nicotine.CSO 4.4: To explain how the alkaloids are isolated and give their physiological actions. (U)Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism ofMorphine, Cocaine, and Reserpine.Hoff-mann's exhaustive methylation. (A)Image: CSO 4.6: To explain the Emde's modificationCSO 4.7: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)Image: CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4		mann's exhaustive	CSO 4.3: To explain the general			
elucidation and synthesis of Hygrine and Nicotine.alkaloids are isolated and give their physiological actions. (U)Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, andCSO 4.5: To explain the mechanism ofReserpine.Hoff-mann's exhaustive methylation. (A)Image: CSO 4.6: To explain the Emde's modificationCSO 4.6: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)Image: CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)UNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49		methylation, Emde's	structure of the alkaloids. (U)			
Hygrine and Nicotine.their physiological actions. (U)Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism ofMorphine, Cocaine, and Reserpine.Hoff-mann's exhaustive methylation. (A)Image: CSO 4.6: To explain the Emde's modificationCSO 4.6: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)Image: CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.9: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)Image: CSO 5.1: A brief introduction on terpenes		modification, Structure	CSO 4.4: To explain how the			
Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.CSO 4.5: To explain the mechanism of Hoff-mann's exhaustive methylation. (A)CSO 4.6: To explain the Emde's modificationMorphine, Cocaine, and CSO 4.6: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4		elucidation and synthesis of	alkaloids are isolated and give			
Nicotine, Hygrine, Quinine, Morphine, Cocaine, andmechanism ofHoff-mann's exhaustive methylation. (A)Hoff-mann's exhaustive methylation. (A)CSO 4.6: To explain the Emde's modificationImage: CSO 4.6: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)Image: CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4		Hygrine and Nicotine.	their physiological actions. (U)			
Morphine, Cocaine, and Reserpine.Hoff-mann's exhaustive methylation. (A)Image: CSO 4.6: To explain the Emde's modificationCSO 4.6: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U)Image: CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4		Medicinal importance of	CSO 4.5: To explain the			
Reserpine.methylation. (A) CSO 4.6: To explain the Emde's modificationImage: CSO 4.6: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4		Nicotine, Hygrine, Quinine,	mechanism of			
CSO 4.6: To explain the Emde's modificationImage: CSO 4.6: To explain the Emde's modificationCSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.8: Complexity of the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4		Morphine, Cocaine, and	Hoff-mann's exhaustive			
Image: Non-Structure bilineImage: Non-Str		Reserpine.	methylation. (A)			
CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure of the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure the medicinal importance of alkaloids. (U)Image: CSO 4.7: To explain the structure the medicinal importance of the med			CSO 4.6: To explain the Emde's			
 elucidation and synthesis of Hygrine and Nicotine. (U) CSO 4.8: To make student aware the medicinal importance of alkaloids. (U) UNIT 5 Occurrence, classification, Terpenes isoprene rule; Elucidation CSO 5.1: A brief introduction on terpenes. (K) 			modification			
Hygrine and Nicotine. (U)Hygrine and Nicotine. (U)CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)Image: CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4			CSO 4.7: To explain the structure			
CSO 4.8: To make student aware the medicinal importance of alkaloids. (U)UNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)4			elucidation and synthesis of			
the medicinal importance of alkaloids. (U)the medicinal importance of alkaloids. (U)UNIT 5 TerpenesOccurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49			Hygrine and Nicotine. (U)			
unit 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49			CSO 4.8: To make student aware			
UNIT 5Occurrence, classification, isoprene rule; ElucidationCSO 5.1: A brief introduction on terpenes. (K)49			the medicinal importance of			
Terpenes isoprene rule; Elucidationterpenes. (K)			alkaloids. (U)			
	UNIT 5	Occurrence, classification,	CSO 5.1: A brief introduction on	4	9	
of structure and synthesis CSO 5.2: To explain the	Terpenes	isoprene rule; Elucidation	terpenes. (K)			
		of structure and synthesis	CSO 5.2: To explain the			

of Citral, Neral and α-	occurrence and classification of		
terpineol.	terpenes. (U)		
	CSO 5.3: To explain the structure		
	elucidation of Citral, Neral and α -		
	terpineol. (U)		
	CSO 5.4: To study the synthetic		
	mechanism of Citral, Neral and α -		
	terpineol. (A)		

- 1. R. T. Morrison& R. N. Boyd, *Organic Chemistry*, Dorling Kindersley, India Pvt. Ltd. Pearson Education, 1992.
- 2. I. L. Finar, Organic Chemistry (Volume 1), Dorling Kindersley India Pvt. Ltd. Pearson Education, 1954.
- 3. I. L Finar, Organic Chemistry (Volume 2): Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. Pearson Education, 1959.
- 4. R.M. Acheson, Introduction to the Chemistry of Heterocyclic compounds, John Welly & Sons, 1976.
- 5. T.W. G.Solomons, Organic Chemistry, John Wiley & Sons, Inc., 2016.
- 6. J.E.McMurry, Fundamentals of Organic Chemistry, 7th Ed., Cengage Learning India Edition, 2013.
- 7. P. S. Kalsi, Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd. Pub., 2002.
- 8. J. Clayden, N. Greeves, S. Warren & P. Wothers, *Organic Chemistry*, Oxford University Press, 2012.
- 9. J.Singh, S.M. Ali &J. Singh, Natural Product Chemistry, PrajatiParakashan, 2010.

Practical:

Name of the Paper: Organic Chemistry-III Paper Code: CHC-4.2 P Number of Credit: 01 Number ofHours of Lecture: 30 Lectures

1. Purification of organic compounds by crystallization using the following solvents:

a. Water b. Alcohol c. Alcohol-Water

2. Determination of the melting points of above compounds and unknown organic compounds (Kjeldahl method and electrically heated melting point apparatus)

- 3. Effect of impurities on the melting point mixed melting point of two unknown organic compounds
- 4. Determination of boiling point of liquid compounds. (Boiling point lower than and more than100 °C by distillation and capillary method)
- 5. Chromatography
- a. Separation of a mixture of two amino acids by ascending paper chromatography

- b. Separation of a mixture of two sugars by ascending paper chromatography
- c. Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layerchromatography (TLC)

- 1. F.G. Mann&B.C. Saunders, Practical Organic Chemistry, Pearson Education, 2009.
- 2. B.S. Furniss, A.J.Hannaford, P.W.G.Smith & A.R. Tatchell, *Practical Organic Chemistry*, 5thEd., Pearson, 2012.

NAME OF THE PAPER (CODE)	: INORGANIC CHEMISTRY-IV (CHC-4.3)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper-Inorganic Chemistry-IV:

CO 1:	Have a good overview of the fundamental principles of organ transition-metal chemistry and know
	how chemical properties are affected by metals and ligands
CO 2:	Understand the mechanism, stability and reactivity of simple organometallic complexes
CO 3:	Understand efficient catalytic processes and their applications.
CO 4:	Describe the reactions involving inorganic chemistry. Derive various mechanisms of substitutions reactions square planar and octahedral complexes.
CO 5:	Elaborate catalysis reactions and their mechanisms.

Unit & Title	Unit Contents	Course Specific Objectives	Lectures	Marks	Los
		(CSOs)	Hours		
UNIT 1	Basic principles involved in	CSO 1.1: An introduction to	6	14	
Theoretical	analysis of cations and anions	the theoretical principles in			
Principles in	analysis of cations and amons	Qualitative analysis. (K)			
Qualitative	and solubility products, common	CSO 1.2: To explain the			
Analysis (H ₂ S	ion offect Dringinles involved in	Basic principles involved in			
Scheme)	ion effect. Principles involved in	analysis of cations and			
	separation of cations into groups	anions. (U)			
	and choice of group reagents.	CSO 1.3: To explain the principles involved in			
	Interfering anions (fluoride,	separation of cations into			
	borate, oxalate and phosphate)	groups. (U) CSO 1.4: To explain the			
	and need to remove them after	interfering anions. (U)			

	Group II.	CSO 1.5: To make student understand why there is a need for the removal of the interfering anions after Group II in the periodic table. (K)			
UNIT2 Organometallic Compounds I	Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. Metal carbonyls: 18 electron rule, electron count of mononuclear, polynuclear and substituted metal carbonyls of 3d series. General methods of preparation (direct combination, reductive carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of 3d series. Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT. π - acceptor behaviour of CO (MO diagram of CO to be discussed).	CSO 2.1:To appraise the students about the organometallic Chemistry. (K) CSO 2.2: To identify the basic concept, terms, and important events in the development of organometallic chemistry. (U) CSO 2.3: To learn about the 18 e rule and its violation. (U) CSO 2.4: To explain the general methods for the preparation of mono and binuclear carbonyls of 3d series. (U,A) CSO 2.5:To explain the structure of mononuclear and binuclear carbonyls of some of the metalsusing VBT. (A) CSO 2.7: To identify the basic concept, terms, and important events in the development of organometallic chemistry.	10	25	
UNIT 3 Organometallic Compounds II	Zeise's salt: Preparation and structure, evidences of synergic effect and comparison ofsynergic effect with that in carbonyls. <i>Metal Alkyls</i> : Important structural features of methyl lithium (tetramer) andtrialkylaluminium (dimer), concept of multicentre bonding in these compounds. Role of	(U) CSO 3.1: To learn about the preparation of Zeise's salt. (U) CSO 3.2: To explain the structure of Zeise's salt. (U) CSO 3.3: To explain how the synergic effect is arising due to metal-ligand bonding. (U) CSO 3.4: To learn about the important structural features of methyl lithium. (K) CSO 3.5: To make student understand how the multicentre covalent bonds	12	30	

	triethylaluminium in	involves more than two			
		atoms. (A)			
	polymerisation of ethene	CSO 3.6: To explain the role			
	(Ziegler – Natta Catalyst).	of Ziegler – Natta Catalyst			
	Species present in ether solution	in formation of thermoplastics.			
	of Grignard reagent and their	CSO 3.7: To learn the			
	structures.	structure of the species			
	Ferrocene: Preparation and	containing in solutions of Grignard reagent. (U)			
	reactions (acetylation, alkylation,	CSO 3.8: To study the preparation of Ferrocene.			
	metallation,	(K)			
	MannichCondensation).	CSO 3.9: To study the different reaction			
	Structure and aromaticity.	mechanism for the synthesis			
	Comparison of aromaticity and	of Ferrocene. (A) CSO 3.10: To learn the			
	reactivity with that of benzene.	structure and aromaticity of			
		Ferrocene. (U) CSO 3.11: To study the			
		difference between the			
		Ferrocene and benzene. (U)			
UNIT 4	Introduction to inorganic	CSO 4.1: To learn the	9	17	
Reaction	reaction mechanisms.	inorganic reaction			
Kinetics and	Substitution reactions in square	mechanisms.(U) CSO 42: To learn the			
Mechanism	planar complexes, Trans- effect,	substitution reaction that are			
		involved in the inorganic			
	theories of trans effect,	reactions. (K) CSO 4.3: An introduction to			
	Mechanism of nucleophilic	the trans-effect. (K)			
	substitution in square planar	CSO 4.4: To study the			
	complexes, Thermodynamic and	mechanism involved in			
	Kinetic stability, Kinetics of	nucleophilic substitution in square planar complexes.(A)			
	octahedral substitution, Ligand	CSO 4.5: To study the			
	_	thermodynamics of			
	field effects and reaction rates,	inorganic reactions. (U) CSO 4.6: To study the			
	Mechanism of substitution in	Kinetic stability of			
	octahedral complexes.	octahedral substitution.			
		(U,A)			
		CSO 4.7: To learn how the various d orbitals are			
		affected differently when			
		surrounded by a field of			
		neighbouring ligands. (U)			
		CSO 4.8: To explain how the coordinated solvent			
		molecule, such as H_2O is			
		replaced by another ligand.			
		(A)			

UNIT 5	Study of the following industrial	CSO 5.1: To understand the	8	14	
	Study of the following industrial		0	14	
Catalysis by	processes and their mechanism:	fundamental reaction types			
Organometallic		and mechanisms and how to			
organometame	1. Alkene hydrogenation	combine these to understand			
Compounds	(Wilkinson's Catalyst)	efficient catalytic processes.			
-	2. Hydroformylation (Co salts)	(K)			
	3. Wacker Process	CSO 5.2: To study the			
	4. Synthetic gasoline (Fischer	mechanism of Wilkinson's			
	Tropsch reaction)	Catalyst. (A)			
	5. Synthesis gas by metal	CSO 5.3: To study the			
	carbonyl complexes	mechanism of			
		Hydroformylation. (A)			
		CSO 5.4: To study the			
		mechanism of Wacker			
		Process. (A)			
		CSO 5.5: To study the			
		mechanism of Synthetic			
		gasoline. (A)			
		CSO 5.6: To study the			
		Synthesis gas by metal			
		carbonyl complexes. (A)			

- 1. G Svehla, Vogel's Qualitative Inorganic Analysis, 7th Edition, Prentice Hall, 1996.
- 2. F.A. Cotton & G. Wilkinson & P.L Gaus, Basic Inorganic Chemistry 3rd Ed., WileyIndia, Huheey, (1988).
- 3. J. E.; Keiter, E.A. & Keiter, R.L. *Inorganic Chemistry, Principles of Structure andReactivity 4th Ed.,* Harper Collins 1993, Pearson, 2006.
- 4. A.G. Sharpe, Inorganic Chemistry, Indian Reprint, Pearson Education, 2005.
- B. E. Douglas, , D.H. McDaniel&J.J. Alexander, Concepts and Models in InorganicChemistry3rd Ed., John Wiley and Sons, New York, 1994.
- 6. N.N. Greenwood, & A. Earnshaw, Chemistry of the Elements, Elsevier 2nd Ed, ZieglerNatta Catalyst and Equilibria in Grignard Solution, 1997.
- 7. J.D. Lee, *Concise Inorganic Chemistry 5th Ed.*, John Wiley and sons, 2008.
- 8. P. Powell, Principles of Organometallic Chemistry, Chapman and Hall, 1988.
- 9. D.D. Shriver, & P. Atkins, Inorganic Chemistry 2nd Ed., Oxford University Press, 1994.
- F. Basolo, &R. Pearson, Mechanisms of Inorganic Reactions: Study of Metal Complexes inSolution 2nd Ed., John Wiley & Sons Inc., New York, 1958.
- 11. K.F. Purcell, &J.C. Kotz, Inorganic Chemistry, W.B. Saunders Co., 1977.
- 12. G. L. Miessler, &D.A. Tarr, Inorganic Chemistry 4th Ed., Pearson, 2010.
- 13. J. P. Collman, *Principles and Applications of Organic Chemistry*. Mill Valley, CA:University Science Books 1987.

Practical:

Name of the Paper: Inorganic Chemistry-IV Paper Code: CHC 4.3 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Qualitative semimicro analysis of mixtures containing 3 anions and 3 cations. Emphasis should be given to the

understanding of the chemistry of different reactions. The following radicals are suggested: $CO_{3}^{2^{-}}, NO_{2}^{-}, SO_{3}^{2^{-}}, SO_{2}^{2^{-}}, CH_{3}COO^{-}, F^{-}, Cl^{-}, Br^{-}, I^{-}, NO_{3}^{-}, BO_{3}^{3^{-}}, CO_{2}^{2^{-}}, PO_{4}^{3^{-}}, NH_{4}^{+}, K^{+}, Pb^{2^{+}}, Cu^{2^{+}}, Cd^{2^{+}}, Bi^{3^{+}}, Sn^{2^{+}}, Sb^{3^{+}}, Fe^{3^{+}}, Al^{3^{+}}, Cr^{3^{+}}, Zn^{2^{+}}, Mn^{2^{+}}, Co^{2^{+}}, Ni^{2^{+}}, Ba^{2^{+}}, Sr^{2^{+}}Ca^{2^{+}}, Mg^{2^{+}}$

Mixtures should preferably contain one interfering anion, **or** insoluble component (BaSO4, SrSO₄, PbSO₄, CaF₂ or Al₂O₃) **or** combination of anions e.g. CO_3^{2-} and SO_3^{2-} , NO_2^{-} and NO_3^{--} , Cl^- and Br^- , Cl^- and I^- , Br-and I^- , NO_3^{--} and Br^- , NO_3^{--} and Br^- , NO_3^{--} and I^- .

- Spot tests should be done whenever possible.
- i. Measurement of 10 Dq by spectrophotometric method
- ii. Verification of spectrochemical series.
- iii. Controlled synthesis of two copper oxalate hydrate complexes: kinetic vs thermodynamic factors.
- iv. Preparation of acetylacetanato complexes of Cu^{2+}/Fe^{3+} . Find the λ_{max} of the complex.

v. Synthesis of ammine complexes of Ni(II) and its ligand exchange reactions (e.g. bidentate ligands like acetylacetone, DMG, glycine) by substitution method.

- 1. G. Svehla, Vogel's Qualitative Inorganic Analysis, Pearson Education, 2002.
- 2. Marr & Rockett, Practical Inorganic Chemistry. John Wiley & Sons, 1972.

	<u>SEMESTER</u>
NAME OF THE PAPER (CODE)	: ORGANIC CHEMISTRY-IV (CHC-5.1)
Number of Credit	03
Number of Hours of Lecture	45

V-

The following are the course Objectives (Cos) for the paper-**Organic Chemistry-IV:**

CO 1:	Explain the important features of nucleic acids and its structural organization.
CO 2:	Describe the classifications of amino acids, peptides and Proteins. Elaborate its structures.
CO 3:	Explain the notes on enzymes and develop their ability to examine their properties and applications.
CO 4:	Understand the functions of Lipids and oils and differentiate them.
CO 5:	Understand the pharmaceuticals importance and its compositions. To know the importance of
	antimalarials, antibiotics and analgesics.

Unit & Title	Unit Contents	Course Specific Objectives	Lectures	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Components of nucleic	CSO 1.1: An introduction	7	14	
Nucleic Acids	acids, Nucleosides and	to nucleic acid. (K) CSO 1.2: To give the			
	nucleotides; Structure,	components of nucleic			
	synthesis and reactions of:	acids, Nucleosides and nucleotides. (U)			
	Adenine, Guanine,	CSO 1.3: To explain the			
	Cytosine, Uracil and	structure of some of the nucleic acid. (U)			
	Thymine; Structure of	CSO 1.4: To study the			
	polynucleotides.	reaction mechanism of nucleic acid. (U,A)			
UNIT 2	Amino acids, Peptides and	CSO 2.1: To give a brief	13	32	
Amino Acids,	their classification. α -	introduction of Amino			
Peptides and	Amino Acids - Synthesis,	Acids, Peptides and			
Proteins	ionic properties and	Proteins. (K)			
	reactions. Zwitterions, pKa	CSO 2.2: To Predict the			
	values, isoelectric point and	different type of amino			
	electrophoresis; Study of	acids. (U)			
	peptides: determination of	CSO 2.3: To study the			
	their primary structures-end	synthesis of amino acid. (A)			
	group analysis, methods of	CSO 2.4: Recognize the			

	nontido armthonia Sruthonia	hasia manantias (structure			
	peptide synthesis. Synthesis	basic properties (structure,			
	of peptides using N-	physical and chemical			
	protecting, C-protecting and	properties) of amino acids.			
	C-activating groups -Solid-	(U)			
	phase synthesis.	CSO 2.5: To Predict			
		whether the acid and amine			
		groups in amino acids will			
		be protonated at different			
		pH values. (A)			
		CSO 2.6: Describe the			
		primary, secondary, tertiary			
		and quaternary structure of			
		proteins. (U)			
UNIT 3	Introduction, classification	CSO 3.1: To understand	8	16	
Enzymes	and characteristics of	structure, and functions of	-		
		enzymes. Learning kinetics			
	enzymes. Salient features of	of enzyme catalysed reactions and regulatory			
	active site of enzymes.	process, Enzyme activity,			
	Mechanism of enzyme	Enzyme Units, Specific			
	action (taking trypsin as	activity. (U) CSO 3.2: Have a deeper			
	example), factors affecting	insight in to the			
	enzyme action, coenzymes	fundamentals of enzyme structure, function and			
	and cofactors and their role	kinetics of enzymes.			
	in biological reactions,	Discussion on current			
	specificity of enzyme action	applications and future potential of enzymes. (U,A)			
	(including	CSO 3.3: To explain and			
		make student understand the rate of reactions and order			
	stereospecificity), enzyme	of reactions.(U)			
	inhibitors and their	CSO 3.4: To gain			
	importance, phenomenon of	knowledge on enzyme catalysis and isoenzymes			
	inhibition (competitive,	and on multienzyme			
	uncompetitive and non-	complexes. (K)			
	competitive inhibition	CSO 3.5: To learn the models of enzyme action			
	including allosteric	and mapping of enzyme			
	inhibition).	active site. (A) CSO 3.6: To provide			
		concept of importance of			
		kinetics of enzyme			
		inhibitions and how they			

UNIT 4 Lipids	Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenation of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity.	influence drug action. (A) CSO 3.7: To learn the role of enzyme inhibitors in drug discovery and drug design.(U) CSO 3.8: To gain insight into catalytic mechanisms of enzymes and allosteric regulation of enzymes.(A) CSO 4.1: To provides a basic understanding of the chemistry of lipids. (K) CSO 4.2: To define fats and oil. (K) CSO 4.3: To make student aware the structure of saturated and unsaturated fatty acids. (U) CSO 4.4: To write the saponification reactions. (A) CSO 4.5: Todescribe the properties of triglyceride, phospholipid and cholesterol molecules and relate them to their functions in organisms.(K) CSO 4.6: To recall that lipids can be classified into simple, complex, and derived lipids. (U)	7	14	
UNIT 5 Pharmaceutical Compounds: Structure and Importance	Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials: Chloroquine (with synthesis). An elementary treatment of Antibiotics and detailed study of chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C and antacid (ranitidine).	CSO 5.1: To make student Understand the chemistry of drugs with respect to their pharmacological activity. (U) CSO 5.2: To explain the therapeutic approach on management of the medicine towards certain diseases. (U) CSO 5.3: To explain the importance of preparation of individualized therapeutic plans based on diagnosis. (A) CSO 5.4: To explain the Structural Activity Relationship (SAR) of different class of drugs. (A) CSO 5.5: To give the uses of organic compounds in pharmacy. (K) CSO 5.6: To let the student	10	24	

	gain knowledge on structure and medicinal uses of pharmaceutical organic compounds.(K)		

- 1. R.L.P.Adams, J.T. Knowler &D.P.Leader, *The Biochemistry of the Nucleic Acid 11th Ed*, Springer, 1992.
- 2. M.I.Gurr, J.L. Harwood, K. N.Frayn, D. J. Murphy & R.H. Michell, *Lipids Biochemistry, Biotechnology and Health* 6th Ed. Wiley-Blackwell, 2016.
- 3. B. Sharma & U.K. Sharma, *Pharmaceutical Chemistry*, Himalaya Publishing House, India, 2023.

Practical:

Name of the Paper: Organic Chemistry-IV Paper Code: CHC-5.1 P Number of Credit: 01 Number ofHours of Lecture: 30 Lectures

- 1. Estimation of glycine by Sorenson's formalin method.
- 2. Study of the titration curve of glycine.
- 3. Estimation of proteins by Lowry's method.
- 4. Study of the action of salivary amylase on starch at optimum conditions.
- 5. Effect of temperature on the action of salivary amylase.
- 6. Saponification value of an oil or a fat.
- 7. Determination of Iodine number of an oil/ fat.
- 8. Isolation and characterization of DNA from onion/ cauliflower/peas.

- 1. Manual of Biochemistry Workshop, Department of Chemistry, University of Delhi, 2012.
- 2. I. V. Arthur, *Quantitative Organic Analysis*, Pearson, India, 2011.

NAME OF THE PAPER (CODE)	: PHYSICAL CHEMISTRY-IV (CHC-5.2)
Number of Credit	03
Number of Hours of Lecture	45

The following are the course Objectives (Cos) for the paper-**Physical Chemistry-IV:**

CO 1:	Explain the factors that affect conductance, migration of ions and application of conductance
	measurement.
CO 2:	Understand different types of galvanic cells, their Nernst equations, and measurement of emf,
	calculations of thermodynamic properties and other parameters from the emf measurements.
CO 3:	Understand applications of Emf measurements in relation to determination of activity coefficients,
	pH of a solution and Potentiometric titrations.
CO 4:	Basic functions of electrochemistry and its activity in acid-base and redox reactions.
CO 5:	Describe electric and magnetic properties of atoms and molecules. Derive Clausius mosotti
	reactions.

Unit & Title	Content	Course Specific Objectives	Lectures	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Arrhenius theory of	CSO 1.1: To give the	8	18	
Conductance I	electrolytic dissociation.	Arrhenius theory of electrolytic dissociation.			
	Conductivity, equivalent	(K)			
	and molar conductivity	CSO 1.2: To explain the variation of specific			
	and their variation with	conductivity or conductance			
	dilution for weak and	decreases in dilution with the molar conductance. (U)			
	strong electrolytes. Molar	CSO 1.3: To state and			
	conductivity at infinite	derive the Kohlrausch law of independent migration of			
	dilution. Kohlrausch law	ions. (U,A)			
	of independent migration	CSO 1.4 : To derive the Debye-Hückel-Onsager			
	of ions. Debye-Hückel-	equation. (A)			
	Onsager equation, Wien	CSO 1.5: To explain the Wien effect and Debye-			
	effect, Debye-Falkenhagen	Falkenhagen effect. (U)			
	effect, Walden's rules.	CSO 1.6: To explain the Walden's rules for			
		conductance. (U)			
UNIT 2	Ionic velocities, mobilities	CSO 2.1: To explain the	8	18	
Conductance II	and their determinations,	measurement of the ion using Hittorf and Moving Boundary methods. (U)			

	mobilities, determination of transference numbers	introduction on the application of conductance measurement. (K) CSO 2.3: To explain the application of degree of			
	using Hittorf and Moving Boundary methods. Applications of conductance measurement: (i) degree of dissociation of weak electrolytes (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts (iv) Conductmetric titrations and (v) hydrolysis constants of salts.	dissociation of weak electrolytes. (U) CSO 2.4: To explain the application of ionic product of water.(U) CSO 2.5: To explain the solubility and solubility product of sparingly soluble salts.(U) CSO 2.6: To explain the Conductmetric titrations. (U) CSO 2.7: To explain the hydrolysis constants of salts.(U)			
UNIT 3 Electrochemistry I	Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry. Chemical cells, reversible and irreversible cells with examples. Electromotive force of a cell and its measurement, Nernst equation, Standard electrode (reduction) potential and its application to different kinds of half-cells.	CSO 3.1:To Know the basic of ions, electrolyte, movement of ions, electrochemistry. (K) CSO 3.2:To know how the ionic movements are related to different other fields such as thermodynamics. (U) CSO 3.3: To let students gain the basic knowledge on novel energy storage devices. (K) CSO 3.4: To explain Quantitative aspects of Faraday's laws of electrolysis. (U) CSO 3.5: To give applications of electrolysis in metallurgy and industry. (U) CSO 3.6: To derive the Nernst equation. (A) CSO 3.7: To study thestandard electrode (reduction) potential and its application to different	16	34	

	Application of EMFmeasurements indetermining(i) Free energy, enthalpyand entropy of a cellreaction, (ii) equilibriumconstants, and (iii) pHvalues, using hydrogen,quinone-hydroquinone,glass and SbO/Sb2O3electrodes.	CSO 3.8: Using hydrogen, quinone-hydroquinone, glass and SbO/Sb ₂ O ₃ electrodes the application of EMF measurements in determining (i) Free energy, enthalpy and entropy of a cell reaction. (ii) Equilibrium constants, and (iii) pH values. Will be studied. (U,A)		
UNIT 4 Electrochemistry II	Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers. Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation).	CSO 4.1: To explain the concentration cell with and without transference. (U) CSO 4.2: To determine the activity coefficient and transference numbers. (A) CSO 4.3: To discuss the qualitative of potentiometric titrations (acid-base, redox, precipitation). (U)	5	12
UNIT 5 Electrical & Magnetic Properties of Atoms and Molecules	Basic ideas of electrostatics,Electrostatics of dielectric media, Clausius- Mosotti equation, Lorenz-Laurentz equation, Dipole moment and molecular polarizabilities and their measurements. Diamagnetism, paramagnetism, magnetic susceptibility and its measurement,molecular	CSO 5.1: T give the basic ideas of electrostatics. (K) CSO 5.2: To explain the electrostatics of dielectric media. (U) CSO 5.3: To derive the Clausius-Mosotti equation. (A) CSO 5.4: To derive the Lorenz-Laurentz equation. (A) CSO 5.5: To calculate the net molecular polarity at either end of the molecular dipole. (A) CSO 5.6: To explain the magnetic susceptibility and its measurement, molecular interpretation. (U)	8	18

interpretation.		

- 1. P.W Atkins&J.D. Paula, *Physical Chemistry10th Ed.*, Oxford University Press, 2014.
- 2. G. W. Castellan, *Physical Chemistry 4th Ed.*, Narosa, 2004.
- 3. R. G. Mortimer, Physical Chemistry 3rd Ed., Elsevier: NOIDA, UP, 2009.
- 4. G. M. Barrow, *Physical Chemistry 5th Ed.*, Tata McGraw Hill: New Delhi, 2006.
- 5. T. Engel&P. Reid, *Physical Chemistry 3rd Ed.*, Prentice-Hall, 2012.
- 6. D. W. Rogers, Concise Physical Chemistry Wiley, 2010.
- R. J. Silbey, R. A. Alberty, &M. G. Bawendi, *Physical Chemistry 4th Ed.*, John Wiley & Sons, Inc., 2005.

Practical:

Name of the Paper: Physical Chemistry-IV Paper Code: CHC-5.2 P Number of Credit: 01 Number ofHours of Lecture: 30 Lectures

Conductometry

- I. Determination of cell constant
- II. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- III. Perform the following conductometric titrations:
 - i. Strong acid vs. strong base
 - ii. Weak acid vs. strong base
 - iii. Mixture of strong acid and weak acid vs. strong base
 - iv. Strong acid vs. weak base

Potentiometry

- I. Perform the following potentiometric titrations:
 - i. Strong acid vs. strong base
 - ii. Weak acid vs. strong base
 - iii. Dibasic acid vs. strong base
 - iv. Potassium dichromate vs. Mohr's salt

- B. D. Khosla, V. C. Garg, &A. Gulati, Senior Practical Physical Chemistry, R. Chand & Co. New Delhi, 2011.
- 2. C. W. Garland, J. W. Nibler, &D. P. Shoemaker, *Experiments in Physical Chemistry 8th Ed.*, McGraw-Hill, New York, 2003.
- 3. A. M. Halpern, &G. C. McBane, *Experimental Physical Chemistry 3rd Ed.*, W.H. Freeman & Co. New York, 2003.

NAME OF THE PAPER (CODE)	: ANALYTICAL METHODS IN CHEMISTRY (CHC-5.3)
Number of Credits	03
Number of Hours of Lecture	45

The following are the course Objectives (Cos) for the paper-Analytical methods in Chemistry:

CO 1:	Able to expresses the Qualitative and Quantitative analysis methods.
CO 2:	Familiar with interpretation and use of analytical data collected by different techniques,
	significance of different analytical techniques and their applications, reliability and presentation
	of data for reporting to different forum.
CO 3:	Explain the basic methods of thermo analytical methods.Describe the physical and chemical
	properties used to separate mixtures.
CO 4:	To acquire basic knowledge of pH metric, potentiometric and conductometric titrations.
CO 5:	Understand separations techniques. To know different types of chromatography and perform their
	practicalsseparately.Explainsteroisomeric separation and analysis.

Unit & Title	Unit Contents	Course Specific Objectives	Lectures	Marks	LOs
		(CSOs)	Hours		
UNIT 1 Qualitative and	Sampling, evaluation of	CSO 1.1: To distinguish	4	10	
Quantitative	analytical data, errors, accuracy and precision,	between qualitative and quantitative aspects of			
Aspects of	methods of their expression,	analysis. (K) CSO 1.2: To define some			
Analysis	normal law of distribution if	common terms of statistical calculations			
	indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.	CSO 1.3: To understand the normal error curve and estimate the precision of analytical data,			
	and confidence intervals.	CSO 1.4: To estimate whether the difference in two sets of data in experimental results is just by chance or there is some source of systematic errors			

		in one of the sets. (A)		
UNIT 2	Origin of spectra,	CSO 2.1: To get a guideline	20	36
Optical	interaction of radiation with	concerning the Origin of		
Methods of	matter, fundamental laws of	spectra. (K) CSO 2.2: To explain the		
Analysis.	spectroscopy and selection	fundamental laws of		
	rules, validity of Beer-	spectroscopy and selection rules. (U)		
	Lambert's law.	CSO 2.3: To explain the		
	UV-Visible Spectrometry:	validity of Beer-Lambert's law. (U)		
	Basic principles of	CSO 2.4: To give a brief		
		introduction of spectroscopy.		
	instrumentation (choice of	(K) CSO 2.5: To learn the		
	source, monochromator and	technique to interpret UV-		
	detector) for single and	Visible spectroscopy. (A) CSO 2.6: To Explain basic		
	double beam instrument.	principles of UV-Visible		
	Basic principles of	spectroscopy. (U)		
	quantitative analysis:	CSO 2.7: To Explain relevant terms of UV-Visible		
	estimation of metal ions	spectroscopy.(U)		
	from aqueous solution,	CSO 2.8: To explain working principle, taking		
	geometrical isomers, keto-	spectra and outline of UV		
	enol tautomers.	spectroscopy device. (A) CSO 2.9: To Explain basic		
	Determination of	principles of IR		
	composition of metal	spectroscopy. (K) CSO 2.10: To explain		
	complexes	working principles and		
	using Job's method of	taking spectrum of IR spectroscopy device. (U)		
	continuous variation and	CSO 2.11: To explain basic		
	mole ratio method.	principles of atomic		
	Infrared Spectrometry:	absorption spectroscopy. (K) CSO 2.12: To explain the		
	Basic principles of	types of atomic absorption		
	instrumentation (choice of	spectrometer. (U) CSO 2.13: To explain		
	source, monochromator &	working principles, taking spectrum and outline of		
	detector) for single and	atomic absorption		
	double beam instrument;	spectroscopy device. (U)		
	sampling techniques.	CSO 2.14: To give the Method of background		
	Structural illustration	correction, sources of		
	through interpretation of	chemical interferences and their method of removal. (U)		
	data, Effect and importance	CSO 2.15: To explain the		
		Techniques for the		

	determination of equivalence points.	analysis and mechanistic studies will be presented so that real world analysis problems can be		
	conductometric titrations. Techniques used for the	CSO 4.3 : Modern techniques used for chemical		
	metric, potentiometric and	principle of pH metric. (K)		
	basic principle of pH	measurements.(K) CSO 4.2: To give the basic		
Methods	electroanalytical methods,	supports electroanalytical		
UNIT 4 Electroanalytical	Classification of	CSO 4.1 : Students will learn the fundamental theory that	7	18
		material. (A)		
		analysis of inorganic, organic and polymer		
	from their mixture.	qualitative and quantitative		
	estimation of Ca and Mg	CSO 3.4: To describe the applications of TGA in		
	Techniques for quantitative	TGA curves. (A)		
Analysis	instrumentation.	CSO 3.3: To interpret the analytical information from		
Methods of	basic principle of	experimental setup of TGA.		
Thermal	thermogravimetry (TG),	principle of TGA. (K) CSO 3.2: describe the		
UNIT 3	Theory of	CSO 3.1 : To explain the	4	10
	from water samples.			
	trace level of metal ions			
	quantitative estimation of			
	Techniques for the			
	their method of removal.			
	chemical interferences and			
	correction, sources of			
	Method of background			
	and sample introduction;			
	Techniques of atomization			
	and Burner designs.			
	detector, choice of flame			
	source, monochromator,			
	instrumentation (choice of			
	Basic principles of			
	and Emission Spectrometry:	r in r		
	Flame Atomic Absorption	trace level of metal ions from water samples.(K)		
	of isotope substitution.	quantitative estimation of		

	Techniques used for the	CSO 4.4: To evaluate			
		conductivity measurements			
	determination of pKa	and titration curves. (A)			
	values.	CSO 4.5: To express the			
		potentiometric titration			
UNIT 5	Solvent extraction:	curve. (A) CSO 5.1: To define basic	10	26	
		principles of common	10	20	
Separation Techniques	Classification, principle and	separation techniques. (K)			
rechniques	efficiency of the technique.	CSO 5.2: To connect parts			
	Mechanism of extraction:	of chromatographic systems into functional order. (A)			
	extraction by solvation and	CSO 5.3: To select			
	chelation.	appropriate separation technique in compliance			
	Technique of extraction:	with characteristics of the			
	batch, continuous and	sample.(U) CSO 5.4: To explain the			
	counter current extractions.	selection of stationary phase,			
	Qualitative and quantitative	mobile phase and detector			
	aspects of solvent	for various chromatographic analysis. (U)			
	extraction: extraction of	CSO 5.5: To apply computing tools in			
	metal ions from aqueous	processing of the analytical			
	solution, extraction of	signal. (A) CSO 5.6: To demonstrate			
	organic species from the	method validation. (A)			
	aqueous and nonaqueous	CSO 5.7: To identify the sources of measurement			
	media.	uncertainty and to calculate			
	Chromatography:	the uncertainty. (U) CSO 5.8: To make the			
	Classification, principle and	student understand what is			
	efficiency of the technique.	meant by all the parameters in an HPLC analytical			
	Mechanism of separation:	method. (U)			
	adsorption, partition & ion	CSO 5.9 Follow an HPLC analytical method to set up			
	exchange.	an HPLC system for			
	Development of	analysis. (A) CSO 5.10: To explain how			
	chromatograms: frontal,	to run an HPLC analytical			
	elution and displacement	method and acquire chromatographic results. (A)			
	methods.	CSO 5.11: To Interpret			
	Qualitative and quantitative	chromatograms obtained from HPLC analysis. (A)			
	aspects of chromatographic				
	methods of analysis: IC,				
	GLC, GPC, TLC and				
	HPLC.				
	1				

G (: ; ; ;
Stereoisomeric separation
and analysis: Measurement
of optical rotation,
calculation of Enantiomeric
excess (ee)/ diastereomeric
excess (de) ratios and
determination of
enantiomeric composi-tion
using NMR, Chiral solvents
and chiral shift reagents.
Chiral chromatographic
techniques using chiral
columns (GC and HPLC).
Role of computers in
instrumental methods of
analysis.

- 1. J. Mendham, Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- 2. H.H. Willard, *Instrumental Methods of Analysis7th Ed.*, Wardsworth Publishing Company, Bel-mont, California, USA, 1988.
- 3. G.D. Christian, Analytical Chemistry6th Ed., John Wiley & Sons, New York, 2004.
- 4. D.C.Harris, Exploring Chemical Analysis9th Ed., New York, W.H. Freeman, 2016.
- 5. S.M.Khopkar, Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- D.A. Skoog, F.J. Holler. &T.A Nieman, *Principles of Instrumental Analysis 7th Ed.*, Cengage Learning India, 2017.
- 7. O. Mikes, *Laboratory Hand Book of Chromatographic & Allied Methods*, Elles Harwood Series on Ana-lytical Chemistry, John Wiley & Sons, 1979.
- 8. R.V. Ditts, Analytical Chemistry: Methods of separation, van Nostrand, 1974.

Practical:

Name of the paper: Analytical Methods in Chemistry Paper Code: CHC-5.3 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

I. Separation Techniques

(a) Separation of mixtures

(i) Paper chromatographic separation of Fe^{3+} , Al^{3+} , and Cr^{3+} .

(ii) Separation and identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the R_f values.

(b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their R_f values.

(c) Chromatographic separation of the active ingredients of plants, flowers and juices by TLC

II. Solvent Extractions:

(i) To separate a mixture of Ni^{2+} & Fe^{2+} by complexation with DMG and extracting the Ni^{2+} - DMG complex in chloroform, and determine its concentration by spectrophotometry.

- (ii) Solvent extraction of zirconium with amberliti LA-1, separation from a mixture of irons and gallium.
- **III.** Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.
- **IV.** Determination of Na, Ca, Li in cola drinks and fruit juices using fame photometric techniques.
- V. Analysis of soil:
- (i) Determination of pH of soil.
- (ii) Total soluble salt
- (iii) Estimation of calcium, magnesium, phosphate, nitrate
- VI. Ion exchange:
- (i) Determination of exchange capacity of cation exchange resins and anion exchange resins.
- (ii) Separation of metal ions from their binary mixture.
- (iii) Separation of amino acids from organic acids by ion exchange chromatography.

VII. Spectrophotometry:

- 1. Determination of pKa values of indicator using spectrophotometry.
- 2. Structural characterization of compounds by infrared spectroscopy.
- 3. Determination of dissolved oxygen in water.
- 4. Determination of chemical oxygen demand (COD).
- 5. Determination of Biological oxygen demand (BOD).
- 6. Determine the composition of the Ferric-salicylate/ ferric-thiocyanate complex by Job's method.

- 1. J. Mendham & A. Vogel's, Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- 2. H.H Willard, *Instrumental Methods of Analysis7th Ed.*, Wardsworth Publishing Company, Bel-mont, California, USA, 1988.
- 3. G.D. Christian, Analytical Chemistry6th Ed., John Wiley & Sons, New York, 2004.
- 4. D.C. Harris, *Exploring Chemical Analysis9th Ed.*, New York, W.H. Freeman, 2016.
- 5. S.M. Khopkar, *Basic Concepts of Analytical Chemistry*. New Age International Publisher, 2009.

- D.A. Skoog, F.J. Holler. &T.A Nieman, Principles of Instrumental Analysis 7th Ed., Cengage Learning India, 2017.
- 7. O. Mikes&R.A. Chalmes, *Laboratory Handbook of Chromatographic & Allied Methods*, Elles Harwood Ltd. London, 1979.
- 8. R.V. Ditts, Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

SEMESTER

NAME OF THE PAPER (CODE): PHYSICAL CHEMISTRY-V (CHC-6.1)Number of Credit03Number of Hours of Lecture45

COURSE OBJECTIVES (COs)

VI-

The following are the course Objectives (Cos) for the paper-Physical Chemistry-V:

CO 1:	Learn about limitations of classical mechanics and solution in terms of quantum mechanics for
	atomic/molecular systems.
CO 2:	Develop an understanding of quantum mechanical operators, quantization, probability distribution,
	uncertainty principle and application of quantization to spectroscopy.
CO 3:	Interpret various types of spectra and know about their application in structure elucidation.
CO 4:	Raman spectra. Stokes and anti-stokes lines.
CO 5:	Explain NMR theory. Coupling constants and their derivations.

Unit& Title	Unit Contents	Course Specific Objectives	Lectures	Marks	LOs
		(CSOs)	Hours	•	
UNIT 1	Postulates of quantum	CSO 1.1: To give a brief	10	20	
Quantum	mechanics, quantum mechanical	introduction on the concept of			
Chemistry I	operators, Schrödinger equation	quantum mechanics. (K)			
	and its application to free	CSO 1.2: To make the student			
	particle and "particle-in-a-box"	understand the Postulates of			
	(rigorous treatment),	quantum mechanics. (K)			
	quantization of energy levels,	CSO 1.3: To understand the			
	zero-point energy and	concept of different laws of			
	Heisenberg Uncertainty	thermodynamics. (U)			
	principle; wave functions,	CSO 1.4: To understand the			
	probability distribution	Debye Huckel Theory of ion-			
	functions, nodal properties,	ion interactions. (U)			
	Extension to two and three	CSO 1.5: To understand the			
	dimensional boxes, separation of	effect of temperature on			
	variables, degeneracy.	reaction rates. (A)			
	Qualitative treatment of simple	CSO 1.6: To derive the			
	harmonic oscillator model of	Heisenberg Uncertainty			
	vibrational motion: Setting up of	principle. (A)			
	Schrödinger equation and	CSO 1.7: To explain the wave			
	discussion of solution and wave	functions. (U)			
	functions. Vibrational energy of	CSO 1.8: To give the			
	diatomic molecules and zero-	probability distribution			
	point energy.	function. (K)			
	point energy.				
UNIT 2	Angular momentum:	CSO 2.1: Student will be able	13	28	
Quantum	Commutation rules, quantization	to understand that angular			
Chemistry II	of square of total angular	momentum is conserved in			
Suchasti y H	momentum and z-component.	closed systems. (U)			
	Rigid rotator model of rotation	CSO 2.2: To make the student			
	of diatomic molecule.	realize that the moment of			
	Schrödinger equation,	inertia of an object determines			
		the extent to which it is			
	transformation to spherical polar				
	coordinates. Separation of	accelerated as a result of a			

			r		1
	variables. Spherical harmonics.	reaction torque and that this is			
	Discussion of solution.	why even though Earth spins			
	Qualitative treatment of	under us as we move across it,			
	hydrogen atom and hydrogen-	we do not notice it. (U)			
	like ions: setting up of	CSO 2.3: To explain the			
	Schrödinger equation in	angular momentum is			
	spherical polar coordinates,	conserved in orbital systems.			
	radial part, quantization of	(K)			
	energy (only final energy	CSO 2.4: To explain the			
	expression). Average and most	quantum mechanical			
	probable distances of electron	operators, Schrodinger wave			
	from nucleus.	equation and its application to			
	Setting up of Schrödinger	hydrogen & hydrogen like			
		atoms. (U,A)			
	equation for many-electron				
	atoms (He, Li). Need for	CSO 2.5: The students will be			
	approximation methods.	taught the postulates of			
	Statement of variation theorem	quantum mechanics and the			
	and application to simple	application of quantum			
	systems (particle-in-a-box,	mechanical ideas in some			
	harmonic oscillator, hydrogen	simple systems such as			
	atom). Chemical bonding:	particle in a box, rigid rotor,			
	Covalent bonding, valence bond	and simple harmonic			
	and molecular orbital	oscillator. (U,A)			
	approaches, LCAO-MO	CSO 2.6: To introduce to			
	treatment of H_2^+ . Bonding and	quantum mechanical treatment			
	antibonding orbitals. Qualitative	of hydrogen-like systems with			
	extension to H ₂ . Comparison of	electron-nuclear distance			
	LCAO-MO and VB treatments	quantification, extension to			
	of H ₂ (only wavefunctions,	many-electron atoms with			
	detailed solution not required)	introduction to variation			
	and their limitations.	theory. (U)			
	Refinements of the two	CSO 2.7: To explain			
	approaches (Configuration	quantitative MO and VB			
	Interaction for MO, ionic terms	treatments of simple			
	in VB). Qualitative description	molecules. (U,A)			
	of LCAO-MO treatment of	CSO 2.8: To give an idea of			
	homonuclear and heteronuclear	interaction of electromagnetic			
	diatomic molecules (HF, LiH).	radiation with molecules to			
	Localised and non-localized	generate spectra, knowing			
	molecular orbitals treatment of	about characteristics of			
	tri-atomic (BeH ₂ , H ₂ O)	rotational, vibrational and			
	molecules. Qualitative MO	Raman spectra of molecules.			
	theory and its application to AH_2	(A)			
	type molecules.	CSO 2.9: To give an			
	type morecules.	introduction to electronic			
		transitions, Frank-Condon			
		principle, dissociation and			
		electronic spectra of molecule.			
		(U,K)			
UNIT 3	Interaction of electromagnetic	CSO 3.1: To learn about the	8	18	
Molecular	radiation with molecules and	selection rule for infrared-	U	10	
Spectroscopy.	various types of spectra; Born-	active transitions.(K)			
speciroscopy.	Oppenheimer approximation.	CSO 3.2: To Determine the			
	Rotation spectroscopy: Selection	vibrations for a triatomic			
	round specific py. Selection				

	rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution. Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration, concept of group frequencies. Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.	molecule and identify whether they are infrared-active. (A) CSO 3.3: To Justify the difference in intensity between Stokes and anti-Stokes lines. (A) CSO 3.4: To learn about symmetry elements and symmetry operations. (U) CSO 3.5: To learn about the Application of group theory i.e. Hybridization. (U,A) CSO 3.6: To determine the vibrations for a triatomic molecule and identify whether they are infrared-active. (A) CSO 3.7: To determine whether the molecular vibrations of a triatomic molecule are Raman active. (A) CSO 3.8: To explain the difference between Stokes and anti-Stokes lines in a Raman spectrum. (U) CSO 3.9: To Justify the difference in intensity between Stokes and anti-Stokes lines. (U)			
UNIT 4 Raman spectroscopy	Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti- Stokes lines; their intensity difference, rule of mutual exclusion. Electronic spectroscopy: Franck- Condon principle, electronic transitions, singlet and triplet states, fluorescence and phosphorescence, dissociation and predissociation, calculation of electronic transitions of polyenes using free electron model.	CSO 4.1: To Explain basic principles of IR spectroscopy. (K) CSO 4.2: To explain working principles and taking spectrum of IR spectroscopy device. (U) CSO 4.3: To explain basic principles of atomic absorption spectroscopy. (K) CSO 4.4:To explain the rotational, vibrational, electronic and Raman spectra of molecules and their applications. (U)	8	18	
UNIT 5 Nuclear Magnetic Resonance (NMR) spectroscopy I	Principles of NMR spectroscopy, Larmor precession, chemical shift and low resolution spectra, different scales, spin-spin coupling and high resolution spectra, interpretation of PMR spectra of organic molecules.	CSO 5.1: To interpret NMR spectroscopy. (K) CSO 5.2: To explain basic principles of NMR spectroscopy. (U) CSO 5.3: To explain sample preparation procedure in NMR spectroscopy. (U)	6	16	

Electron Spin Resonance (ESR)	CSO 5.4: To explain working		
spectroscopy: Its principle,	principles, taking spectrum		
hyperfine structure, ESR of	and outline of NMR		
simple radicals.	spectroscopy device. (K,U)		

- 1. C. N. Banwell, &E. M. McCash, *Fundamentals of Molecular Spectroscopy 4th Ed.*, Tata McGraw-Hill: New Delhi, 2006.
- 2. A. K. Chandra, Introductory Quantum Chemistry, Tata McGraw-Hill, 2001.
- 3. J. E. House, Fundamentals of Quantum Chemistry, 2nd Ed. Elsevier, USA, 2004.
- 4. R. Kakkar, *Atomic & Molecular Spectroscopy: Concepts & Applications*, Cambridge University Press, 2015.
- 5. J. P. Lowe, &K. Peterson, *Quantum Chemistry*, Academic Press, 2005.

Practical:

Name of the Paper: Physical Chemistry-V Paper Code: CHC-6.1 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Colorimetry:

1. Verify Lambert-Beer's law and determine the concentration of CuSO4/KMnO4/K2Cr2O7 in a solution of unknown concentration.

2. Determine the concentrations of KMnO4 and K2Cr2O7 in a mixture.

3. Study the kinetics of iodination of propanone in acidic medium.

4. Determine the amount of iron present in a sample using 1, 10-phenanthroline.

5. Determine the dissociation constant of an indicator (phenolphthalein).

6. Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium hydroxide.

Spectrophotometry:

1. Study the 200-500 nm absorbance spectra of KMnO4 and K2Cr2O7 (in 0.1 M H2SO4) and determine the λ max values. Calculate the energies of the two transitions in different units (kJ molecule-1, kJ mol-1,cm-1, eV).

2. Study the pH-dependence of the UV-Vis spectrum (200-500 nm) of K2Cr2O7.

3. Record the 200-350 nm UV spectra of the given compounds (acetone, acetaldehyde, 2-propanol, acetic acid) in water. Comment on the effect of structure on the UV spectra of organic compounds.

4. Analysis of the given vibration-rotation spectrum of HCl (g)

- 1. B. D. Khosla, V. C. Garg& A. Gulati, Practical Physical Chemistry, R. Chand & Co. New Delhi, 2011.
- 2. C. W. Garland, J. W. Nibler&D. P. Shoemaker, *Experiments in Physical Chemistry 8th Ed*.McGraw-Hill: New York, 2003.
- 3. A. M. Halpern, &G. C.McBane, *Experimental Physical Chemistry 3rd Ed.*, W.H. Freeman & Co. New York, 2003.

NAME OF THE PAPER (CODE) : ORGANIC CHEMISTRY-V (CHC-6.2)

Number of Credit03Number of Hours of Lecture45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper-**Organic Chemistry-V:**

CO 1:	Demonstrate a good understanding of the electromagnetic spectrum and how this can be applied to				
	the study of chemical molecules.				
CO 2:	Interpret NMR spectra of simple organic molecules.				
CO 3:	Identify the absorption frequencies of major functional groups, and use this knowledge to interpret IR and UV-Vis spectra of simple organic molecule.				
CO 4:	Describe the different types of simple and complex carbohydrates and the functions of carbohydrates in the body				
CO 5:	Describe the difference between natural and synthetic dyes and its uses.				

Unit& Title	Unit Contents	Course Specific Objectives	Lectures Hours	Marks	LOs
UNIT 1 Organic Spectroscopy	UV Spectroscopy: Types of electronic transitions, λ max, Chromophores and Auxochromes, Batho-chromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward Rules for calculation of λ max for the following systems: α , β unsaturated aldehydes, ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated sys-tems (aldehydes, ketones and dienes); distinction between cis and trans isomers.	CSO 1.1: To learn the technique to interpret UV- Visible spectroscopy. (A) CSO 1.2: To explain the different shift that occurs in UV spectroscopy. (U) CSO 1.3: To Explain basic principles of UV-Visible spectroscopy. (U) CSO 1.4: To Explain relevant terms of UV-Visible spectroscopy.(U) CSO 1.5: To explain working principle, taking spectra and outline of UV spectroscopy device. (A) CSO 1.6: To give the principles and applications of UV-Visible spectroscopy in elucidating the structure of organic compounds. (U,A)	8	18	
UNIT 2 IR Spectroscopy	Fundamental and non- fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions;	CSO 2.1: To Explain basic principles of IR spectroscopy. (K) CSO 2.2: To explain working principles and taking spectrum of IR spectroscopy device. (U) CSO 2.3: To explain basic	6	16	

	Fingerprint region and its	principles of atomic			
	significance; application in	absorption spectroscopy. (K)			
	functional group analysis.	CSO 2.4: To give Use the			
		technique of infrared			
		spectroscopy to establish			
		which functional groups are			
		present in an unknown			
		organic molecule. (A)			
		CSO 2.5: To Predict how an			
		infrared vibrational			
		frequency will change			
		depending on the analyte			
		structure. (A)			
		CSO 2.6: Illustrate the			
		principle and applications of			
		IR spectroscopy in			
		elucidating the structure of			
		organic compounds. (K)			
UNIT 3	Basic principles of Proton	CSO 3.1: Apply the	8	18	
NMR	Magnetic Resonance, chemical	techniques of 1H and 13C			
Spectroscopy	shift and factors influ-encing it;	nuclear magnetic			
	Spin – Spin coupling and	spectroscopy to aid in the			
	coupling constant; Anisotropic	elucidation of molecular			
	effects in alkene, alkyne, alde-	structures. (A)			
	hydes and aromatics,	CSO 3.2: To interpret 2D			
	Interpretation of NMR spectra of	NMR spectra, including			
	simple compounds.	COSY, NOESY, HSQC, and			
	Applications of IR,UV and	HMBC. (U)			
	NMR for identification of simple	CSO 3.3: To Utilize two-			
	organic molecules.	dimensional NMR to solve			
		the atom connectivity and			
		stereochemistry (i.e.,			
		structures) of complex			
		organic molecules. (U,A)			
		CSO 3.4: To describe the			
		basic principle and			
		applications of NMR			
		spectroscopy in elucidating			
		the structure of organic			
		compounds.(K)			
UNIT 4	Occurrence, classification and	CSO 4.1: To define	15	30	
Carbohydrates	biological importance of	carbohydrates. (K)			
	carbohydrate. Monosaccharides:	CSO 4.2: To explain the			
	Constitution and absolute	difference between simple			
	configuration of glucose and	and complex carbohydrates.			
	fructose, epimers and anomers,	(U)			
	mutarotation, determination of	CSO 4.3: To discuss the			
	ring size of glucose and fructose,	benefits of simple			
	Haworth projections and	carbohydrates and			
	conformational structures;	disadvantages of complex			
	Interconversions of aldoses and	carbohydrates. (K,U)			
	ketoses; Killiani-Fischer				
	synthesis and Ruff degradation;	CSO 4.4: Structural			
	Disaccharides – Structure	representation of alpha and			

	elucidation of maltose, lactose and sucrose. Polysaccharides – Elementary treatment of starch, cellulose and glycogen.	beta glucose.(A) CSO 4.5: Formation of alpha and beta glycosidic linkages in diasaccharides and polysaccharide. (U)			
UNIT 5 Dyes	Classification, Colour and constitution; Mordant and Vat Dyes; Chemistry of dyeing; Synthesis and applications of: Azo dyes – Methyl Orange and Congo Red (mechanism of Diazo Coupling); Triphenyl Methane Dyes -Malachite Green, Rosaniline and Crystal Violet; Phthalein Dyes – Phenolphthalein and Fluorescein; Natural dyes – structure elucidation and synthesis of Alizarin and Indigotin; Edible Dyes with examples.	CSO 5.1: TO Know about the historical background of dyes. (K) CSO 5.2: To Understand the basis of dye selection. (U) CSO 5.3: To Classify dyes on the basis of their origin. (K) CSO 5.4: To study the concept of dyes, its property and nomenclature dyes. (U) CSO 5.5: To study the concept of natural and synthetic dyes. (K) CSO 5.6: To familiarize the students with structure elucidation and synthesis of Alizarin and Indigotin. (A)	8	18	

- 1. P. S. Kalsi, Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd. Pub., 2000.
- 2. R.T.Morrison& R.N. Boyd, Organic Chemistry 7th Ed., Dorling Kindersley, Pvt. Ltd., Pearson Education, India, 2010
- 3. V. R. Gowariker, N. V. Viswanathan&J. Sreedhar, *Polymer Science.*, New Age International (P) Ltd. Pub. 1986.
- 4. I. L. Finar, Organic ChemistryVolume 2: Stereochemistry and the Chemistry of Natural Products, Dorling Kindersley Pvt. Ltd., Pearson Education, India. 1956
- 5. T.W. G. Solomons, Organic Chemistry, John Wiley & Sons, 2017.
- 6. J.E. McMurry, Fundamentals of Organic Chemistry, 7th Ed., Cengage Learning India Edition, 2013.
- 7. J. Clayden, N.Greeves, S. Warren, &S.Wothers, Organic Chemistry, Oxford University Press. 2014.
- 8. J. Singh, S.M. Ali, &J. Singh, Natural Product Chemistry, PrajatiPrakashan, 2010.
- 9. W. Kemp, Organic Spectroscopy, Palgrave, 1991.
- 10. D. L. Pavia, Introduction to Spectroscopy 5th Ed., Cengage Learning India Ed., 2015.

Practical:

Name of the Paper: Organic Chemistry-V Paper Code: CHC-6.2 P Number of Credits: 01 Number ofHours of Lecture: 30 Lectures

- 1. Extraction of caffeine from tea leaves.
- 2. Preparation of sodium polyacrylate.
- 3. Preparation of urea formaldehyde.
- 4. Analysis of Carbohydrate: aldoses and ketoses, reducing and non-reducing sugars.

5. Qualitative analysis of unknown organic compounds containing monofunctional groups (carbohydrates, aryl halides, aromatic hydrocarbons, nitro compounds, amines and amides) and simple bifunctional groups, for e.g. salicylic acid, cinnamic acid, nitrophenols, etc.

6. Identification of simple organic compounds by IR spectroscopy and NMR spectroscopy (Spectra to be provided).

Suggested Readings:

- 1. A.I. Vogel, *Quantitative Organic AnalysisPart 3*, Pearson, 2012.
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education, 2009.
- 3. B.S. Furniss, A.J. Hannaford, P.W.G. Smith &A.R. Tatchell, *Practical OrganicChemistry*, 5th *Ed.*, Pearson, 2012.
- 4. V.K. Ahluwalia&R. Aggarwal, *Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis*, University Press, 2000.
- 5. V.K. Ahluwalia, &S. Dhingra, *Comprehensive Practical Organic Chemistry: Qualitative Analysis*, University Press, 2000.

NAME OF THE PAPER (CODE)	: GREEN CHEMISTRY (CHC-6.3)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper- Green Chemistry:

CO 1:	General introduction to Green Chemistry.
CO 2:	Understand the twelve principles of green chemistry and will build the basic understanding of toxicity, hazard and risk of chemical substances.Understand stoichiometric calculations and relate them to green chemistry metrics. They will learn about atom economy and how it is different from percentage yield
CO 3:	Learn to design safer chemical, products and processes that are less toxic, than current alternatives. Hence, they will understand the meaning of inherently safer design for accident prevention and the principle "what you don't have can't harm you". Understand benefits of use of catalyst and bio catalyst, use of renewable feed stock which helps in energy efficiency and protection of the environment, renewable energy sources, and importance led reactions in various green solvents.
CO 4:	Appreciate the use of green chemistry in problem solving skills, critical thinking and valuable skills to innovate and find out solution to environmental problems. Thus the students are able to realise that chemistry can be used to solve rather than cause environmental problems
CO 5:	To make student well aware of the future trend of Green Chemistry.

Unit & Title	Unit Contents	Course Specific Objectives	Lectures Hours	Marks	LOs
UNIT 1	What is Green Chemistry?	CSO 1.1: To learn about the	5	12	
Introduction	Some important	meaning, principles and			
to Green	environmental laws,	importance of Green			
Chemistry	pollution prevention Act of	Chemistry. (K)			
	1990, emergenceof green	CSO 1.2: To provide			
	chemistry, Need for Green	knowledge on green and			

			1	1	
	Chemistry. Goals of Green	sustainable chemistry, and			
	Chemistry, Limitations/	introduces the learners to			
	Obstacles in the pursuitof	various tools and principle of			
	the goals of Green	green chemistry. (U)			
	Chemistry	CSO 1.3: To describe classes			
	-	of the most important			
		chemicals (both organic and			
		inorganic) that are			
		hazardous/dangerous for			
		human and animal health,			
		and the environment			
		. (U)			
UNIT 2	Twelve principles of Green	CSO 2.1: Knowing the 12	20	36	
Principles of	Chemistry and their	principles of Green	20	50	
Green	-	1 1			
	explanation with examples	Chemistry. (K) CSO 2.2: To understand how			
Chemistry	Special emphasis on the				
and Designing a	following:	green synthetic processes may			
Designing a	• Prevention of Waste/ by	be designed for different			
Chemical	products; maximum	chemicals. (U)			
synthesis	incorporation of the	CSO 2.3: TO			
	materials used in the process	identifythegreener solvents			
	into thefinal products,	and recycling of these			
	Environmental impact	including catalysts. (U)			
	factor, waste or pollution	CSO 2.4: To Calculate the			
	prevention hierarchy	atomic efficiency and E-			
	• Green metrics to assess	factors of chemical reactions			
	greenness of a reaction, e.g.	and processes. (A)			
	Atom Economy, calculation	CSO 2.5: To apply the			
	of atom economy of the	principles for Green			
	rearrangement, addition,	Chemistry in order to make a			
	substitution and elimination	life cycle assessment for a			
	reactions.	chemical product including			
	Prevention/ minimization	waste treatment			
	of hazardous/ toxic products	(degradation/recycling). (A)			
	reducing toxicity	CSO 2.6: To compare actual			
	• Risk = (function) hazard x	industrial chemical			
	exposure	syntheses/processes and			
	• Designing safer chemicals	identify their strengths and			
	with minimum toxicity yet	weaknesses in a green			
	has the ability to perform	chemistry perspective			
	the desired functions	CSO 2.7: Explain how to			
	• Green solvents: super	design a greener and safer			
	critical fluids with special	method of synthesis rather than			
	reference to carbon dioxide,	those that cause pollution. (U)			
	water as a solvent	CSO 2.8: To make student			
	fororganic reactions, ionic	aware of how to use a green			
	liquids, fluorous biphasic	solvent. (U)			
	solvent, PEG, solventless	CSO 2.9 : knowledge on			
	processes, solventsobtained	Environmental work place			
	from renewable resources	conditions with the emphasis			
	and how to compare	on chemical compounds. (K)			
	greenness of solvents	CSO 2.10: Waste treatment.			
	Energy requirements for	(K)			
	reactions – alternative	CSO 2.11: The role of Green			
	reactions – alternative				

sources of energy: use of microwaves, ultrasonicenergy and	Chemistry in large scale production of organic chemicals		
photochemical energy	(catalysis/biocatalysis,		
Selection of starting	selection of raw materials		
materials; should be	and solvents/process		
renewable rather than	evaluation). (U)		
depleting, Illustrate with	CSO 2.12 : Learn the		
few examplessuch as	Production of biofuels. (A)		
biodiesel and polymers from	CSO 2.13 : Product		
renewable resources (such	evaluation		
as green plastic)	(biodegradeability/toxicity/re		
• Avoidance of unnecessary	cycleability). (U)		
derivatization – careful use	CSO 2.14: Learn about		
of blocking/protecting	Biorefinery processeses. (U)		
groups			
• Use of catalytic reagents			
(wherever possible) in			
preference to stoichiometric			
reagents; catalysis andgreen			
chemistry, comparison of			
heterogeneous and			
homogeneous catalysis,			
biocatalysis,			
asymmetric catalysis and			
photocatalysis.			
• Design for degradation: A			
product should not persist after the commercial			
function is over e.g.			
soapsand detergents,			
pesticides and polymers			
• Strengthening/			
development of analytical			
techniques to prevent and			
minimize the generation			
ofhazardous substances in			
chemical processes.			
 Prevention of chemical 			
accidents designing greener			
processes, inherent safer			
design, principle of			
ISD"What you don't have			
cannot harm you", greener			
alternative to Bhopal Gas			
Tragedy (safer route			
tocarcarbaryl) and Flixiborough accident (safer			
route to cyclohexanol)			
subdivision of ISD,			
minimization, simplification,			
substitution, moderation and			
limitation.			

UNIT 3 Examples of Green• Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetateCSO 3.1: To study the greener reaction process of some of the organic compound. (A)718UNIT 3 reaction process of some of the organic compound. (A)18	
Green adipic acid, catechol, organic compound. (A)	
Synthesis/ disodium iminodiacetate CSO 3.2: To study the green	
Reactions(alternative toStreckerReagents. (K)	
synthesis). CSO 3.3: To explain how the	
Green Reagents: Non- Microwave assisted solvent	
phosgene Isocyanate free synthesis are much better	
Synthesis, Selective than the convention process.	
Methylation using (U,A)	
dimethylcarbonate. CSO 3.4: to study the synthetic	
Microwave assisted process using the Ultrasound	
solvent free synthesis of assisted reactions. (U,A)	
copper phthalocyanine	
Microwave assisted	
reactions in water: Hofmann	
Elimination, methyl	
benzoate to benzoic acid	
andDecarboxylation	
reaction	
Ultrasound assisted	
reactions: sonochemical	
Simmons-Smith Reaction	
(Ultrasonic alternative to	
Iodine)	
Toume)	
UNIT 4 • Surfactants for Carbon CSO 4.1: To explain Real- 7 18	
Real WorldDioxide – replacing smogworld Cases in green10	
Case Studies producing and ozone world Cases in green	
Based on the depleting solvents with CO2 replacement of toxic chemicals	
1 0 1	
Presidential forprecision cleaning and with environment friendly	
Green dry cleaning of garments. green compounds and benefits	
Chemistry • A new generation of of utilizing concept of green	
Awards of environmentally advanced chemistry for designing	
EPA wood preservatives: Getting chemicals and processes for	
the chromium and Arsenic manufacturing chemicals. (U)	
outof pressure treated wood. CSO 4.2: To compare actual	
• An efficient, green industrial chemical	
synthesis of a compostable syntheses/processes and	
and widely applicable identify their strengths and	
plastic (polylactic acid) weaknesses in a green	
made fromcorn. chemistry perspective. (A)	
• Healthier Fats and oils by CSO 4.3: Learn how to	
Green Chemistry: correctly use the knowledge	
Enzymatic Inter acquired for the identification	
esterification for production of environmental problems	
of No Trans-Fatsand Oils. related to a synthesis	
• Development of Fully conducted in the laboratory and	
Recyclable Carpet: Cradle on an industrial scale. (A)	
to Cradle Carpeting. CSO 4.4: Learn how to apply	
• Using a naturally the knowledge acquired in	
occurring protein to discriminating advantages and	
stimulate plant growth, problems in the use of plastics	
improve crop quality, and bioplastics. (U)	

	increase yields, and suppress disease.				
UNIT 5 Future Trends in Green Chemistry	Oxidation reagents and catalysts; Biomimcry and green chemistry, Biomimetic, Multifunctional Reagents;mechanochemical and solvent free synthesis of inorganic complexes; co crystal controlled solid state synthesis(C2S3); Green chemistry in sustainable development.	CSO 5.1: To know about the future trends in Green Chemistry. (K) CSO 5.2: To learn how Green chemistry has the potential to reduce the carbon footprint on the environment by enhancements in solvent technologies, catalysis, and synthetic efficiency. (U) CSO 5.3: To explain Green chemistry as sustainable development. (U)	6	16	

1. P.T. Anastas & J.C. Warner, Green Chemistry, Theory and Practice, Oxford University Press, 1998.

2. M. Lancaster, *Green Chemistry an Introductory Text 2ndEd.*, RSC Publishing, 2016.

3. M. C. Cann&M. E. Connely, *Real-World cases in Green Chemistry*, American Chemical Society, Washingto, 2000.

4. A.S. Matlack, Introduction to Green Chemistry, Marcel Dekker, 2001.

5. V. K. Alhuwalia&M. R., Kidwai, New Trends in Green chemistry, Anamalaya Publishers, 2005.

Practical:

Name of the Paper: Green Chemistry Paper Code: CHC-6.3 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Characterization by m. pt., U.V.-Visible spectroscopy, IR spectroscopy, and any other specific method shouldbe done (wherever applicable).

Safer starting materials

1. Preparation and characterization of nanoparticles of gold using tea leaves/silver nanoparticles using plantextracts.

Using renewable resources

2. Preparation of biodiesel from waste cooking oiland characterization (TLC, pH, Solubility, Combustion Test, Density, Viscosity, Gel Formation at Low Temperature and IR can be provided).

Use of enzymes as catalysts

3. Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide.

Alternative green solvents

4. Extraction of D-limonene from orange peel using liquid CO2 prepared form dry ice.

5. Mechanochemical solvent free, solid-solid synthesis of azomethine using p- toluidine and o-vanillin/pvanillin(various other combinations of primary amine and aldehyde can also be tried).

Alternative sources of energy

6. Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper(II).

7. Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reducing waste

8. Designing and conducting an experiment by utilizing the products and by products obtained in above preparations which become waste otherwise if not used. This is done by critical thinking and literature survey.

Some representative examples:

- Use of nanoparticles as catalyst for a reaction
- Benzoin converted into Benzil and Benzil into Benzilic acid by a green method
- Use of azomethine for complex formation
- Rearrangement reaction from Benzopinacol to Benzopinacolone
- Conversion of byproduct of biodiesel to a useful product

• Students should be taught to do spot tests for qualitative inorganic analysis for cations and anions, and qualitative organic analysis for preliminary test and functional group analysis.

Suggested Readings: Practical

1. M. Kirchoff & M.A. Ryan, *Greener approaches to undergraduate chemistry experiment*, AmericanChemical Society, Washington DC,2002.

2. R.K. Sharma, I.T. Sidhwani&M.K. Chaudhari, *Green Chemistry Experiments: A monograph*, I.K.International Publishing House Pvt Ltd. New Delhi, 2013.

3. D.L. Pavia, G.H.B Lamponam& G.S.W. Kriz, *Introduction to organic Laboratory Technique-A Microscale approach* 4th *Ed.*, Brrooks-Cole Laboratory Series for Organic chemistry,2006.

4. Sidhwani, Wealth from Waste: A green method to produce biodiesel from waste cooking oil and generation of useful products from waste further generated. Indu Tucker University of Delhi, Journal of Undergraduate Research and Innovation, Volume 1, 2015.

5. Sidhwani, I. Tucker&S. Chowdhury, *Greener alternatives to Qualitative Analysis for Cations withoutH2S and other sulfur containing compounds*, J. Chem. Educ. 85, 1099,2008.

6. Sidhwani, I. Tucker &S. Chowdhury, *DU Journal of Undergraduate Research and Innovation*, *Volume 2, Issue 2*, 70-79.2016.

NAME OF THE PAPER (CODE)	: SPECTROSCOPY (CHC-6.4)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (Cos) for the paper-Spectroscopy:

CO 1:	Interpret various types of spectra and know about their application in structure elucidation
CO 2:	Explore new areas of research in both chemistry and allied fields of science andtechnology
CO 3:	Determine the structure of organic molecules using UV, IR and NMR spectroscopic techniques.
CO 4:	Explain different type's spectroscopy
CO 5:	Understand the mass spectroscopy and their reactions.

Unit & Title	Unit Contents	Course Specific Objectives (CSOs)	Lectures Hours	Marks	LOs
UNIT 1 UV-Visible Spectroscopy	Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selectionrules. Types of electronic transitions, λ max, Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption;	CSO 1.1: To learn the technique to interpret UV- Visible spectroscopy. (A) CSO 1.2: To Explain basic principles of UV-Visible spectroscopy. (U) CSO 1.3: To Explain relevant terms of UV-Visible spectroscopy.(U)	9	20	
	application of Woodward Rules for calculation of λ max for the conjugated dienes: alicyclic, homoannular and heteroannular; extended conjugated systems distinction between cis and trans isomers (Cis and trans stilbene).	CSO 1.4: To explain working principle, taking spectra and outline of UV spectroscopy device. (A) CSO 1.5: To learn the application of Woodward Rules for calculation of λ max for the conjugated dienes. (U)			
UNIT 2 Infrared Spectroscopy: IR Spectroscopy:	Fundamental and non- fundamental molecular vibrations; Hooke's law selection rule, IR absorption positions of various functional groups (C=O, OH, NH, COOH and nitrile) , Effect of H-bonding, conjugation, resonance and ring size of cyclic ketones and lactones on IR absorptions; Fingerprint region and its significance; application in functional group analysis and interpretation of I.R. spectra of simple organic compounds.	CSO 2.1:To learn the basic of Fundamental and non- fundamental molecular vibrations. (U) CSO 2.2:To Explain Hooke's law selection rule. (U) CSO 2.3: To explain IR absorption positions of various functional groups (C=O, OH, NH, COOH and nitrile. (U) CSO 2.4: To explain basic Effect of H-bonding, conjugation, resonance and ring size of cyclic ketones and lactones on IR absorptions.	9	20	

UNIT 3 ¹ H-NMR Spectroscopy (PMR)	Identification of the Carbonyl group in Ketones, Aldehydes, Carboxylic acids, Esters and Amides using IR Spectroscopy introduction; nuclear spin; NMR active molecules; basic principles of Proton Magnetic Resonance; choice of solvent and internal standard; equivalent and non-equivalent protons; chemical shift and factors influencing it; ring current effect; significance of the terms: up-/downfield, shielded and deshielded protons; spin coupling and coupling constant (1st order spectra); relative intensities of first-order multiplets: Pascal's triangle; chemical and magnetic equivalence in NMR ;anisotropic effects in alkene, alkyne, aldehydes and aromatics; NMR peak area, integration; relative peak positions with coupling patterns of common organic compounds; interpretation of NMR spectra of simple compounds.	 (K) CSO 2.5: To explain the fingerprint region and its significance; application in functional group analysis and interpretation of I.R. spectra of simple organic compounds. (A) CSO 2.6: To Identification of the Carbonyl group in Ketones, Aldehydes, Carboxylic acids, Esters and Amides using IR Spectroscopy. (A) CSO 3.1: To give the introduction on NMR.(K) CSO 3.2: To give the basic principle of Proton Magnetic Resonance. (K) CSO 3.3: Apply the techniques of 1H nuclear magnetic spectroscopy to aid in the elucidation of molecular structures. (A) CSO 3.4: To describe the basic principle and applications of NMR spectroscopy in elucidating the structure of organic compounds.(K.A) CSO 3.5: To interpret NMR spectra of simple compounds. (A) 	14	26
UNIT 4 Applications of Different Spectroscopy	IR, UV and NMR spectroscopy for identification of simple organic molecules such as Ethanol, Ethyl acetate, acetone, acetaldehyde, dimethyllformamide, Cis and trans 1,2-dimethyl cyclopropanone, propene, vinyl chloride, acetophenone, benzaldehyde, phenol, Toluene andethyl benzene.	CSO 4.1: To Identify different organic compound using IR, UV and NMR spectroscopy. (A) CSO 4.2: To explain how to characterized the given organic compounds such as Ethanol, Ethyl acetate, acetone, acetaldehyde, dimethyllformamide, etc. using the different spectroscopic technique. (A)	6	16
UNIT 5	Principle of mass spectrometry,	CSO 5.1: To give the	7	18

Introduction to Mass Spectrometry	the mass spectrum, mass spectrometry diagram, molecular ion, metastable ion, fragmentation process, McLafferty rearrangement.	Principle of mass spectrometry. (K) CSO 5.2: To explain how the mass of compound can be analysed using mass spectrometry. (U) CSO 5 3: To explain the		
		CSO 5.3: To explain the McLafferty rearrangement. (U)		

- 1. J.E. McMurry, Fundamentals of Organic Chemistry, 7th Ed., Cengage Learning India Edition, 2013.
- 2. J. Clayden, N. Greeves, S. Warren, & S.Wothers, Organic Chemistry, Oxford University Press. 2014.
- 3. J. Singh, S.M. Ali, & J. Singh, Natural Product Chemistry, PrajatiPrakashan, 2010.
- 4. W. Kemp, Organic Spectroscopy, Palgrave, 1991.
- 5. D. L. Pavia, Introduction to Spectroscopy 5th Ed., Cengage Learning India Ed., 2015.

Practical:

Name of the Paper: Spectroscopy Paper Code: CHC-6.4 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

1. Spectrophotometry

To verify Beer – Lambert Law for KMnO4/K2Cr2O7 and determining the Concentration of the given solution of the substance from absorption measurement Determination of pKa values of indicator using spectrophotometry. Determination of chemical oxygen demand

(COD).

Determination of Biological oxygen demand (BOD).

2. Spectroscopy

Assignment of labelled peaks in the IR spectrum of the same compound explaining the relative frequencies of the absorptions (C-H, O-H, N-H,C-O, C-N, C-X, C=C, C=O, N=O, C=C, C=N stretching frequencies; characteristic bending vibrations are included. Spectra to be provided). Assignment of labelled peaks in the 1H NMR spectra of the known organic compounds explaining the relative δ -values and splitting pattern. Identification of simple organic compounds by IR spectroscopy and NMR spectroscopy (Spectra to be provided).

- 1. A.I. Vogel, *Quantitative Organic AnalysisPart 3*, Pearson, 2012.
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education, 2009.
- 3. V.K. Ahluwalia&R. Aggarwal, *Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis*, University Press, 2000.

SEMESTER

NAME OF THE PAPER (CODE)	: CHEMISTRY OF FOOD NUTRIENTS (CHC-7.1)
Number of credit	03
Number of Hours of Lecture	: 45

COURSE OBJECTIVES (COs)

The follow	ving are the Course Objective (COs) for the paper-Chemistry of Food Nutrients:
CO 1:	To make the students understand the basic knowledge of Carbohydrates and their classifications
	and its chemical reactions and role in the food processing.
CO 2:	To outline Lipids sources. Classify lipids based on its properties. Calculate its different value in
	various classes of fats and oils.
CO 3:	To state its sources, classify Proteins and elaborate its structure and different physical and chemical
	properties of Proteins.
CO 4:	To list out different types of Vitamins based on its compositions.
CO 5:	To differentiate Minerals based on its existence, its importanceandsome of the reactions and changes
	in individual food components which occur during processing, handling and storage

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(SCOs)	Hours		
UNIT I	Introduction, sources,	CSO 1.1: To define the Term	10	22	
Carbohydrates	functions, classification:	Carbohydrates and briefly			
	monosaccharide,	discuss its term and Classify			
	oligosaccharide and	them.(K)			
	polysaccharide, structure	CSO 1.2: To elaborate the			
	and importance of	strucuture of Polysaccharides			
	polysaccharides in food	and outline its importance in			
	chemistry (pectin,	food Chemistry i.e.			
	cellulose, starch, gums),	pectin,cellulose,starch&			
	chemical reactions of	gums.			
	sugar: mutarotation,	CSO 1.3: To discuss the			
	caramelisation; non	chemical reactions of sugar			
	enzymatic browning and its	i.e. Mutarotaion.			
	prevention, role of	CSO 1.4: To discuss the			
	carbohydrates as	chemical reactions of			
	sweeteners in food.	carmelisation.			
		CSO 1.5: To discuss the			
		chemical reactions of Non			
		enzymatic browning			
		compound formation and its			
		prevention.			
		CSO 1.6: To illustrate the role			
		of carbohydrates as sweeteners in food.			
UNIT 2	Introduction sources		12	26	
	Introduction, sources,	CSO 2.1: To define the term	14	26	
Lipids	classification (fatty acids,	Lipds and classify them with			
	phospholipids, fats & oils,	their properties into Fatty			
	waxes), Common fatty	acids, Phospholipids, fats &			
	acids present in oils and	Oils and waxes. (K)			
	fats,omega-3 & 6 fatty	CSO 2.2: To understand the			
	acids, trans fats, chemical	common fatty acids present in			
	properties-Reichert Meissl	oils, fats and Omega-3 (U)			
	value, Polenske value,	CSO 2.3: To evaluate 6 fatty			

				<u>г</u>	
	Peroxide value, Saponification value, effect	acids,trans fats and study its chemical properties.(A)			
	of frying on fats, changes in	CSO 2.4: To define Reichert			
	fats and oils-randicity,	Meissl value (K)			
	lipolysis, flavour reversion,	CSO 2.5: To analyse Reichert			
	auto-oxidation denaturation	Meissl value.(A)			
		CSO 2.6: To define Polenske			
		value.(K)			
		CSO 2.7: To explain Polenske value (U).			
		CSO 2.8: To define Peroxide			
		value and Saponification			
		value.(K)			
		CSO 2.9: To explain Peroxide			
		value and Saponification			
		value.(U)			
		CSO 2.10: To explain effect			
		of frying on fats with changes			
		in fats.(U) CSO 2.11: To explain oi-			
		randacity.(U)			
		CSO 2.12: To explain the			
		process lipolysis.(U)			
		CSO 2.13: To explain			
		Falvour reversion.(U)			
		CSO 2.14: T analyse the			
		auto-oxidation denaturation.(A)			
UNIT 3	Introduction, sources,	CSO 3.1 : To define	10	22	
Proteins	Classification	Protein.(K)			
	(simple,conjugated,derived)	CSO 3.2: To understand the			
	structure of	basics of protein, their source			
	protein(primary, secondary	of origin.(U)			
	and tertiary) physio-	CSO 3.3: To classify Proteins			
	chemical & functional	into primary, secondary and			
1	nronerties of	tertiary (II)			
	properties of proteins.protein	tertiary.(U) CSO 3.4: To analyse physio-			
	properties of proteins,protein denaturation.	tertiary.(U) CSO 3.4: To analyse physio- chemical and functional			
	proteins, protein	CSO 3.4: To analyse physio-			
	proteins, protein	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein			
	proteins,protein denaturation.	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5: To explain protein denaturation.(U)		14	
UNIT 4 Vitaming	proteins,protein denaturation. Vitamins: Introduction,	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define	6	14	
UNIT 4 Vitamins	 proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & 	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K)	6	14	
	proteins,protein denaturation. Vitamins: Introduction,	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the	6	14	
	 proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & 	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the basics of Vitamins.(U)	6	14	
	 proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & 	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the	6	14	
Vitamins	 proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & 	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the basics of Vitamins.(U) CSO 4.3:To classifyvitamins		14	
Vitamins UNIT 5	proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & water-soluble vitamins. Introduction,classification:	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the basics of Vitamins.(U) CSO 4.3:To classifyvitamins into fat-soluble and water- soluble vitamins.(U) CSO 5.1: To define the term	6 7	14	
Vitamins	proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & water-soluble vitamins. Introduction,classification: macrominerals (Ca,P,Mg)	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the basics of Vitamins.(U) CSO 4.3:To classifyvitamins into fat-soluble and water- soluble vitamins.(U) CSO 5.1: To define the term Minerals.(K)			
Vitamins UNIT 5	proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & water-soluble vitamins. Introduction,classification: macrominerals (Ca,P,Mg) & microminerals	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the basics of Vitamins.(U) CSO 4.3:To classifyvitamins into fat-soluble and water- soluble vitamins.(U) CSO 5.1: To define the term Minerals.(K) CSO 5.2: To understand the			
Vitamins UNIT 5	proteins,protein denaturation.Vitamins: Introduction, classification: fat-soluble & water-soluble vitamins.Introduction,classification: macrominerals (Ca,P,Mg) & microminerals (Se,Fe,I,Co,Zn,Cu,Se,Cr).	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the basics of Vitamins.(U) CSO 4.3:To classifyvitamins into fat-soluble and water- soluble vitamins.(U) CSO 5.1: To define the term Minerals.(K) CSO 5.2: To understand the basics of minerals and			
Vitamins UNIT 5	proteins,protein denaturation. Vitamins: Introduction, classification: fat-soluble & water-soluble vitamins. Introduction,classification: macrominerals (Ca,P,Mg) & microminerals	CSO 3.4: To analyse physio- chemical and functional properties of Proteins.(A) CSO 3.5:To explain protein denaturation.(U) CSO 4.1:To define Vitamins.(K) CSO 4.2: To understand the basics of Vitamins.(U) CSO 4.3:To classifyvitamins into fat-soluble and water- soluble vitamins.(U) CSO 5.1: To define the term Minerals.(K) CSO 5.2: To understand the			

vitamins and minerals.	macrominerals.(U) CSO 5.3: To explain the physiological importance of vitamins and minerals.(U) CSO 5.4: To understand the effect of food processing and apply them on vitamins and minerals.(U)		
------------------------	---	--	--

- 1. J.M.deMan, J.W. Finley, W.J. Hurst, Lee, C.Y., Principles of food Chemistry, 4th Edition, Springer.2018
- 2. T.A.M. Msagati, Chemistry of food Additives and Preservatives, Wiley-Blackwell.2013.
- 3. O.R. Fennema, Food Chemistry, 5th Edition, CRC Press.2017.
- 4. M. Attokaram, Natural Food Flavors and colorants, 2nd Ed., wiley-Blackwell.2017
- 5. N.N Potter, J.H. Hotchkiss, J.H, Food Science, 5th Ed., Chapman & Hall. 1995
- 6. D.Brannen, Davidson, P.M., Salminen, T. ThorngateIII, J.H., Food Additives, 2ndEdition, CRC Press. 2002
- 7. T.M. Coultate, Food: The Chemistry of its components,6thEdn,Royal Society of Chemistry.2016
- 8. H.D. Belitz, Grosch, W., Food Chemistry, Springer. 2009
- 9. Course: FOOD CHEMISTRY. (iasri.res.in)

Practical:

Name of the Paper: Chemistry of Food Nutrients Paper Code: CHC-7.1 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

- 1. Determination of moisture in food products by hot air oven-drying method.
- 2. Colorimetric determination of Iron in Vitamin/dietary tablets.
- 3. 2,6-Dichlorophenol indophenols method for estimation of vitamin C in a given solution/lemon juice/chillies.
- 4. Estimation of total soluble sugar content by ferricyanide method (volumetric analysis).
- 5. Determination of saponification value of the given fat/oil.
- 6. Determination of iodine value of the given fat/oil.
- 7. Qualitative tests for proteins and carbohydrates.
- 8. Qualitative estimation of cholesterol by Liebermann Buchard method.

Suggested Readings:

1. S. Ranganna ,Handbook of analysis and quality control for fruits and vegetable products, 2ndEdn., McGraw Hill Education.2017

2. S.K. Sawhney, R.Singh, Introductory Practical Biochemistry, Narosa Publishing House. 2011

NAME OF THE PAPER (CODE) : RESEARCH METHODOLOGY IN CHEMISTRY (CHC-7.2)Number of Credit04Number of Hours of Lecture60

COURSE OBJECTIVES (COs)

	ving are the Course Objectives (COs) for the paper-Research Methodology in Chemistry:
CO 1:	To Demonstrate the ability to choose appropriate methods to research topics and objectives.
CO 2:	To Understand the problems and limitations of specific research methods.
CO 3:	To Develop skills in data analysis and presentations both quantitatively and qualitatively.
CO 4:	To Demonstrate enhanced writing skills and have advanced critical thinking skills.
CO 5:	To Elaborate basic fundamentals of Electronics and its applications to other instruments in digital as
	well as operational amplifiers.

Unit &	Unit Contents	Course Specific	Lecture	Marks	LOs
Title		Objectives (CSOs)	Hours		
UNIT 1 Literature	Print: Sources of	CSO 1.1: to explain sources of Information i.e. Primary,	16	26	
Survey	information: Primary,	secondary and Tertiary			
	secondary, tertiary sources;	sources.(U)			
	Journals: Journal	CSO 1.2: to define Journals.(K) CSO 1.3: To discuss the notes on			
	abbreviations, abstracts,	journal abbreviations, abstracts,			
	current titles, reviews,	Current titles, reviews, monographs,			
	monographs, dictionaries,	dictionaries, textbooks and			
	text-books, current	current contents.(U) CSO 1.4:to understand the			
	contents, Introduction to	introduction of print to chemical			
	Chemical Abstracts and	abstracts and Beilstein.(U) CSO 1.5:to understand the			
	Beilstein, Subject Index,	introduction of print to Subject			
	Substance Index, Author	index,substanceIndex,AuthorInde x,Formula index and other Indices			
	Index, Formula Index, and	by taking by arious examples.			
	other Indices with	CSO 1.6: to explain the term Web			
		sources,E-Journals.Journal			
	examples.	access.(U)			
	Digital: Web resources, E-	CSO 1.7: to explain the term TOC alerts,Hot articles. (U)			
	journals, Journal access,	CSO 1.8:to explain the term			
	TOC alerts, Hot articles,	Citation index,Impactfactor,H- Index,E-			
	Citation index, Impact	consurtium,UGCinfonet,E-			
	factor, H-index, E-	Books.(U) CSO 1.9:to explain the term			
	consortium, UGC infonet,	Internet discussion groups and			
	E-books, Internet	communities,Blogs,Preprintserver s,Search engines.(U)			
	discussion groups and	CSO 1.10: to explain the term			
	communities, Blogs,	Scirus,Googlescholar,ChemIndust ry,Wiki-			
		Databases,ChemSpider,ScienceDi			

	Preprintservers,Searchengines,Scirus,GoogleScholar,ChemIndustry,Wiki-Data-bases,ChemSpider,ScienceDirect,SciFinder,Science,Science,Direct,SciFinder,Scopus.InformationInformationTechnologyandLibraryResources:TheTheInternetresourcesforchemistry.Findingandcitingpublishedinformation.	CSO 1.11:to understand the basic term Internet.(U) CSO 1.12:to explain the Terms Internet and World Wide Web.;(U) CSO 1.13:to elaborate the Internet resources for Chemistry. (A) CSO 1.14:to analyse the finding and citing published information.(A)		
UNIT 2 Methods of Scientific Research and Writing Scientific Papers.	Reporting practical and project work. Writing literature surveys and reviews. Organizing a poster display. Giving an oral presentation. Writing scientific papers – justification for scientific contributions,bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work. Writing ethics. Avoiding plagiarism.	project work.(K) CSO 2.2: to write literature surveys and reviews. CSO 2.3: to understand on how to organize a poster display. To discuss on giving an oral presentation.(U) CSO 2.4: to write scientific papers and present justification for scientific contributions.(U) CSO 2.5: to discuss the term Bibliography, description of methods and conclusions of paper writing.(U) CSO 2.6: to understand the need for illustration, style, publications of scientific work. (U)	10	16
UNIT 3 Chemical Safety and Ethical Handing of Chemicals.	Safe workingprocedureandprotectiveenvironment,protectiveapparel,emergencyprocedureandfirstaid,laboratoryventilation.Safestorageanduseuseofhazardouschemicals,	CSO 3.1:to understand the procedures of safe working and protective environment,protectiveapparel,em ergencyprocedure,first aid and Laboratory ventilation.(U) CSO 3.2:to discuss on safe storage and usage of hazardous chemicals with safety precautions.(K) CSO 3.3:to explain the procedure for working with substances that	16	26

			_	[]	
	procedure for working with				
	substances that pose	explosive hazards.(U) CSO 3.4:to analyse the			
	hazards, flammable or	procedures for working with gases			
	explosive hazards,	at pressures above or below atmospheric pressure.(A)			
	procedures for working				
	with gases at pressures	safe storage and disposal of waste chemicals, recovery, recycling and			
	above or below	reuse of laboratory chemicals.(U) CSO 3.6:t o explain the procedure			
	atmospheric pressure- safe	for laboratory disposal of			
	storage and disposal of	explosives.(U)			
	waste chemicals, recovery,	CSO 3.7:t o understand the identification, verification and			
	recycling and reuse of				
	laboratory chemicals,	waste.(U) CSO 3.8:to analyse the notes on			
	procedure for laboratory	•			
	disposal of explosives,	sanitary sewer system,			
	identification, verification	incineration and transportation of hazardous chemicals.(A)			
	and segregation of				
	laboratory waste, disposal				
	of chemicals in the sanitary				
	sewer system, incineration				
	and transportation of				
	hazardous chemicals.				
UNIT 4	The Investigative	CSO 4.1: to evaluate the making	12	22	
Data Analysis	Approach: Making and	and recording measurements. CSO 4.2: to understand the notes			
	Recording Measurements.	on SI Units and their use.(U)			
	SI Units and their use.	CSO 4.3:to understand the			
	Scientific method and	application of scientific methods and design of experiments.(A)			
	design of experiments.	CSO 4.4:To understandDescriptive statistics in			
	Analysis and Presentation	data analysis. (U)			
	of Data: Descriptive	CSO 4 5 to explain on the process			
	statistics. Choosing and	tests.(U)			
	using statistical tests.	CSO 4.6: to define the term Chemometrics and discuss its			
	Chemometrics. Analysis of				
	variance (ANOVA),	CSO 4.7: to understand the term Analysis of Variance			
	Correlation and regression,	5			
		regression.(U)			
	Curve fitting, fitting of				
	Curve fitting, fitting of linear equations, simple	CSO 4.8: to explain Curve fitting,			

	linear cases, weighed linear case, analysis of residuals, General polynomial fitting, linearizing transformations, exponential function fit, <i>r</i> and its abuse. Basic aspects of multiple linear regression analysis.	linear cases, weighed linear case, analysis of residuals.(U) CSO 4.9: to explain General polynomial fitting, linearizing transformations, exponential function fit, <i>r</i> and its abuse in data processing and analysis.(U) CSO 4.10: to understand the Basic aspects of multiple linear regression analysis.(U)			
UNIT 5 Electronics	Basic fundamentals of electronic circuits and their components used in circuits of common instruments like spectrophotometers, typical circuits involving operational amplifiers for electrochemical instruments. Elementary aspects of digital electronics.	CSO 5.1:to define the term Electronics.(K) CSO 5.2:to understand the basic fundamentals of electronic circuits.(U) CSO 5.3:to explain the components in circuits of common instruments like spectrophotoemters. CSO 5.4:to explain the procedures and concepts of typical circuits involving operational amplifiers for electrochemical instruments.(U) CSO 5.5:to understand the concept of Elementary aspects of digital electronics.(U)	6	10	

- J.R. Dean,A.M. Jones,D. Holmes,R. Reed,J. Weyers&A. Jones, *Practical skills in chemistry*. 2nd Ed. Prentice-Hall, Harlow. 2011
- 2. D.B. Hibbert&J.J. Gooding, Data analysis for chemistry. Oxford University Press. 2006
- 3. J.Topping, Errors of observation and their treatment. Fourth Ed., Chapman Hall, London. 1984
- 4. D.C.Harris, Quantitative chemical analysis. 6th Ed., Freeman Chapters 3-5. 2007
- 5. R.de. Levie, *How to use Excel in analytical chemistry and in general scientific data analysis.* Cambridge Univ. Press 487 pages. 2001
- 6. *Chemical safety matters* IUPAC IPCS, Cambridge University Press, 1992
- 7. OSU safety manual 1.01.

VIII SEMESTER

NAME OF THE PAPER (CODE): NANOSCALE MATERIALS AND THEIR APPLICATIONS (CHC-8.1)

	(UIIC)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The follow	ving are the Course Objectives (COs) for the paper-Nanoscale Materials and their Applications:
CO 1:	To Understand the concept of nanodimensions and various nano structures.
CO 2:	To make the students know the various methods of preparation of nanomaterials and the processes involved.
CO 3:	To understand the different characterization techniques used for the analysis of nanomaterials and Understand the basic principle behind these techniques.
CO 4:	To Understand the optical and conducting properties of nanostructures.
CO 5:	To Appreciate the real life applications of nanomaterials.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours		
UNIT 1	0D, 1D, 2D nanomaterials,	CSO 1.1:to define	10	24	
Introduction to	Quantum Dots, Nanoparticles,	Nanoparticles and			
Nanodimensions	Nanostructures (nanowires,	Nanodimensions.(K)			
	thin films, nanorods), carbon	CSO 1.2: to analyse the			
	nanostructures (carbon	concept of 0D,1D,2D			
	nanotubes, carbon nanofibers,	naomaterials.(A)			
	fullerenes), Size Effects innano	CSO 1.3: to classify and			
	systems, Quantum confinement	discuss Nanostructures as			
	and its consequences,	Nanowires, thin films and			
	Semiconductors.Band structure	nanorods.			
	and bandgap.	CSO 1.4:to explain the			
		types of carbon			
		nanostructures (carbon			
		nanotubes, carbon			
		nanofibers, fullerenes.(U)			
		CSO 1.5: to explain the			
		various types of side			
		effects in Nano			
		systems.(U)			
		CSO 1.6: to analyse the			
		Quantum confinements			
		and their consequences.(A)			
		CSO 1.7: to discuss the			
		concepts of			
		Semiconductors.Band			
		structure and Bandgap.(U)			
UNIT 2	Top down and Bottom up	CSO 2.1:t o elaborate the	10	24	
Preparation of	approach, Photolithography.	Top down and Bottom up			
Nanomaterials	Ball	approach.(U)			
	milling.Vacuumdeposition.Phy	CSO 2.2:to define			
	sicalvapourdeposition (PVD),	Photolithography and			
	Chemical vapor deposition	discuss its basic			

	(CVD), Thermal decomposition, Chemical reduction, Sol-Gel synthesis, Hydrothermal synthesis, Spray pyrolysis,Electrochemical deposition, Pulsed Laserdeposition.	concepts.(K) CSO 2.3:to define terms and explain the concepts of Ball milling.Vacuumdeposition. Physicalvapourdeposition (PVD).(U) CSO 2.4:to define the terms and explain the Chemical vapor deposition (CVD), Thermal decomposition, Chemical reduction, Sol-Gel synthesis.(U) CSO 2.5:to define the terms and explain the concepts of Hydrothermal synthesis, Spray pyrolysis,Electrochemical deposition, Pulsed Laserdeposition.(U)			
UNIT 3 Characterization Techniques	(Basic working principles and interpretation of experimental data usingthese techniques need to be covered) UV-visible spectroscopy, X-ray diffraction (Powder and Single Crystal), Raman Spectroscopy, ScanningElectron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-raySpectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM),Scanning Tunneling Microscopy (STM), Dynamic light scattering (DLS), Brunauer-Emmett-Teller (BET)Surface area measurement and Thermogravimetric analysis (TG).	CSO 3.1: to state the basic concepts of UV-visible spectroscopy.(K) CSO 3.2:to define X-Ray diffraction and explain its classification Techniques Powder and Single Crystal.(U) CSO 3.3:to explain Raman Spectroscopy.(U) CSO 3.4:to define the terms ScanningElectron Microscopy (SEM), Transmission Electron Microscopy (TEM).(K) CSO 3.5:to explain the concepts,principles,experi mentation of ScanningElectron Microscopy (SEM), Transmission Electron Microscopy (SEM), Transmission Electron Microscopy (SEM), Transmission Electron Microscopy (TEM).(U) CSO 3.6:to define the terms Energy Dispersive X-raySpectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS).(K) CSO 3.7:to explain the concepts, principles,experimentation of Energy Dispersive X- raySpectroscopy (EDX),	8	16	

	T	V roy Dhotoolootror]
		X-ray Photoelectron			
		Spectroscopy (XPS).(U)			
		CSO 3.8: to define the			
		terms Atomic Force			
		Microscopy			
		(AFM),Scanning			
		Tunneling Microscopy			
		(STM).(K)			
		CSO 3.9: to explain the			
		terms,			
		principles, experimentation			
		Atomic Force Microscopy			
		(AFM),Scanning			
		Tunneling Microscopy			
		(STM).(U)			
		CSO 3.10: to deifne the			
		terms Dynamic light			
		scattering (DLS),			
		Brunauer-Emmett-Teller			
		(BET), Surface area			
		measurement.(K)			
		CSO 3.11: to explain the			
		concepts of Dynamic light			
		scattering (DLS),			
		Brunauer-Emmett-Teller			
		(BET)Surface area			
		measurement.(U)			
		CSO 3.12: to define the			
		term Thermogravimetric			
		analysis (TG).(K)			
		CSO 3.13:to explain,			
		principles, experimentation			
		Thermogravimetric			
		analysis (TG) with			
		examples and give its			
		uses.(U)			
UNIT 4	Surface plasmon resonance,	CSO 4.1:t o define the	10	24	
	1		10	24	
Optical and	Excitons in direct and indirect	term Surface Plasmon			
Conducting	band gap semiconductor	resonance.(K)			
Properties	nanocrystals.Radiative	CSO 4.2: to explain the			
	processes: General absorption,	basic concepts of Surface			
	emission and luminescence	Plasmon resonance.(U)			
	(fluorescence	CSO 4.3: to understand the			
	andphotoluminescence).Carrier	Excitons in direct and			
	transport in	indirect band gap			
	nanostructures.Tunneling and	semiconductor			
	hoping conductivity. Defects	nanocrystals.(U)			
	and impurities: Deep leveland	CSO 4.4:to define			
	surface defects.	Radiative processes.(K)			
		CSO 4.5:to explain			
		General absorption and			
		emission of Radiative			
		Processes.(U)			
		CSO 4.6: to define the			

			Γ		
		terms luminescence-			
		fluorescence			
		andphotoluminescence.(K)			
		CSO 4.7: to understand the			
		concepts of luminescence-			
		fluorescence			
		andphotoluminescence.(U)			
		CSO 4.8:to define the			
		terms Carrier transport in			
		nanostructures.Tunneling			
		and hoping conductivity.			
		CSO 4.9:to elaborate the			
		Carrier transport in			
		nanostructures.Tunneling			
		and hoping			
		conductivity.(U)			
		CSO 4.10:to identify			
		Defects and impurities:			
		Deep leveland surface			
		defects. And to discuss			
		their basic concepts.(K)			
UNIT 5	Nanomaterials as Catalysts,	CSO 5.1: to apply the	7	12	
Applications	semiconductor nanomaterials	concepts of Nanomaterials			
••	as	as Catalystsin various			
	photocatalysts, Nanocomposites	processes.(A)			
	ascatalysts. Carbon	CSO 5.2: to explain the			
	nanostructures as catalytic	phenomenon involved in			
	nanoreactors, metal and metal	semiconductor			
	oxides confined inside	nanomaterials as			
	carbonnanostructures,	photocatalysts,Nanocompo			
	Nanowires and thin films for	sitesascatalysts.Carbon			
	photonic devices (LEDs, solar	nanostructures as catalytic			
	cells, transistors).	nanoreactors.(U)			
		CSO 5.3: to explain the			
		metal and metal oxides			
		confined inside			
		carbonnanostructures.(U)			
		CSO 5.4: to define the			
		termsLEDs, solar cells,			
		transistors.(K)			
		CSO 5.5: to understand the			
		Nanowires and thin films			
		for photonic devices -			
			1		
		-			
		LEDs, solar cells, transistors.(U)			

Practical:

Name of the Paper: Nanoscale Materials and their Applications. Paper Code: CHC-8.1 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Chemistry Lab: Nanoscale materials and their applications

1. Synthesis of metal nanoparticles by chemical reduction method.

2. Synthesis of semiconductor nanoparticles.

3. Surface Plasmon study of metal nanoparticles by UV-Visible spectrophotometer.

4. XRD pattern of nanomaterials and estimation of particle size. (Students can be provided withXRD patterns of known materials and asked to interpret the data.)

5. To study the effect of size on color of nanomaterials.

6. To prepare composite of CNTs with other materials.

7. Growth of quantum dots by thermal evaporation.

8. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and studyits XRD.

9. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study

transmittance spectra in UV-Visible region.

Suggested Readings:

1. A.R.West, Solid State Chemistry and Its Application, Wiley.2014

2. L.E. Smart, E.A. Moore, Solid State Chemistry An Introduction, CRC Press Taylor & Francis.2012

3. C.N.R. Rao, J. Gopalakrishnan, New Direction in Solid State Chemistry, CambridgeUniversity Press. 1997

4. Jr.Poole, P. Charles, J. Owens, Frank, Introduction to Nanotechnology, John Wileyand Sons. 2003

5. K.K. Chattopadhyay, A.N. Banerjee, Introduction to Nanoscience and Technology,

PHI.2009

MINOR PAPERS (4 CREDITS)

Theory: 100 Marks, Practical: 50 Marks

	MINOR-1
NAME OF THE PAPER (CODE)	: INORGANIC CHEMISTRY-I(CHM-1)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (Cos) for the paper-Inorganic Chemistry-I:

CO 1:	Solve the conceptual questions using the knowledge gained by studying the quantum mechanical model of the atom, quantum numbers, electronic configuration, radial and angular distribution curves, and shapes of s, p, and d orbitals.
CO 2:	Understand the periodic trends in properties of elements.
CO 3:	Understand the concept of lattice energy through Born-Lande and equation.
CO 4:	Draw the plausible structures and geometries of molecules using radius ratio rules, VSEPR theory and MO diagrams.
CO 5:	Understand the basic concept of redox reactions.

Unit	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Review of: Bohr's theory and	CSO 1.1: to discuss the	14	25	
Atomic	its limitations, dual behaviour	setbacks of Bohr's Atomic			
Structure		Model that triggers the			
	of matter and radiation, de	development of quantum			
	Broglie's relation, Heisenberg	mechanic theory. (K) CSO 1.2:to explain the dual			
	Uncertainty principle.	behaviour of matter and			
	Hydrogen atom spectra. Need	radiation. (K)			
		CSO 1.3: to know the de			
	of a new approach to Atomic	Broglie equation, Heisenberg's			
	structure.	Uncertainty Principle and its significance. (K)			
	What is Quantum mechanics?	CSO 1.4: to derive the time			
	Time independent Schrodinger	independentSchrödinger'swave			
		equation. (A)			
	equation and meaning of	CSO 1.5: to understand the			
	various terms in it. Significance	significance of ψ and ψ 2. (U) CSO 1.6: to derive			

	of ψ and ψ 2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbitals) and their variations for 1 <i>s</i> , 2 <i>s</i> , 2 <i>p</i> , 3 <i>s</i> , 3 <i>p</i> and 3 <i>d</i> orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1 <i>s</i> and 2 <i>s</i> atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers <i>ml</i> and <i>ms</i> . Shapes of <i>s</i> , <i>p</i> and <i>d</i> atomic orbitals, nodal planes. Discovery of spin, spin quantum number (<i>s</i>) and magnetic spin quantum number (<i>ms</i>). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic	Schrödinger equation for hydrogen atom. (A) CSO 1.7:to discuss the radial and angular parts of the hydogenic wavefunctions and their variations for 1 <i>s</i> , 2 <i>s</i> , 2 <i>p</i> , 3 <i>s</i> , 3 <i>p</i> and 3 <i>d</i> orbitals. (K) CSO 1.8: to learn radial and angular distribution curves. (K) CSO 1.9: to discuss the quantum numbers (n,1,m,s) and their significance. (K) CSO 1.10: to understand the shapes of <i>s</i> , <i>p</i> and <i>d</i> atomic orbitals. (U) CSO 1.11: to know the rules for filling electrons in various orbitals, electronic configurations of the atoms. (K) CSO 1.12: to discuss the stability of half-filled and completely filled orbitals. (U) CSO 1.13: to understand the concept of exchange energy and relative energies of atomic orbitals. (U)			
UNIT 2 Periodicity in	Modern periodic law and the present form of periodic table.	CSO 2.1: to understand the placement of elements on the periodic table due to similar	05	15	
Properties of	Periodic trends in properties of	properties. (U) CSO 2.2: to understand the			

elements	elements-	concepts of electronic			
eiements	 elements- (a) Atomic radii (van der Waals) (b) Ionic and crystal radii. (c) Covalent radii (octahedral and tetrahedral) (d) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. (e) Electron gain enthalpy, trends of electron gain enthalpy. (f) Electronegativity 	concepts of electronic configuration, atomic and ionic size and their trends in the periodic table. (U) CSO 2.3: to define the and explain the periodic trends of covalent radii. (K) CSO 2.4: to discuss ionisation enthalpy, electron gain enthalpy and their trends in the periodic table. (U) CSO 2.5: to explain the factors affecting ionization energy. (U) CSO 2.6: to understand the concepts of electronegativity and the Pauling's electronegativity scales. (U)			
UNIT 3 Ionic Bonding	General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born- Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percent-age ionic character.	CSO 3.1: to discuss on the general characteristics, types of ions. (U) CSO 3.2: to understand the lattice enthalpy and its relation to stability of and solubility of ionic compounds. (U) CSO 3.3: to explain the application of Born-Landé equation for calculation of lattice energy. (A) CSO 3.4: to discuss the Born- Haber cycle and its applications. (U) CSO 3.5: to understand the concept of polarizing power and polarizability. (U) CSO 3.6: to discuss the Fajan's rules. (K) CSO 3.7: to define bond moment, dipole moment and percent-age ionic character. (K)	10	20	
UNIT 4 Covalent bonding	VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal	CSO 4.1: to draw the plausible structures and geometries of molecules and ions using VSEPR theory. (A) CSO 4.2: to understand about the hybridization in inorganic complex with suitable	10	25	

		1 (1) (1)			
	planar, square planar,	examples of linear, trigonal			
	tetrahedral, trigonal	planar, square planar, tetrahedral, trigonal			
	bipyramidal and octahedral	bipyramidal and octahedral			
	arrangements.	arrangements. (A) CSO 4.3: to understand the			
	Concept of resonance and	concept of resonance and			
	resonating structures in various	resonating structures in various inorganic and organic			
	inorganic and organic	compounds. (U) CSO 4.4: to discuss the			
	compounds.	bonding and antibonding MOs			
	MO Approach: Rules for the	and their characteristics for s - s ,			
	LCAO method, bonding and	<i>s</i> - <i>p</i> and <i>p</i> - <i>p</i> combinations of atomic orbitals. (K)			
	antibonding MOs and their	CSO 4.5: to explain the			
	characteristics for <i>s</i> - <i>s</i> , <i>s</i> - <i>p</i> and	combination of orbitals forming nonbonding molecular			
	<i>p-p</i> combinations of atomic	orbitals. (U)			
	orbitals, nonbonding	CSO 4.6: to draw the plausible			
	combination	structures and geometries of homonuclear diatomic			
		molecules of 1st and 2nd			
	of orbitals, MO treatment of homonuclear diatomic	periods using molecular orbital			
		diagrams. (A) CSO 4.7: to draw the plausible			
	molecules of 1st and 2nd	structures and geometries of			
	periods (including idea of <i>s</i> - <i>p</i>	heteronuclear diatomic			
	mixing) and heteronuclear	molecules using molecular orbital diagrams. (A)			
	diatomic molecules such as CO,	CSO 4.8: to explain the			
	NO and NO ⁺ . Comparison of	similarities between valence bond and molecular orbital			
	VB and MO approaches.	theory. (U)			
UNIT 5	Concept of oxidation and	CSO 5.1: to evaluate	06	15	
Redox	reduction, redox reactions,	fundamentals of			
reactions		electrochemistry. (K)			
	electrochemical series and its	CSO 5.2: to understand electrochemical series. (U)			
	applications,Latimer diagram	CSO 5.3: to discuss the			
	(chlorine in acidic and basic	applications of			
	medium),	Electrochemical series. (A)			
		CSO 5.4: to predict stability			
	disproportionationofH ₂ O ₂ into	relative to higher and lower oxidation states using Latimer			
	O_2 and H_2O under acidic	diagram. (U)			
	conditions, Pourbaix diagram	CSO 5.5: to explain			
	(iron species in natural water).	disproportionation reactions			
		with suitable examples. (U) CSO 5.6: to predict			
		spontaneous direction of			
		electrochemical reactions,			

identifying corrosion products using pourbaix diagram. (K)		
---	--	--

- 1. J.D. Lee, Concise Inorganic Chemistry ELBS, 1991.
- 2. F.A.Cotton, G.Wilkinson & P.L.Gaus, Basic Inorganic Chemistry, 3rd ed., Wiley, 2007
- B.E.Douglas, D.H.McDaniel, J.J. Alexander, *Concepts and Models in Inorganic Chemistry*, John Wiley & Sons.
- 4. J.E.Huheey, E.A.Keiter, R.L. Keiter &O.K.Medhi, *Inorganic Chemistry: Principles of Structure and Reactivity*, Pearson Education India, 2006.

Practical:

Name of the Paper: Inorganic Chemistry-I Paper Code: CHM-1 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Inorganic Chemistry - Volumetric Analysis

- 1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- 2. Estimation of oxalic acid by titrating it with KMnO₄.
- 3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄.
- 4. Estimation of Fe (II) ions by titrating it with $K_2Cr_2O_7$ using internal indicator.
- 5. Estimation of Cu (II) ions iodometrically using $Na_2S_2O_3$.

- 1. G. Svehla, Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2. J. Mendham, Vogel's Quantitative Chemical Analysis, Pearson, 2009.

MINOR-2

NAME OF THE PAPER (CODE)	: ORGANIC CHEMISTRY-I (CHM-2)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (Cos) for the paper-Organic Chemistry-I:

CO 1:	Understand and explain the differential behaviour of organic compounds based on fundamental concepts
	learned.
CO 2:	Understand the fundamental concepts of stereochemistry.
CO 3:	Understand the synthesis, isomerism, properties and stabilities of alkanes and cycloalkanes.
CO 4:	Understand the nomenclature, synthesis, physical and chemical properties of alkanes.
CO 5:	Interpret the concept of carbon-carbon pi bonds.

Unit & Title	Unit Contents	Course Specific Objective (CSOs)	Lectu re Hour s	Marks	LOs
UNIT 1 Fundamentals of Organic Chemistry	Physical Effects, Electronic Displacements:Inductive Effect,ElectromericEffect, Resonanceand Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles.	CSO 1.1: to explain the basic concepts in organic chemistry. (U) CSO 1.2: to discuss the electron displacement effect providing a fundamental understanding of bond polarisation and molecular reactivity. (K) CSO 1.3: to explain		22	
	ReactiveIntermediates:Carbocations,Carbanionsand free radicals.Strength of organic acids andbases:Comparative studywith emphasis on factors				

	affecting pK values.	bond fission. (K)			
	Aromaticity: Benzenoids and	CSO 1.5: to explain the			
	Hückel's rule.	structure, shape and			
		reactivity of organic			
		molecules. (U)			
		CSO 1.6: to explain			
		electrophiles and			
		nucleophiles. (U)			
		CSO 1.7: to discuss on the			
		types, shape and relative			
		stability of Carbocations,			
		Carbanions and free			
		radicals. (U)			
		CSO 1.8: to discuss the			
		relative strength of organic			
		acids and bases. (K)			
		CSO 1.9: to explain the			
		criteria of aromaticity and			
		Huckel's rule. (K)			
UNIT 2	Conformations with respect	CSO 2.1: to understand the	11	25	
Stereochemist ry	to ethane, butane and	fundamental concepts of			
- 5	cyclohexane. Interconversion	stereochemistry. (U)			
	of Wedge Formula,	CSO 2.2: to understand the			
	Newmann, Sawhorse and	differences between			
	Fischer representations.	conformations and			
	Concept of chirality (upto	configurations. (U)			
	two carbon atoms).	CSO 2.3: to draw and			
	Configuration: Geometrical	analyze open alkane			
	and Optical isomerism;	structures using the different			
	Enantiomerism,	types of projections			
	Diastereomerism and Meso	(Newmann, Sawhorse and			
	compounds). Threo and	Fischer). (K,A)			
	erythro; D and L; cis -trans	CSO 2.4: to discuss the			
	nomenclature; CIP Rules: R/	interconversion of Newman,			
	S (for upto 2 chiral carbon	Sawhorse and Fischer			
	atoms) and E / Z	representations. (A)			

	Nomenclature (forupto two	CSO2.5: to discuss the			
	C=C systems).	chirality in molecules with			
		one and two stereocentres.			
		(K)			
		CSO 2.6: to explain			
		Geometrical and Optical			
		isomerism with examples.			
		(U)			
		CSO 2.7: to explain the			
		distinction between			
		enantiomers, diastereomers			
		and explain their physical			
		properties. (U)			
		CSO 2.8: to explain meso			
		compounds with suitable			
		examples. (U)			
		CSO 2.9: to understand			
		racemic mixture and			
		resolution of enantiomers.			
		(U)			
		CSO 2.10: to determine			
		trans and cis, E and Z			
		sequence in organic			
		molecules. (A)			
		CSO 2.11: to determines R and S, (+), (-); D and L sequence in organic molecules. (A)			
UNIT 3	Conformational Isomerism:	CSO 3.1: to understand the	06	15	
Cycloalkanes and	Alkanes (Conformations,	concept of stereochemistry			
Conformation	relative stability and energy	and conformational analysis			
al Analysis	diagrams of Ethane, Propane	in cyclic compounds. (U)			
	and butane). Relative stability	CSO 3.2: to understand the			
	of cycloalkanes (Baeyer strain	types of strain inherent in			
	theory), Cyclohexane	cycloalkanes. (U)			
	conformations with energy	CSO 3.3: to draw the			
	diagram. Conformations of	energy diagrams of Ethane,			

	mono substituted	Propane and butane. (A, K)			
	cyclohexanes.	CSO 3.4: to analyse and			
		explain the conformational			
		stabilities of Ethane,			
		Propane and butane. (A)			
		CSO 3.5: to discuss the			
		Baeyer Strain Theory. (A)			
		CSO 3.6: to draw the energy diagrams of cyclohexane conformations and discuss its relative stabilities. (A, U) CSO 3.7: to draw and			
		explain the stabilities of			
		conformations of mono			
		substituted cyclohexanes.			
		(A, U)			
UNIT 4	Functional group approach	CSO 4.1: to discuss various	06	15	
Aliphatic Hydrocarbons	for the following reactions	physical properties of			
: Carbon-	(preparations & reactions) to	alkanes. (K)			
Carbon sigma bonds	be studied in context to their	CSO 4.2: to explain the			
	structure.	chemical properties of			
	Alkanes: (Upto 5 Carbons).	alkanes. (K)			
	<i>Preparation:</i> Catalytic	CSO 4.3:to understand the			
	hydrogenation, Wurtz	reaction mechanism of			
	reaction, Kolbe's synthesis,	Wurtz reaction (U)			
	from Grignard reagent.	CSO 4.4:to explain the			
	Reactions: Free radical	preparation of alkanes using			
	Substitution: Halogenation.	Kolbe's synthesis and			
		Grignard reagent. (K)			
		CSO 4.5: to explain the			
		reaction mechanism of			
		halogenation of alkanes. (U)			
UNIT 5 Aliphatia	Alkenes: (Upto 5 Carbons)	CSO 5.1: to explain the	12	23	
Aliphatic Hydrocarbons	<i>Preparation:</i> Elimination	general properties of			
: Carbon- Carbon pi	reactions: Dehydration of	Alkenes and Alkynes. (K)			
bonds	alkenes and	CSO 5.2: to discuss the			

dehydrohalogenation of alkyl	methods of preparation of	
halides (Saytzeff's rule); cis	alkenes using Mechanisms	
alkenes (Partial catalytic	of E1, E2, E1cb reactions.	
hydrogenation) and trans	(U)	
alkenes (Birch reduction).	CSO 5.3: to discuss the	
Reactions: cis-addition (alk.	reaction mechanisms of	
KMnO4) and trans-addition	Saytzeff and Hoffmann	
(bromine), Addition of HX	eliminations. (A)	
(Markownikoff's and anti-	CSO 5.4: to explain	
Markownikoff's addition),	markownikoff and anti-	
Hydration, Ozo-nolysis,	markownikoff addition with	
oxymecuration-	suitable examples. (A)	
demercuration,	CSO 5.5: to explain the syn	
Hydroboration-oxidation.	and anti-addition of H2, X2.	
Alkynes: (Upto 5 Carbons)	(K)	
Preparation: Acetylene from	CSO 5.6: to discuss the	
CaC2 and conversion into	reaction mechanisms of	
higher	oxymercuration-	
alkynes; by dehalogenation	demercuration reaction. (A)	
of tetra halides and	CSO 5.7: to discuss the	
dehydrohalogenation of	reaction mechanisms of	
vicinal-dihalides.	hydroboration-oxidation,	
Reactions: formation of	reactions. (A)	
metal acetylides, addition of	CSO 5.8: to discuss the	
bromine and alkaline	ozonolysis and	
KMnO ₄ , ozonolysis and	hydroxylation reactions. (K)	
oxidation with hot alk.	CSO 5.9: to discuss on the	
KMnO ₄ .	relative reactivity and	
	stability of alkenes and	
	alkynes. (U)	
	CSO 5.10: to explain	
	dehalogenation of tetra	
	halides and	
	dehydrohalogenation of	
	vicinal-dihalides for	
	conversion of alkynes into	
		_

higher alkynes. (K)		
CSO 5.11: to discuss the various chemical reactions		
of alkynes. (K)		

- 1. T.W.Graham Solomon, C.B. Fryhle, S.A. Dnyder, Organic Chemistry, John Wiley & Sons, 2014.
- 2. J.E. McMurry, Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.
- 3. P. A. Sykes, *Guidebook to Mechanism in Organic Chemistry*, Orient Longman, New Delhi, 1988.
- 4. E.L. Eliel, Stereochemistry of Carbon Compounds, Tata McGraw Hill education, 2000.
- 5. I.L. Finar, Organic Chemistry (Vol. I & II), E.L.B.S, 2002.
- 6. R.T. Morrison&R.N. Boyd, Organic Chemistry, Pearson, 2010.
- 7. A. Bahl, B.S. Bahl, Advanced Organic Chemistry, S. Chand, 2010.

Practical:

Name of the Paer: Organic Chemistry I Paper Code: CHM-2 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)

2. Separation of mixtures by Chromatography: Measure the $R_{\rm f}$ value in each case (combination of two

compounds to be given)

(a) Identify and separate the components of a given mixture of two amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography

(b) Identify and separate the sugars present in the given mixture by paper chromatography.

- 1. J. Mendham, Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 2. A.I.Vogel, A.R.Tatchell, B.S.Furnis, A.J.Hannaford &P.W.G. Smith, *Textbook of Practical Organic Chemistry*, Prentice-Hall, 5th edition, 1996.
- 3. F.G. Mann&B.C.Saunders, *Practical Organic Chemistry* Orient-Longman, 1960.

MINOR-3

NAME OF THE PAPER (CODE)	: PHYSICAL CHEMISTRY-I (CHM-3)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (Cos) for the paper-Physical Chemistry-I:

CO 1:	Derivation of mathematical expressions on different properties of gas and liquids.
CO 2:	Learn the theory of dilute solutions, distribution laws and applications.
CO 3:	Determine the density of aqueous solutions and dilute solutions as per required concentrations
CO 4:	Handle instruments such as stalagmometer and Ostwald viscometer.
CO 5:	Graphical and numerical methods for reducing data.

Unit & Title	Unit Contents	Course Specific Objective	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1	Review of	CSO 1.1: to understand the	07	18	
Chemical	thermodynamics and	Laws of Thermodynamics, State Functions, Path			
Energetics	the Laws of	Functions, Intensive &			
	Thermodynamics.	Extensive variables. (U) CSO 1.2: to derive the various			
	Important principles	mathematical expressions of			
	and definitions of	First Law, Second Law, Third Law, ΔU, ΔH, ΔS, ΔG, ΔA for			
	thermochemistry.	ideal and real gases under			
	Concept of standard	different conditions. (A) CSO 1.3: to discuss important			
	state and standard	principles and definitions of			
	enthalpies of	thermochemistry. (K) CSO 1.4: to explain various			
	formations, integral	Enthalpies of reactions and			
	and differential	derive the mathematical relations for these enthalpies of			
	enthalpies of solution	reaction. (K)			
	and dilution.	CSO 1.5: to understand the concept of standard state and standard enthalpies of formations. (U)			
		CSO 1.6: to discuss the			
		integral and differential			
		enthalpies of solution and			
		dilution. (K)			

UNIT 2	Calculation of bond	CSO 2.1: to calculate bond	09	22
Chemical	energy,bond	energy, bond dissociation		
Energetics	dissociation energy	energy from thermochemical data. (A)		
	and resonance energy	CSO 2.2: to calculate the		
	from thermochemical	resonance energy. (A) CSO 2.3: to derive and the		
	data. Variation of	variation of enthalpy of a		
	enthalpy of a reaction	reaction with temperature. (A, U)		
	with temperature –			
	Kirchhoff's equation.	CSO 2.4: to explain Third Law of thermodynamics. (K)		
	Statement of Third	CSO 2.5: to calculate absolute		
		entropies of substances. (A)		
	Law of			
	thermodynamics and			
	calculation of absolute			
	entropies of			
	substances.			
UNIT 3	Free energy change in	CSO 3.1: to describe the relationship between free	10	20
Chemical	a chemical reaction.	energy and equilibrium. (K)		
Equilibrium	Thermodynamic	CSO 3.2: to explain the		
	derivation of the law of	importance of the activity of a species and how it relates to		
	chemical equilibrium.	concentration, pressure, and		
	Distinction between	equilibrium. (U) CSO 3.3: to discuss the		
	ΔG and $\Delta G^{\rm o}$, Le	thermodynamic derivation of		
	Chatelier's principle.	the law of chemical equilibrium. (A)		
	Relationships between	CSO 3.4: to understand the		
	K_p , K_c and K_x for	distinction between ΔG and ΔG° . (U)		
	reactions involving	CSO 3.5: to determine if a		
	ideal gases.	system is at equilibrium and if not which direction the		
		reaction the reaction will shift		
		to achieve equilibrium. (K) CSO 3.6: to discuss the Le		
		Chatelier's principle and its		
		applications. (K, Å) CSO 3.7: to derive the		
		relationships between K_p , K_c		
		and K_{x} . (A)	10	25
UNIT 4	Strong, moderate and	CSO 4.1: to explain the different types of electrolytes	10	25
Ionic	weak electrolytes,	with examples. (K)		
		CSO 4.2: to understand the		

Equilibria	degree of ionization,	strength of an acid or a base as			
Equinoria		determined by the percent of			
	factors affecting	ionisation in solution. (U)			
	degree of ionization,	CSO 4.3: to discuss the factors			
	ionization constant and	affecting degree of ionization. (K)			
	ionic product of water.	CSO 4.4: to understand acid			
	Ionization of weak	base conjugate acid-base pair			
	acids and bases, pH	and their relative strengths. (U) CSO 4.5: to understand the			
	scale, common ion	process of auto-ionisation of			
		water. (U)			
	effect.	CSO 4.6: to know the value of K_W at 25°C and the			
		relationship between Ka and			
		K_b for a conjugate pair.			
		CSO 4.7: to explain ionization			
		constant and ionic product of water. (U)			
		CSO 4.8: to understand the			
		conversion between hydronium			
		ion concentration, hydroxide			
		ion concentration, pH and pOH for a given solution. (K)			
		CSO 4.9: to explain the			
		common ion effect with			
		examples. (U)			
		CSO 4.10:			
UNIT 5	Salt hydrolysis-		09	15	
Ionic	calculation of	concept of salt hydrolysis. (U) CSO 5.2: to calculate			
Equilibria	hydrolysis constant,	hydrolysis constant, degree of			
	degree of hydrolysis	hydrolysis for different salts. (A)			
	and pH for different	CSO 5.3: to discuss the relative			
	salts. Buffer solutions.	strength of acid and base produced during hydrolysis.			
	Solubility and	(U)			
		CSO 5.4: to determine the pH			
	solubility product of				
		of the solution made from the			
	sparingly soluble salts,	of the solution made from the salt of a weak acid or the salt of weak base. (A)			
	sparingly soluble salts, applications of	of the solution made from the salt of a weak acid or the salt of weak base. (A) CSO 5.5: to predict the			
	sparingly soluble salts, applications of solubility product	of the solution made from the salt of a weak acid or the salt of weak base. (A) CSO 5.5: to predict the components of buffer solution.			
	sparingly soluble salts, applications of	of the solution made from the salt of a weak acid or the salt of weak base. (A) CSO 5.5: to predict the			
	sparingly soluble salts, applications of solubility product	of the solution made from the salt of a weak acid or the salt of weak base. (A) CSO 5.5: to predict the components of buffer solution. (K) CSO 5.6: to calculate the pH of a buffer solution, and a buffer			
	sparingly soluble salts, applications of solubility product	of the solution made from the salt of a weak acid or the salt of weak base. (A) CSO 5.5: to predict the components of buffer solution. (K) CSO 5.6: to calculate the pH of a buffer solution, and a buffer solution after the addition of			
	sparingly soluble salts, applications of solubility product	of the solution made from the salt of a weak acid or the salt of weak base. (A) CSO 5.5: to predict the components of buffer solution. (K) CSO 5.6: to calculate the pH of a buffer solution, and a buffer			

sparingly soluble salts. (U) CSO 5.9: to discuss the applications of solubility product principle. (A)		
product principle. (A)		

- 1. G.M. Barrow, *Physical Chemistry* Tata McGraw-Hill, 2007.
- 2. G.W. Castellan, *Physical Chemistry* 4th Ed. Narosa, 2004.
- 3. J.C.Kotz, P.M.Treichel &J.R.Townsend, *General Chemistry* Cengage Learning India Pvt. Ltd., New Delhi, 2009.
- 4. B.H. Mahan, University Chemistry 3rd Ed. Narosa, 1998.
- 5. R.H. Petrucci, *General Chemistry* 5th Ed. Macmillan Publishing Co.: New York, 1985.

Practical:

Name of the Paper: Physical Chemistry-I Paper code: CHM-3 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

Thermochemistry:

- 1. Determination of heat capacity of calorimeter for different volumes.
- 2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 3. Determination of enthalpy of ionization of acetic acid.
- 4. Determination of integral enthalpy of solution of salts (KNO₃, NH₄Cl).
- 5. Determination of enthalpy of hydration of copper sulphate.
- 6. Study of the solubility of benzoic acid in water and determination of ΔH .

Ionic equilibria:

pH measurements-

Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.

- a) Preparation of buffer solutions:
- (i) Sodium acetate-acetic acid
- (ii) Ammonium chloride-ammonium hydroxide

Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Suggested Readings:

 B.D.Khosla, V.C.Garg&A.Gulati, Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi, 2011.

MINOR -4

NAME OF THE PAPER (CODE) : ORGANIC CHEMISTRY-II (CHM-4)

Number of Credit

Number of Hours of Lecture 45

COURSE OBJECTIVES (Cos)

The following are the course Objectives (Cos) for the paper-Organic Chemistry-II:

03

CO 1:	Understand and explain the differential behavior of organic compounds based on fundamental
	concepts learnt.
CO 2:	Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties
	of the reactants involved.
CO 3:	Learn and identify many organic reaction mechanisms including free radical substitution.
CO 4:	Learn and identify electrophilic addition and electrophilic aromatic substitution.
CO 5:	Differentiate between various types of organic reactions possible on the basis of reaction conditions

Unit and	Unit Contents	Course Specific Objectives	Lectures	Marks	LOs
		× /		10	
Title UNIT 1 Aromatic hydrocarbons	Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid. <i>Reactions</i> : (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes	(CSOs) CSO 1.1: To give an introduction on the aromatic hydrocarbons. (K) CSO 1.2: To study the preparation of some of the compound containing benzene rings. (U) CSO 1.3: To study the reaction mechanism of the electrophilic suntitutuon. (A) CSO 1.4: To study the Friedel-Craft's reactions. (U,A) CSO 1.5: To explain the side chain oxidation of alkyl benzenes. (U)	Hours 8	18	
UNIT 2 Alkyl and Aryl Halides	(upto 4 carbons on benzene). Alkyl Halides (Upto 5 Carbons) Types of Nucleophilic Substitution (S _N 1, S _N 2 and S _N i) reactions. <i>Preparation:</i> from alkenes <i>and</i> alcohols. <i>Reactions:</i> hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation.	CSO 2.1: To give a brief introduction of Alkyl and Aryl Halides. (K) CSO 2.2: To study the different types of Nucleophilic suntitution reactions CSO 2.3: To study the preparation of Alkyl and Aryl Halidesfrom alkenes <i>and</i> alcohols with mechanism.(A) CSO 2.4: give an introduction of nitriles and	8	18	

	Williamson's ether synthesis:	isonitriles. (K)			
	Elimination vs substitution.	CSO 2.5: To study the			
	Enmination vs substitution.	mechanism of Williamson's			
		ether synthesis. (A)			
		CSO 2.6: To give the difference between			
		Elimination vs substitution			
		reactions: (U)			
UNIT 3	Preparation: (Chloro, bromo and	CSO 3.1: To give an	10	22	
Aryl Halides	iodo-benzene case): from phenol,	introduction on the aryl			
	Sandmeyer & Gat-termann	halides. (K) CSO 3.2: To study the			
	reactions.	preparation of Aryl halides.			
	Reactions (Chlorobenzene):	CSO 3.3: To study the reaction mechanism of			
	Aromatic nucleophilic substitution	Aromatic nucleophilic			
	(replacement by –OH group) and	substitution reactions. (A)			
	effect of nitro substituent.	CSO 3.4: To study the effect of the nitro substituent. (U)			
	Benzyne Mechanism: KNH ₂ /NH ₃	CSO 3.5: To study the			
	(or NaNH ₂ /NH ₃).	Reactivity and Relative			
	Reactivity and Relative strength	strength of C-Halogen bond			
	of C-Halogen bond in alkyl, allyl,	in alkyl, allyl, benzyl, vinyl			
	benzyl, vinyl and aryl halides.	and aryl halides. (K,U)			
UNIT 4	Alcohols: Preparation:	CSO 4.1: To give the	10	22	
Alcohols, Phenols and	Preparation of 1°, 2° and 3°	introduction on the alcohol, phenols and ethers. (K)			
Ethers	alcohols: using Grignard reagent,	CSO 4.2: To study the			
	Ester hydrolysis, Reduction of	preparation of alchols using different methods/processes.			
	aldehydes, ketones, carboxylic	(U,A)			
	acid and esters.	CSO 4.3: To study the			
	Reactions: With sodium, HX	different chemical reaction of alcohols with the mechanism.			
	(Lucas test), Esterification,	(U,A)			
	oxidation (with PCC, alk.	CSO 4.4: To study the preparation of phenol using			
	KMnO ₄ , acidic dichromate, conc.	different methods and			
	HNO ₃). Oppeneauer oxidation	reagent/ salts. (U) CSO 4.5: To study the			
	Diols: (Upto 6 Carbons) oxidation	chemical reaction mechanism			
	of	that is caused by the phenols. (U,A)			
			1		
	diols. Pinacol-Pinacolone	CSO 4.6: To study the			
		preparation of ethers.(U)			
	rearrangement.	preparation of ethers.(U) CSO 4.7: to study some of the chemical reaction caused			
		preparation of ethers.(U) CSO 4.7: to study some of			

UNIT 5 Aldehydes and ketones (aliphatic and aromatic)

- 1. T.W.G. Solomon, C.B. Fryhle&S.A. Dnyder, Organic Chemistry, John Wiley & Sons, 2014.
- 2. J.E. McMurry, *Fundamentals of Organic Chemistry7th Ed.*, Cengage Learning India Edition, 2013.
- 3. P. Sykes, A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi, 1988.
- 4. Finar, I.L. Organic Chemistry (Vol. I & II), E.L.B.S.2002.
- 5. R.T. Morrison & R.N. Boyd, Organic Chemistry, Pearson, 2010.
- 6. A. Bahl, &B.S. Bahl, Advanced Organic Chemistry, S. Chand, 2010.

Practical:

Name of the Paper: Organic Chemistry II Paper Code: CHM-4 P Number of Credit: 01

Number of Hours of Lecture: 30 Lectures

- 1. Purification of organic compounds by crystallization (from water and alcohol) and distillation.
- 2. Criteria of Purity: Determination of melting and boiling points.
- 3. Preparations: Mechanism of various reactions involved to be discussed.
- 4. Recrystallisation, determination of melting point and calculation of quantitative yields to be done.
- (a) Bromination of Phenol/Aniline
- (b) Benzoylation of amines/phenols
- (c) Oxime and 2,4-dinitrophenylhydrazone of aldehyde/ketone

- 1. F.G. Mann &B.C. Saunders, Practical Organic Chemistry, 4th Edition, Pearson Education, 2009.
- 2. B.S. Furniss, A.J.Hannaford, P.W.G.Smith& Tatchell, A.R., *Vogel's Textbook of Practical Organic Chemistry*, Pearson, 2005.
- **3**. V.K. Ahluwalia & R. Aggarwal, *Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis*, University Press, 2004.

MINOR-5

: Theory-03

NAME OF THE PAPER (CODE) : PHYSICAL CHEMISTRY-II (CHM-5)

Number of Credit

Number of Hours of Lecture 45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper-Physical Chemistry-II:

CO 1:	To make the student aware of thermodynamic of ideal solution and Partial miscibility of liquids.
CO 2:	To make student understand Phases, components and degrees of freedom of a system.
CO 3:	Explain the factors that affect conductance, migration of ions and application of conductance measurement and make the student Understand different types of galvanic cells, their Nernst equations, and measurement of emf, calculations of thermodynamic properties and other parameters from the emf measurements.
CO 4:	Understand applications of Emf measurements in relation to determination of activity coefficients
CO 5:	Understand pH of a solution and Potentiometric titrations.

Unit &	Unit Contents	Course Specific Objectives	Lectures	Marks	LOs
Title		(CSOs)	Hours		
UNIT 1	Thermodynamics of ideal	CSO 1.1:To explain the	12	26	
Solutions	solutions: Ideal solutions and	thermodynamics of ideal			
		solutions. (U)			
	Raoult's law, deviations from	CSO 1.2: An introduction to			
	Raoult's law – non-ideal	ideal Raoult's law. (K)			
		CSO 1.3: To derive the			
	solutions. Vapour pressure-	Rault's law. (A)			
	composition and temperature	CSO 1.4: To explain the			
		vapour pressure composition			
	composition curves of ideal and	curve of ideal and non-ideal			
	non-ideal solutions. Distillation	solution. (U)			
	of a chiling a Larrow mula	CSO 1.5: To explain the			
	of solutions. Lever rule.	vapour temperature			
	Partial miscibility of liquids:	composition curve of ideal			
	Critical solution temperature;	and non-ideal solution. (U) CSO 1.6: To make student			
	_	understand the distillation of			
	effect of impurity on partial	solution and the lever rule.			
	miscibility of liquids.	(U)			
		CSO 1.7: To explain the			
	Immiscibility of liquids-	critical solution temperature.			
	Principle of steam distillation.	(U)			
	I.	CSO 1.8: To explain the			
	Nernst distribution law and its	effect of impurity on partial			
	applications, solvent extraction.	miscibility of liquids. (U)			
		CSO 1.9: To give the			
		introduction of steam			
		distillation. (K)			
		CSO 1.10: To derive the Nerst			

		distribution law. (A) CSO 1.11: To site the		
		applications of Nerst		
		distribution law. (A)		
		CSO 1.12: A brief		
		introduction on solvent		
UNIT 2	Phases, components and degrees	extraction. (K) CSO 2.1: To study the phase	12	26
Phase		Phases, components and	14	4 0
	of freedom of a system, criteria	degrees of freedom of a		
Equilibri	of phase equilibrium. Gibbs	system. (U)		
a	Phase Rule and its	CSO 2.2: To study the Gibbs phase rule. (U)		
	thermodynamic derivation.	CSO 2.3: To study the		
	Derivation of Clausius –	thermodynamic derivaties. (U)		
	Clapeyron equation and its	CSO 2.4: To derive		
	importance in phase equilibria.	Derivation of Clausius –		
	Phase diagrams of one-	Clapeyron equation. (A) CSO 2.5: To study the phase		
	component systems (water and	diagrams of one-component		
	sulphur) and two component	systems (water and sulphur) (U)		
	systems involving eutectics,	CSO 2.6: To study the phase		
	congruent and incongruent	diagrams of two component systems involving eutectics.		
	melting points (lead-silver,	(U)		
		CSO 2.7: To explain the		
	FeCl ₃ -H ₂ O and Na-K only).	congruent and incongruent		
		melting points (lead-silver, FeCl ₃ -H ₂ O and Na-K		
		only).(U)		
UNIT 3	Conductivity, equivalent and	CSO 3.1: To give the	8	18
Conducta	molar conductivity and their	Arrhenius theory of		
nce	•	electrolytic dissociation. (K)		
	variation with dilution for weak	CSO 3.2: To explain the		
	and strong electrolytes.	variation of specific conductivity or conductance		
	Kohlrausch law of independent	decreases in dilution with the		
	migration of ions.	molar conductance. (U)		
	C C	CSO 3.3: To state and derive		
	Transference number and its	the Kohlrausch law of independent migration of ions.		
	experimental determination	(U,A)		
	using Hittorf and Moving	CSO 3.4: To explain the		
	boundary methods. Ionic	measurement of the ion using Hittorf and Moving Boundary		
	mobility. Applications of	methods. (U)		
	conductance measurements:	CSO 3.5: To give a brief introduction on the		
	determination of degree of	application of conductance		
	ionization of weak electrolyte,	measurement. (K)		
		CSO 3.6: To explain the application of degree of		
	l	approximition of degree of	1	I

UNIT 4 Electroch emistry	solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt. Conductometric titrations (only acid base). Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential.	dissociation of weak electrolytes. (U) CSO 3.7: To explain the application of ionic product of water.(U) CSO 3.8: To explain the Conductmetric titrations. (U) CSO 3.9: To explain the hydrolysis constants of salts.(U CSO 4.1: To explain the concentration cell with and without transference. (U) CSO 4.2: To determine the activity coefficient and transference numbers. (A) CSO 4.3: To discuss the qualitative of potentiometric titrations (acid-base, redox, precipitation). (U) CSO 4.4: To derive the Nernst equation. (A) CSO 4.5: To study the different types of electrodes. Standard electrode potential. (U)	5	12	
UNIT 5 Electroch emical series	Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG , ΔH and ΔS from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. pH determination using hydrogen electrode and quinhydrone electrode. Potentiometric titrations - qualitative treatment (acid-base and oxidation-reduction only).	CSO 5.1: To give an introduction on the electrochemical series. (K) CSO 5.2: To calculate the thermodynamic properties, i.e. enthalpy, entropy and Gibbs free energy. (A) CSO 5.3: To calculate the equilibrium constant from EMF data. (A) CSO 5.4: To study the Concentration cells with transference and without transference. (U) CSO 5.5: To learn the Liquid junction potential and salt bridge. (U) CSO 5.6: To explain how to determine the pH using Hydrogen electrode and quinhydrone electrode.(A) CSO 5.7: To explain how Potentiometric titrations helps in determining the strength of acid and base. (U,A)	8	18	

- 1. G.M. Barrow, *Physical Chemistry*, Tata McGraw-Hill, 2007.
- 2. G.W Castellan, *Physical Chemistry* 4th Ed. Narosa, 2004.
- 3. J.C. Kotz, P.M. Treiche&J.R. Townsend, *General Chemistry*, Cengage Learning India Pvt. Ltd. New Delhi, 2009.
- 4. B.H. Mahan, University Chemistry3rd Ed., Narosa, 1998.
- 5. R.H. Petrucci, General Chemistry 5th Ed., Macmillan Publishing Co. New York, 1985.

Practical:

Name of the Paper: Physical Chemistry-II Paper Code: CHM-5 P Number of Credit: 01 Number ofHours of Lecture: 30 Lectures

1. Phase equilibria

- a) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves.
- b) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.

c) Study of the variation of mutual solubility temperature with concentration for the phenol water system and determination of the critical solubility temperature.

2. Conductance

i. Determination of cell constant

ii. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.

- iii. Perform the following conductometric titrations:
- a. Strong acid vs. strong base
- b. Weak acid vs. strong base

3. Potentiometry

- 1. Perform the following potentiometric titrations:
- i. Strong acid vs. strong base
- ii. Weak acid vs. strong base
- iii. Potassium dichromate vs. Mohr's salt

- 1. B. D. Khosla, V. C. Garg&A. Gulati, *Senior Practical Physical Chemistry*, R. Chand & Co. New Delhi, 2011.
- 2. V.K Ahluwalia&R. Aggarwal, Comprehensive Practical Organic Chemistry, Universities Press, 2004.

MINOR-6

NAME OF THE PAPER (CODE): INORGANIC CHEMISTRY – II (CHM-6)Number of Credit03Number of Hours of Lecture45

COURSE OBJECTIVES (COs)

The following are the course Objectives (Cos) for the paper-**Organic Chemistry-II:**

CO 1:	To make student understand the basic concepts of Lewis acids and bases and Classify solutions as
	acidic, basic and neutral and the strength of Hard and soft acids and bases.
CO 2:	To establish an understanding for the general principles in metallurgy
CO 3:	To establish an understanding the periodicity and oxidation state of s-, p- block elements
CO 4:	To make the student understand the structure, bonding and the bonding in inorganic molecules of s- and p- block elements and its salient feature.
CO 5	Describe the physical properties of Noble gas elements and establish as chemically unreactive to the
	student.

Unit & Title	Unit Contents	Course Specific Objectives (CSOs)	Lectures Hours	Marks	LOs
UNIT 1 Acids and Bases	Brönsted–Lowry concept, conjugate acids and bases, relative strengths of acids and bases, effects of substituent and solvent, differentiating and levelling solvents. Lewis acid- base concept, classification of Lewis acids and bases, Lux- Flood concept and solvent system concept. Hard and soft acids and bases (HSAB concept), applications of HSAB process.	- •		14	
		concept of Lux-Flood concept			

		and solvent system. (U)		
		CSO 1.9: Introduction to HSAB concept. (K)		
		CSO 1.10: To give and Explain		
		some of the application of		
		HSAB. (A)		
UNIT 2	Chief modes of occurrence of	CSO 2.1: To give a brief	8	18
General	metals based on standard	introduction on the occurrence		
Principles of		of metal. (K)		
Metallurgy	electrode potentials, Ellingham	CSO 2.2: To explain the		
	diagrams for reduction of metal	Elligham diagrams. (A) CSO 2.3: To explain how the		
	oxides using carbon and carbon	carbon and carbon monoxide		
	monoxide as reducing agents.	act as a reducing agents. (A)		
	Hydrometallurgy with reference	CSO 2.4: To explain the hydrometallurgy. (U)		
		CSO 2.5: To give methods of		
	to cyanide process for gold and	purifying metals. (U)		
	silver. Methods of purification of	CSO 2.6: Purification of		
	metals (Al, Pb, Ti, Fe, Cu, Ni,	metals by electrolytic refining. (A)		
	Zn, Au): electrolytic refining,	CSO 2.7: Purification of		
	zone refining, van Arkel-de Boer	metals by zone refining. (A) CSO 2.8: Purification of		
	process, Parting Process, Mond's	metals by van Arkel-de Boer		
	process and Kroll Process.	process. (A) CSO 2.9: Purification of		
		metals by Parting Process. (A)		
		CSO 2.10: Purification of		
		metals by Mond's process and		
		Kroll Process. (A)		
UNIT 3	Periodicity in <i>s</i> - and <i>p</i> -block	CSO 3.1: To give an	14	30
s- and p-	elements with respect to	introduction of the Periodicity (K)		
Block	electronic configuration, atomic	in <i>s</i> - and <i>p</i> -block elements. (K) CSO 3.2: To explain how the		
Elements	and ionic size, ionization	atomic and ionic size differ		
	enthalpy, electron gain enthalpy,	across the periodic. (U) CSO 3.3: To explain how the		
	electronegativity (Pauling scale).	ionization enthalpy differ		
	General characteristics of <i>s</i> -block	across the periodic. (U) CSO 3.4: To explain how the		
	metals like density, melting and	electron gain enthalpy differ		
	boiling points, flame colour and	across the periodic. (U) CSO 3.5: To explain how the		
	reducing nature.	electronegativity differ across		
	Oxidation states of <i>s</i> - and <i>p</i> -	the periodic using Pauling scale. (U)		
	block elements, inert-pair effect,	CSO 3.6: To give the General		
	diagonal relationships and	characteristics of <i>s</i> -block metals. (K)		
		CSO 3.7: To differentiate the		
	anomalous behaviour of first	oxidation states of <i>s</i> - and <i>p</i> -		
	member of each group. Allotropy	block elements. (A)		
		CSO 3.8: To explain the inert-		

	in C. Dand C	noin affect (II)			I
	in C, P and S.	pair effect. (U) CSO 3.9: To analyse the			
	Complex forming tendency of <i>s</i>	diagonal relationship of <i>s</i> - and			
	block elements and a preliminary	<i>p</i> -block elements. (A)			
	idea of crown ethers and	CSO 3.10: To explain the anomalous behaviour of <i>s</i> - and			
	cryptates, structures of basic	<i>p</i> -block elements.(U)			
	beryllium acetate,	CSO 3.11: To make the student understand the allotropy of C, P			
	salicylaldehyde/ acetylacetonato	and S. (U)			
	complexes of Group 1 metals.	CSO 3.12: To study the complex forming tendency of			
	Solutions of alkali metals in	s-block elements. (A) CSO 3.13: To explain how the			
	liquid ammonia and their	crown ethers and cryptates are			
	properties.	formed. (U) CSO 3.14: To explain the			
	Common features, such as ease	structures of basic beryllium			
	of formation, solubility and	acetate.(U)			
	stability of oxides, peroxides, superoxides, sulphates and	CSO 3.15: To explain the			
	carbonates of <i>s</i> -block metals	structures of basic			
		salicylaldehyde/ acetylacetonato.(U)			
		CSO 3.16: An introduction to			
		the complexes of Group 1			
		metal.(K)			
		CSO 3.17: To explain the solutions of alkali metals in			
		liquid ammonia and their			
		properties. (U)			
		CSO 3.18: To give the			
		common features of some			
		oxides. (K)			
UNIT 4	Diborane and concept of	CSO 4.1: An introduction to	12	26	
Structure,	multicentre bonding, hydrides of	diborane. (K)			
Bonding and	Groups 13 (EH3), 14, 15, 16 and	CSO 4.2: To explain the concept of multicentre bonding.			
Properties		(U)			
(acidic/	17.	CSO 4.3: To give the hydrides			
basic	Oxides of N and P, Oxoacids of	of group 13, 14, 15, 16 and 17.			
nature, oxidizing/	P, S and Cl.	CSO 4.4: To make the students aware of the oxides of N and P.			
reducing	Halides and oxohalides of P and	(U)			
nature and hydrolysis)	S (PCl3, PCl5, SOCl2 and	CSO 4.5: To explain the Oxoacids of P, S and Cl. (U)			
of the	SO2Cl2)	CSO 4.6: To make the student			
following Compounds	Interhalogen compounds.	understand the halides and oxohalides of P and S. (U)			
and their	A brief idea of pseudohalides	CSO 4.7: An over view of the			
Applications		interhalogen compound. (K)			
in Industrial		CSO 4.8: to give the student a			
and Environ-		brief idea of pseudohalides. (K)			

mental Chemistry Wherever Applicable					
UNIT 5 Noble gases	Rationalization of inertness of noble gases, clathrates, preparation and properties of XeF ₂ , XeF ₄ and XeF ₆ ,bonding in these compounds using VBT and shapes of noble gas compounds using VSEPR Theory	CSO 5.1: A brief introduction of the noble gases. (K) CSO 5.2: To make student know how the preparation of XeF ₂ , XeF ₄ and XeF ₆ . (A) CSO 5.3: To give the properties of XeF ₂ , XeF ₄ and XeF ₆ . (U) CSO 5.4: To explain how the VBT effect the bonding. (U) CSO 5.5: Using VSEPR theory the shape of noble gas will be explain. (A)	5	12	

1. J.D. Lee, Concise Inorganic Chemistry ELBS, 1991.

2. F.A. Cotton, G. Wilkinson & P.L. Gaus, *Basic Inorganic Chemistry*, 3rd Ed., Wiley.

3. B.E. Douglas, D.H McDaniel &J.J. Alexander, *Concepts and Models in Inorganic Chemistry*, John Wiley & Sons, 1965.

4. N.N. Greenwood&Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, 1997.

5. G.E. Rodger, Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002

6. G. L. Miessler&A. Donald, *Inorganic Chemistry* 4th Ed., Pearson, 2010.

7. P. Atkin, Shriver & Atkins's Inorganic Chemistry 5th Ed., Oxford University Press, 2010.

Practical:

Name of the Paper: Inorganic Chemistry-II Paper Code: CHM-6 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

1. Iodometric estimation of potassium dichromate and copper sulphate

2. Iodimetric estimation of antimony in tartaremetic

3.Estimation of amount of available chlorine in bleaching powder and household bleaches

- 4. Estimation of iodine in iodized salts.
- 5. Iodimetric estimation of ascorbic acid in fruit juices.
- 6.Estimation of dissolved oxygen in water samples.
- 7. Gravimetric estimation of sulphate as barium sulphate.
- 8. Gravimetric estimation of aluminium as oximato complex

9.Preparation of the following: potash alum, chrome alum, tetraamminecopper(II) sulphate mono-hydrate, potassium trioxalatoferrate(III) (any two, including one double

salt and one complex).

- 1.G. Svehla&Vogel's, *Qualitative Inorganic Analysis*, Pearson Education, 2012.
- 2.J. Mendham&Vogel's, *Quantitative Chemical Analysis*, Pearson, 2009.

MINOR-7

NAME OF THE PAPER (CODE) : ORGANIC CHEMISTRY-III (CHM-7.1)

Number of Credit03

Number of Hours of Lecture45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the Paper- Organic Chemistry-III:

CO 1:	To Understand and explain the electronic displacements and reactive intermediates and their applications in basic concepts.
CO 2:	To Formulate the mechanistic route of organic reactions by recalling and correlating the fundamental concepts• Identify and comprehend mechanism for free radical substitution,
	electrophilic addition, nucleophilic substitution and elimination reactions.
CO 3:	To Understand the fundamental concepts of stereochemistry.
CO 4:	To Understand and suitably use the chemistry of hydrocarbons.
CO 5:	To Understand carbohydrates their sources, extractions and compositions.

Unit & Title	Unit Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		
UNIT 1 Carboxylic acids and their derivatives	Carboxylic acids (aliphatic and aromatic) <i>Preparation:</i> Acidic and Alkaline hydrolysis of esters. <i>Reactions:</i> Hell – Vohlard - Zelinsky Reaction.	CSO 1.1: to define Carboxylic acid (K) CSO 1.2: to differentiate and explain the aliphatic and aromatic carboxylic acids.(U) CSO 1.2:to define Esters.(K) CSO 1.3: to discus the preparation of Acidic amd Alkaline hydrolysis of Esters.(U) CSO 1.4: to define Hell – Vohlard - Zelinsky Reaction. (K) CSO 1.5: to explain the reactions of Hell – Vohlard - Zelinsky Reaction.(U)	6	12	
UNIT 2 Carboxylic acid derivatives (aliphatic)(Upto 5 carbons):	Preparation:Acidchlorides,Anhydrides,Esters and Amides fromacidsandandtheirinterconversion.Reactions:Comparativestudy ofnucleophilicityofacylderivatives.ReformatskyReaction,Perkin condensation.	CSO 2.1: to explain the preparation od Acid Chlorides, Anhydrides, Esters and Amides from acids.(U) CSO 2.2: to discuss the interconversion process of Acid chlorides, Anhydrides, Esters and Amides from acids. CSO 2.3: to define acyl derivatives.(K) CSO 2.4:to discuss the comparative study of nucleophility of acyl derivatives.	7	14	

		CSO 2.5: to define		
		Reformatsky Reaction.(K) CSO 2.6: to explain the		
		Reformatsky Reaction.(U)		
		CSO 2.7: to define Perkin		
		condensation.(K)		
		CSO 2.8: to explain		
		Perkin condensation.(U)	10	10
UNIT 3	Amines (Aliphatic and	CSO 3.1: to define	10	18
Amines and	Aromatic): (Upto 5	amines.(K)		
Diazonium salts	carbons)	CSO 3.2: to differtitate and		
saits	carbons)	explain aliphatic and aromatic properties of amines upto to 5		
	Preparation: from alkyl	carbons.(U)		
	halides, Gabriel's	CSO 3.3: to explain the		
		preparation of amins from		
	Phthalimide synthesis,	alkyl halides.(U)		
	Hofmann Bromamide	CSO 3.4: to defineGabriel's		
		Phthalimide synthesis.(K)		
	reaction.	CSO 3.5: to explain		
	Reactions: Hofmann vs.	theGabriel's Phthalimide		
	Southoff alimination	synthesis.(U)		
	Saytzeff elimination,	CSO 3.6: to define		
	Carbylamine test,	Hofmann Bromamide		
	Hinsberg test, with	reaction.(K)		
		CSO 3.7: to explain the		
	HNO ₂ , Schotten –	Hofmann Bromamide		
	Baumann Reaction.	reaction.(U)		
		CSO 3.8: to explain the		
	Electrophilic substitution	hofmann vs Saytzeff		
	(case aniline): nitration,	elimination reactions.(U)		
	bromination,	CSO 3.9: to explain the		
		Carbylamine test and		
	sulphonation.	Hinsberg test using $HNO_2.(U)$		
	Diazonium salts:	CSO 3.10: to define		
		Schotten-Baumann		
	<i>Preparation:</i> from	reacrtion.(K)		
	aromatic amines.	CSO 3.12: to explain the reactions of Schotten-		
	<i>Reactions:</i> conversion to	Baumann mechanism.(U)		
	<i>Neuchons</i> : conversion to	CSO 3.13: to define		
	benzene, phenol, dyes.	Electrophilic substitution.(K)		
		CSO 3.14: to explain the		
		nitration, bromination and		
		sulphonation reaction in		
		reference to anilne.		
		CSO 3.15: to define		
		diazonium salts.(K)		
		CSO 3.16:to discuss the		
		preparation of diazonium		
		salts from aromatic		
		amines.(U)		
		CSO 3.17: To understand the		

		conversion reactions to		
UNIT 4	Preparation of Amino	benzene,phenol,dyes.(U) CSO 4.1: to explain the	12	30
Amino Acids,		preparation of Amino acids	12	50
Peptides and	Acids: Strecker synthesis	from Strecker synthesis using		
Proteins	using Gabriel's	Gabriel Phthalimide		
TTORMS	phthalimide synthesis.	synthesis. CSO 4.2: to deifnezwitter		
	Zwitterion, Isoelectric	ion.(K)		
	point and Electrophoresis.	CSO 4.3: to explain zwitter ion with examples.(U)		
	Reactions of Amino acids:	CSO 4.4: to define		
	ester of -COOH group,	Electrophoresis.(K) CSO 4.5:to understand the		
	acetylation of -NH2	process involved in		
	group, complexation with	Electrophoresis.(U) CSO 4.6: to analyse various		
	Cu2+ ions, ninhydrin test.	reactions of Amino acids		
	Overview of Primary,	inly oving ester of -COOH		
	Secondary, Tertiary and	group,acetylation of –NH ₂ group.(A)		
	Quaternary Structure of	CSO 4.7: to analyse		
	proteins.	complexation reactions with Cu ²⁺ ions and processes		
	Determination of Primary	involving ninhydrin test.(A) CSO 4.8: to deinfe		
	structure of Peptides by	proteins.(K)		
	degradation Edmann	CSO 4.9: to discuss the classification of		
	degradation (N- terminal)	primary.Secomdary,Tertiary		
	and C-terminal	and Quaternary structure of proteins with examples.(A)		
	(thiohydantoin and with	CSO 4.10: to analyse the		
	carboxypeptidase	determination of Primary structure of Peptides by		
	enzyme). Synthesis of	degradation		
	simple peptides (upto	involvingEdmann		
	dipeptides) by N-	degradation (N- terminal) and C-terminal (thiohydantoin		
	protection (t-	and with carboxypeptidase enzyme).(A)		
	butyloxycarbonyl and	CSO 4.11: to analyse the		
	phthaloyl) & C-	synthesis of simple peptides (upto dipeptides) by applying		
	activating groups and	N-protection (t-		
	Merrifield solid-phase	butyloxycarbonyl and phthaloyl).		
	synthesis.	CSO 4.12: to discuss		
		activation groups with some		
		examples and explain C-		
		activating groups and		

		Merrifield solid-phase		
		synthesis.(U)		
UNIT 5 Carbohydrates	Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation.	CSO 5.1: to define carbohydrates with examples.(K) CSO 5.2: to classify carbohydrates and explain its general properties.(U) CSO 5.3: to define Glucose and Fructose.(K) CSO 5.4: to explain the Glucos and Fructose with examples (open chain and cyclic structure both for glucose and fructose) CSO 5.5: to explain and determine the configuration of monosaccharides.(U) CSO 5.6: to understand the absolute configuration of Glucose and fructose in its Structures and reactions.(K) CSO 5.7: to define mutarotation.(K) CSO 5.8: to explain the ascending and descending phenomenon involved in monosaccharides.(U) CSO 5.9: to explain the strucutural organization of disacharrides involving sucrose, cellobiose, maltoseand lactose.(U) CSO 5.10: to explain the strucutural organization of polysacharrides involving starch and cellulose.(U)	10	26

- 1. R.T.Morrison & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)Pvt. Ltd. (Pearson Education).2010.
- I.L.Finar, Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 2002.
- I.L.Finar, Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 2002.
- 4. D.L.Nelson&M.M. Cox, Lehninger's Principles of Biochemistry 7th Ed., W. H. Freeman. 2021.

Practical:

Name of the Paper: Organic Chemistry-III Paper Code: CHM-7.1 P Number of Credit: 01 Number of Hours of Lecture: 30 lectures

Practicals: Organic Chemistry

I.Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

II . Separation of amino acids by paper chromatography

- 1. Determination of the concentration of glycine solution by formylation method.
- 2. Titration curve of glycine.
- 3. Action of salivary amylase on starch.
- 4. Effect of temperature on the action of salivary amylase on starch.
- 5. Differentiation between a reducing and a non-reducing sugar.

Suggested Readings:

- B.D. Khosla, V.C. Garg&A. Gulati,(2011)Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi.2015
- 2. V.K. Ahluwalia&R.Aggarwal, Comprehensive Practical Organic Chemistry, Universities Press.2001.

NAME OF THE PAPER (CODE)	: BIOINORGANIC CHEMISTRY (CHM-7.2)
Number of Credit	03
Number of Hours of Lecture	45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the-**Bioinorganic Chemistry:**

CO 1	To Identify different metals ions as essential, non-essential, trace and toxic in biological
	systems.
CO 2	To Understand the role of metal ions for biological system.
CO 3	To understand the role of metals in Chlorophyll and Bone formation.
CO 4	To Classify toxic metal ions and their effects in living system.
CO 5	To Explore new areas of research in both chemistry and allied fields.

Unit & Title	Title Contents	Course Specific Objectives	Lecture	Marks	LOs
		(CSOs)	Hours		

Introductionbio-inorganic chemistry. Metal ions present in biological systems and their classification on the basis of action (essential, non- essential, non- essential, race & toxic). Classification of metallobiomolecules (enzymes, transport and storage proteins and non- proteins). Brief idea about membrane transport, channels, pumps.CSO 1.3: to classify present in biological systemsImage: classify metal biomolecules (CSO 1.4: to define (CSO 1.4: to classify metallobiomolecules based on enzymes, transport, channels, pumps.Image: classify metallobiomolecules based on enzymes, transport, channels, proteins and non- proteins.(U) CSO 1.6: to caplain the importance of membrane transport, channels, pumps.Image: classify metallobiomolecules based on enzymes, transport, channels, pumps.(U)Image: classify metallobiomolecules based on enzymes, transport, channels, pumps.(U)Image: classify metallobiomolecules based on enzymes, transport, channels, pumps.(U)Image: classify metallobiomolecules based on enzymes, transport, channels, pump.(U)Image: classify metallobiomolecules based on enzymes, transport, channels, pump.(U)Image: classify metallobiomoleculesImage: classify metallobiomoleculesUNIT 2 (a) Role of s- block Elements in Biological systemRole of Mg2* and Ca2* classify mump.(K)CSO 2.1: to explain the role of metal ions in biological systems with special reference to Mg2* and Ca2* to Mg2* and Ca2* to define Na/K pump.(W)Image: classify cSO 2.1: to define Ca pump.(W)Image: classify cSO 2	UNIT 1	A brief introduction to	CSO 1.1: to understand bio-	10	22
chemistry. Metal ions present in biological systems and their classification on the basis of action (essential, non- essential, non				10	
present in biological systems and their classification on the basis of action (essential, non- essential, trace & toxic). Classification of metallobiomolecules (enzymes, transport and non- proteins). Brief idea about membrane transport, channels, pumps. importance of metals present in biological systems based on their properties as essential, non- essential, non- proteins.). Brief idea about membrane transport, channels, pumps. CSO 1.4: to define Metallobiomolecules to ased on enzymes, transport and storage proteins and non- proteins.(U) CSO 1.6: to explain the importance of membrane transport, channels, pumps.(U) UNIT 2 (a) Role of s- block Elements in Biological systems with special pump. Role of metal ions reference to Na', K' and Mg ²⁺ and Ca ²⁺ ions: Na'K pump; Ca pump. CSO 2.1: to explain the role of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions: Na'K pump; Ca pump.(K) CSO 2.3: to define Na/K pump.(U) CSO 2.5: to define Na/K pump.(U) CSO 2.5: to define Ca pump.(U) CSO 2.5: to define Ca pump.(U) CSO 2.5: to define Ca pump.(U) CSO 2.5: to define Ca pump.(U) CSO 3.1: to explain the Role of calcium in bone formation. 6 14	muouucuon	6			
systems and their classification on the basis of action (essential, non- essential, race & toxic). Classification of metallobiomolecules (enzymes, transport and storage proteins and transport, channels, pumps.biological systems (CSO 1.3: to classify metallobiomolecules based on enzymes, transport and storage proteins. Brief idea about membrane transport, channels, pumps.biological systems.(U) CSO 1.4: to define Metallobiomolecules based on enzymes, transport and storage proteins and on- proteins.(U) CSO 1.6: to caplain the importance of membrane transport, channels, pumps.(U)UNIT 2 (a) Role of s- block Elements in Biological SystemRole of metal ions and Mg2 ² and Ca2 ² ions: Na/K pump; Ca pump.CSO 2.1: to explain the role of metal ions in biological systems with special reference to Na ⁺ , K ⁺ CSO 2.2: to explain the role ions: Na/K pump; Ca pump.(K) CSO 2.3: to define Na'K pump.(K) CSO 2.4: to explain the Role of metal ions in biological systems with special reference to Mg2 ²⁺ and Ca2 ²⁺ ions: Na/K pump; Ca pump.(K) CSO 2.4: to explain the Role of metal ions in biological systems with special reference to Mg2 ²⁺ ions in energy production and clock Elements chlock Elements chlock Elements chlock for the formation.614UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2 ²⁺ ions in calcium in bone clock for calcium in bone clock for adde clock formation.CSO 3.1: to explain the Role of Mg2 ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2: to know the intake of calcium in bone KNord challen in bon		•	1		
classification on the basis of action (essential, non- essential, trace & 		1 0			
basis of action (essential, non- essential, trace & toxic). Classification of metallobiomolecules (enzymes, transport and storage proteins and ransport, channels, pumps.present in biological based on their properties as essential, non-essential, trace & toxic.UNIT 2 (a) Role of s- block Elements in Biological SystemRole of Mg2 ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.Role of Mg2 ²⁺ ions in energy production and chlorophyll. Role of calcium in bone for calcium in boneStorage proteins (CSO 1.4: to define (CSO 1.4: to classify metallobiomolecules based on enzymes, transport and storage proteins and non- proteins.(U) (CSO 1.6: to explain the ron-proteins, U)To (CSO 1.6: to explain the role or s- present in biological systems with special reference to Na', K' and Mg2 ²⁺ and Ca2 ²⁺ ions: Na/K pump; Ca pump.Storage Proteins and metal ions in biological systems with special reference to Na', K' (CSO 2.4: to explain the role of metal ions in biological systems with special reference to Mg2 ²⁺ and Ca2 ²⁺ ions: Na/K pump; Ca pump.To (CSO 2.4: to explain the Na/K pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2 ²⁺ ions in energy production and chlorophyll. Role of calcium in boneCSO 3.1: to explain the Role of Mg2 ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2: to know the intake of calcium in Bone.(K) CSO 3.3: to understand the Role of calcium in bone614		•			
(essential, non-essential, trace & toxic). Classification of metallobiomolecules (coxymes, transport and storage proteins and non- proteins). Brief idea about membrane transport, channels, pumps. based on their properties as essential, trace & toxic. UNIT 2 Role of metal ions present in biological in Biological System Role of metal ions preference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump. CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K.(U) 8 17 UNIT 3 Role of Mg ²⁺ ions in Biological system with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) CSO 2.4: to explain the role of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) 8 17 UNIT 3 Role of Mg ²⁺ ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) CSO 2.4: to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) 6 14 UNIT 3 Role of Mg ²⁺ ions in Biological system 50 al: to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.1: to explain the Role of Calcium in Bone formation. 6 14		basis of action	-		
essential, trace & toxic). Classification of metallobiomolecules (enzymes, transport and storage proteins and non- proteins). Brief idea about membrane transport, channels, pumps.essential, non-essential, trace & toxic. CSO 1.4: to define Metallobiomolecules based on enzymes, transport and storage proteins and non- proteins.(U) CSO 1.6: to explain the importance of membrane transport, channels, pumps.(U)Importance of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1: to explain the role of metal ions in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.2: to explain the role of metal ions in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1: to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2: to know the intake of calcium in Bone (SC 3.3: to uderstand the Role of calcium in bone614		(essential, non-			
metallobiomolecules (enzymes, transport and non- proteins). Brief idea about membrane transport, channels, pumps.CSO 1.4: to define Metallobiomolecules. (K) CSO 1.5: to classify metallobiomolecules based on enzymes, transport and storage proteins and non- proteins.(U) CSO 1.6: to explain the importance of membrane transport, channels, pumps.Image: CSO 1.4: to define Metallobiomolecules. (K) CSO 1.5: to classify metallobiomolecules based on enzymes, transport and storage proteins and non- proteins.(U)UNIT 2 (a) Role of s- block Elements in Biological SystemRole of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1: to explain the role of metal ions in biological systems with special reference to Mg ²⁺ ions. (L) CSO 2.3: to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(K) CSO 2.4: to explain the Role of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone614UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1: to explain the Role of calcium in Bone,(K) CSO 3.2: to know the intake of calcium in Bone,(K)614		essential, trace &			
metallobiomolecules (enzymes, transport and non- proteins). Brief idea about membrane transport, channels, pumps.CSO 1.4: to define Metallobiomolecules. (K) CSO 1.5: to classify metallobiomolecules based on enzymes, transport and storage proteins and non- proteins.(U) CSO 1.6: to explain the importance of membrane transport, channels, pumps.Image: CSO 1.4: to define Metallobiomolecules. (K) CSO 1.5: to classify metallobiomolecules based on enzymes, transport and storage proteins and non- proteins.(U)UNIT 2 (a) Role of s- block Elements in Biological SystemRole of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1: to explain the role of metal ions in biological systems with special reference to Mg ²⁺ ions. (L) CSO 2.3: to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(K) CSO 2.4: to explain the Role of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone614UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1: to explain the Role of calcium in Bone,(K) CSO 3.2: to know the intake of calcium in Bone,(K)614		toxic). Classification of	& toxic.		
storage proteins and non- proteins). Brief idea about membrane transport, channels, pumps.CSO 1.5: to classify metallobiomolecules based on enzymes, transport and storage proteins and non- proteins.(U) CSO 1.6: to explain the importance of membrane transport, channels, pumps.(U)UNIT 2 (a) Role of s- block Elements in Biological SystemRole of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1: to explain the role of metal ions in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.Solution of the transport, channels, pumps.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2: to know the intake of calcium in Bone.(K) CSO 3.2: to understand the Role of calcium in bone614			CSO 1.4: to define		
non-proteins). Brief idea about membrane transport, channels, pumps.metallobiomolecules based on enzymes, transport and storage proteins and non-proteins.(U) CSO 1.6 : to explain the importance of membrane transport, channels, pumps.(U)UNIT 2 (a) Role of s- block Elements in Biological SystemRole of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ ions: Na/K pump; Ca pump.CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K.(U)817UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to uderstand the Role of calcium in bone614		(enzymes, transport and	Metallobiomolecules. (K)		
idea about membrane transport, channels, pumps.enzymes, transport and storage proteins and non- proteins.(U) CSO 1.6 : to explain the importance of membrane transport, channels, pumps.(U)117UNIT 2 (a) Role of s- block Elements in Biological SystemRole of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K.(U) CSO 2.2 : to explain the role of metal ions in biological systems with special reference to Ma ⁺ , K.(U) CSO 2.3 : to define Na/K pump.(U) CSO 2.4: to explain the Na/K pump.(U) CSO 2.4: to explain the Na/K pump.(U) CSO 2.4: to explain the Ca pump.(U)817UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1: to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2: to know the intake of calcium in Bone.(K) CSO 3.3: to understand the Role of calcium in bone614		storage proteins and	CSO 1.5: to classify		
transport, channels, pumps.proteins and non- proteins.(U) CSO 1.6 : to explain the importance of membrane transport, channels, pumps.(U)UNIT 2 (a) Role of s- block Elements in Biological SystemRole of metal ions present in biological reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.Role of metal ions of metal ions in biological systems with special reference to Na ⁺ , K.(U)8SystemRole of s- ions: Na/K pump; Ca pump.CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Ma ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.817UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone formation.614		1 /	metallobiomolecules based on		
pumps.CSO 1.6 : to explain the importance of membrane transport, channels, pumps.(U)UNIT 2 (a) Role of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K.(U)817SystemRole of metal ions present in biological systems with special reference tons: Na/K pump; Ca pump.CSO 2.2 : to explain the role of metal ions in biological systems with special reference to Ma ⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.817UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone for calcium in bone for calcium in bone614					
UNIT 2Role of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K ⁺ to Na ⁺ , K.(U)817Systemand Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.2 : to explain the role of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U)14UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in Bone.(K)614					
UNIT 2 (a) Role of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K.(U)817Systemand Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.CSO 2.2 : to explain the role of metal ions in biological systems with special reference to Ma ⁺ , K.(U)CSO 2.2 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K.(U)17UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U)614		pumps.			
UNIT 2 Role of metal ions present in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump. CSO 2.1 : to explain the role of metal ions in biological systems with special reference to Na ⁺ , K.(U) 8 17 System and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump. of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump. So 2.2 : to explain the role of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) CSO 2.3 : to define Na/K pump.(K) UNIT 3 Role of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation. Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) 6 14					
(a) Role of s- block Elements in Biological Systempresent in biological systems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.of metal ions in biological systems with special reference to Na ⁺ , K.(U)Systemand Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.Role of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.614				0	
block Elements in Biological Systemsystems with special reference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.systems with special reference to Na ⁺ , K.(U)Systemand Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.systems with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.1: to explain the Role of calcium in Bone.(K) CSO 3.3: to understand the Role of calcium in bone614			-	8	17
in Biological Systemreference to Na ⁺ , K ⁺ and Mg ²⁺ and Ca ²⁺ ions: Na/K pump; Ca pump.to Na ⁺ , K.(U) CSO 2.2 : to explain the role of metal ions in biological systems with special reference to Mg ²⁺ and Ca ²⁺ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U) CSO 2.5 : to define Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614		1 0	e		
Systemand Mg2+ and Ca2+ ions: Na/K pump; Ca pump.CSO 2.2 : to explain the role of metal ions in biological systems with special reference to Mg2+ and Ca2+ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U) CSO 2.5 : to define Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2+ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg2+ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in bone614		• •	•		
ions: Na/K pump; Ca pump.of metal ions in biological systems with special reference to Mg2+ and Ca2+ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U) CSO 2.5 : to define Ca pump.(K) CSO 2.6: to explain the Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2+ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg2+ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone (K) CSO 3.3 : to understand the Role of calcium in bone614					
pump.systems with special reference to Mg2+ and Ca2+ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U) CSO 2.5 : to define Ca pump.(K) CSO 2.6: to explain the Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2+ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg2+ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614	System	-	-		
to Mg2+ and Ca2+ ions.(U) CSO 2.3 : to define Na/K pump.(K) CSO 2.4: to explain the Na/K pump.(U) CSO 2.5 : to define Ca pump.(U) CSO 2.6: to explain the Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2+ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg2+ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614			e		
CSO 2.3 : to define Na/K pump.(K)CSO 2.4: to explain the Na/K pump.(U)CSO 2.5 : to define Ca pump.(K)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U)CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone		pump.			
pump.(K) CSO 2.4: to explain the Na/K pump.(U) CSO 2.5 : to define Ca pump.(K) CSO 2.6: to explain the Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614					
CSO 2.4: to explain the Na/K pump.(U)CSO 2.5: to define Ca pump.(K)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2+ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1: to explain the Role of Mg2+ ions in energy production and chlorophyll.(U)CSO 3.1: to explain the Role of Mg2+ ions in energy production and chlorophyll.(U)6					
pump.(U) CSO 2.5 : to define Ca pump.(K) CSO 2.6: to explain the Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614					
CSO 2.5 : to define Ca pump.(K)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2+ ions in energy production and chlorophyll. Role of formation.CSO 2.5 : to define Ca pump.(K) CSO 2.6: to explain the Ca pump.(U)UNIT 3 (b) Role of s- energy production and chlorophyll. Role of formation.Role of Mg2+ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg2+ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone6			-		
CSO 2.6: to explain the Ca pump.(U)UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg ²⁺ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg ²⁺ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614					
UNIT 3 (b) Role of s- block Elements in Biological SystemRole of Mg2+ ions in energy production and chlorophyll. Role of formation.CSO 3.1 : to explain the Role of Mg2+ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614			pump.(K)		
UNIT 3 (b) Role of s- block Elements in BiologicalRole of Mg2+ ions in energy production and chlorophyll. Role of calcium in bone formation.CSO 3.1 : to explain the Role of Mg2+ ions in energy production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone614			CSO 2.6: to explain the Ca		
(b) Role of s- block Elementsenergy production and chlorophyll. Role of calcium in boneof Mg2+ ions in energy production and chlorophyll.(U)(b) Role of s- block Elementsenergy production and chlorophyll. Role of calcium in boneof Mg2+ ions in energy production and chlorophyll.(U)(b) Role of s- block Elementsenergy production and chlorophyll. Role of calcium in boneof Mg2+ ions in energy production and chlorophyll.(U)(b) Role of calcium in bonecalcium in boneof CSO 3.2 : to know the intake of calcium in Bone.(K)(c) SSO 3.3 : to understand the Role of calcium in bonecalcium in bone			pump.(U)		
block Elements in Biological Systemchlorophyll. Role of calcium in bone formation.production and chlorophyll.(U) CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone	UNIT 3	Role of Mg ²⁺ ions in	CSO 3.1 : to explain the Role	6	14
in Biological Systemcalcium in bone formation.CSO 3.2 : to know the intake of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone	(b) Role of s-	energy production and	of Mg ²⁺ ions in energy		
System formation. of calcium in Bone.(K) CSO 3.3 : to understand the Role of calcium in bone	block Elements	1.	1 1 1 1		
CSO 3.3 : to understand the Role of calcium in bone	in Biological				
Role of calcium in bone	System	formation.			
formation.(U)		D-1f: '		10	20
56	UNIT 4 Dala afinan in			12	28
	Role of iron in	1 0	1 . ,		
	Biological System	· •	÷		
Systemmyoglobin), Perutzstorage of Iron i.e.mechanism,haemoglobin and myoglobin.	System		6		
Cooperative effect, CSO 4.3 : to explain the Perutz		,	• • •		
Bohr effect, mechanism.(A)		1	-		
comparison of oxygen CSO 4.4 : to define		,			
saturation curves of Cooperative effect.(K)					
haemoglobin and CSO 4.5 : to explain the			-		
myoglobin, carbon Cooperative effect.(U)		-	1	1	1 1

	monoxide. Storage and transport of iron in humans (ferritin and transferrin).	CSO 4.6 : to explain the Bohr effect.(U) CSO 4.7 : to understand the comparison of oxygen saturation curves of haemoglobin and myoglobin,carbon monoxide. (U) CSO 4.8: to explain the Storage and transport of iron in humans-ferritin and transferring.(U)			
UNIT 5: Toxicity of Heavy Metal Ions	Toxicity of heavy metal ions (Hg, Pb, Cd and As), reasons for toxicity and their antidotes	CSO 5.1: to define heavy metals.(K) CSO 5.2: to explain the Toxicity of heavy metal ions Hg,Pb. CSO 5.3: to explain the Toxicity of heavy metal ions Cd,As. CSO 5.4: to understand the reasons for toxicity of heavy metals and their antidotes.	9	19	

Practical:

Name of the Paper: Bioinorganic Chemistry Paper Code: CHM-7.2P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

1. Spectrophotometric estimation:

- (i) Verify Lambert-Beer's law and determine the concentration of CuSO₄/KMnO₄/K₂Cr₂O₇/CoSO₄ in a solution of unknown concentration
- (ii) Spectrophotometric estimation of Fe^{2+} ions by using 1, 10- phenanthroline
- (iii) Determination of the composition of the Fe^{3+} salicylic acid complex in solution by Job's method.

2. Complexometric titrations using disodium salt of EDTA:

- (i) Estimation of Zn^{2+} using EBT / Xylenol orange as indicator
- (ii) Estimation of Mg²⁺
- (iii) Estimation of Ca^{2+} by substitution method
- (iv) To estimate the concentration of Ca in commercially available medicines.
- (v) To estimate the Mg present in multivitamins.

1. J.E. Huheey, E.A. Keiter, R. LKeiter & O.K. Medhi, *Inorganic Chemistry-Principles of Structure and Reactivity*, Pearson Education. 2009.

2. D.D. Shriver, P.Atkins&C.H. Langford, Inorganic Chemistry 2nd Ed., Oxford University Press, 1994.

3. R.R. Crichton, Biological Inorganic Chemistry: An Introduction. Amsterdam, Elsevier. 2008.

4. W. Kaim, B. Schwederski& A. Klein, *Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life: An Introduction and Guide. 2nd Edition*, Wiley. 2014.

Practical:

1.G.H. Jeffery, J. Bassett, J.Mendham & R.C. Denney, *Vogel's Textbook of Quantitative Chemical Analysis*, John Wiley and Sons. 1989.

MINOR-9

NAME OF THE PAPER (CODE): MEDICINES IN DAILY LIFE (CHM-8)Number of Credit03Number of Hours of Lecture45

COURSE OBJECTIVES (COs)

The following are the Course Objectives (COs) for the paper-Medicines in Daily life:

	whig are the course objectives (COS) for the paper wedenes in Daily me.
CO 1:	To Understand the role of different types medicines on human physiology and their origin.
CO 2:	To Gain the knowledge of active pharmaceutical ingredient and their roles in different diseases.
CO 3:	To Learn the proper use of different medicines and their effect and side effects.
CO 4:	To Learn the techniques of administering blood group, pulse rate, blood pressure and may other
	general diagnostic applications.
CO 5:	To Understand astringents and suppliments and their derivatives.

Unit & Title	Unit Course	Course Specific Outcomes (CSOs)	Lecture Hours	Marks	LOs
UNIT 1 General Introduction	Introduction-Health, disease, drugs, chemotherapy, approaches in drug designing, classification of drugs and their origin.	CSO 1.1: to introduce basics of Human Health.(K) CSO 1.2: to explain the Health disease in Humans.(U) CSO 1.3: to define drugs and chemotherapy.(K) CSO 1.4: to understand the basic concepts of drugs and chemotherapy.(U) CSO 1.5: to understand the various approaches involved in drug designing.(U) CSO 1.6: to callsify drugs based on their properties and discuss its origins.	10	22	
UNIT 2 Different class of medicines	a)Structure of active ingredients, uses, dosage, side effects and their natural remedies: Analgesics and antipyretics- Aspirin, paracetamol, ibuprofen, morphine, codeine Antibiotics- Amoxicillin, norfloxacin, ciprofloxacin Antihistamines or antiallergics- Cetrizine and Levocetrizine (role of stereoisomers) Antiparasitic- Albendazole.	CSO 2.1: to explain the Structure of active ingredients, uses, dosage, side effects and their natural remedies: Analgesics and antipyretics- Aspirin and Paracetamol. CSO 2.2: to explain the Structure of active ingredients, uses, dosage, side effects and their natural remedies: Analgesics and antipyretics- Ibuprofen, morphine and codeine. CSO 2.3: to define Antibiotics.(K) CSO 2.4: to explain the properties of Amoxicilli,norfloxacin and ciprofloxacin. CSO 2.4: to define Antihistamines or	10	22	

UNIT 3 Different class of medicines	b)Structure of active ingredients, uses, dosage, side effects and their natural remedies: Antidiabetics- Insulin, Glipizide and metformin Antihypertensive – Amlodipine and its natural remedies- Rauwolfia. Diuretic- Lasix Antidepressant-Zoloft and its natural treatment Antifungal – fluconazole, Itraconazole .	antiallergics(K) CSO 2.5: to explain the properties of Cetrizine and Levocetrizine-role of stereoisomers. CSO 2.6: to define Antiparasitic.(K) CSO 2.7: to explain the properties of Albendazole. CSO 3.1: to exaplin the Structure of active ingredients, uses, dosage, side effects and their natural remedies: Antidiabetics-Insulin,Glipizde and metformin. CSO 3.2: to define Antihypertensive.(K) CSO 3.3: to explain the properties of Amlodipine and its natural remedies- Rauwolfia. CSO 3.4: to explain the propereties of Diuretic.(K) CSO 3.5: to define Antidepressant. CSO 3.6: to explain theAntidepressant-Zoloft and its natural treatment. CSO 3.8: to explain the Antifungal.(K) CSO 3.8: to explain the Antifungal-fluconazole,	10	22
UNIT 4 Different Class of Medicines	Structure of active ingredients, uses, dosage, side effects and their natural remedies: Antacids- Ideal properties of antacids, combinations of antacids, Sodium 40 Bicarbonate, rantidine, milk of magnesia, aluminium hydroxide gel Anticoagulants/antiplatelet drugs- Warfarin, heparin and Ecosprin Anaesthetics- Atracurium, Desflurane Poison and Antidote: Sodium thiosulphate, Activated charcoal, Sodium nitrite.	Itraconazole . CSO 4.1: to define Antacids.(K) CSO 4.2: to explain the Ideal properties of antacids.(U) CSO 4.3: to understand the combinations of antacids.(K) CSO 4.4: to explain Sodium 40 bicarbonate.(U) CSO 4.5: to explain various properties of Bicarbonate and rantidine.(U) CSO 4.6: to explain various properties of milk of magnesia, aluminium hydroxide gel.(U) CSO 4.7: to define Anticoagulants/antiplatelet drugs. CSO 4.8: to analyse Anticoagulants/antiplatelet drugs- Warfarin, heparin and Ecosprin.(A) CSO 4.9: to define	10	22

		Anaesthetics.(K) CSO 4.10: to analyse Anaesthetics- Atracurium, Desflurane.(A) CSO 4.11: to define poison and Antidote.(K) CSO 4.12: to explain the properties of Poison and Antidote: Sodium thiosulphate, Activated charcoal, Sodium nitrite.(U)			
UNIT 5 Different Class of Medicines	Astringents: Zinc Sulphate, Potash Alum Supplements- zinc and calcium, vitamins. Synthesis of small molecule drugs like aspirin and paracetamol	CSO 5.1: to define Astringents.(K) CSO 5.2: to explain the properties and write the chemical formulas of Astringents:Zinc Sulphate, Potash Alum.(U) CSO 5.3: to define supplements.(K) CSO 5.4: to explain the properties of supplements- zinc and calcium, vitamins.(U) CSO 5.5: to explain the synthesis and reactions involved in smallmolecule drugs like aspirin and paracetamol.(U)	5	12	

Practical:

Name of the Paper: Medicines in Daily Life Paper Code: CHM-8 P Number of Credit: 01 Number of Hours of Lecture: 30 Lectures

- 1. Determination of heart rate and pulse rate, blood pressure and discussion on medicines affecting them.
- 2. Identification test- Magnesium hydroxide, Sodium bicarbonate, Calcium gluconate.
- 3. Preparation of inorganic pharmaceuticals- Boric acid Potash alum
- 4. Determination of sugar content in the given solution.
- 5. Estimation of zinc and calcium in a given solution.
- 6. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose).
- 7. Qualitative tests for Proteins
- 8. Qualitative analysis of vitamin C.
- 9. Isolation of paracetamol (API) from a commercial tablet
- 10. Isolation of aspirin (API) from tablet and recording of melting point (synthesis needs discussion)

Suggested Readings:

Theory:

- 1. G.L. Patrick, Introduction to Medicinal Chemistry, Oxford University Press.2001
- 2. T.L. Lemke & D.A. William, Foye's Principles of Medicinal Chemistry, 5th Ed., USA.2002.
- 3. H.Singh, V.K. Kapoor, Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan. 1996.
- 4. G.R. Chatwal, *Pharmaceutical chemistry*, inorganic (vol. 1), Himalayan publishing house.2010.
- 5. https://go.drugbank.com./

Practicals:

1. G.H. Jeffery, J. Bassett, J.Mendham, R.C. Denney, *Vogel's Textbook of Quantitative Chemical Analysis*, John Wiley and Sons. 1989.

2. V.K. Ahluwalia, S. Dhingra, *ComprehensivePractical Organic Chemistry: Qualitative Analysis*, University Press.2004.

3. S. Munwar, S.Ammaji, *Comprehensive Practical Manual of Pharmaceutical Chemistry*, Educreation Publishing.2019.

4. P.Mondal, S. Mondal, Handbook of Practical Pharm. 2019.

SKILL ENHANCEMENT COURSES (SEC)

I-SEMESTER

NAME OF THE PAPER (CODE)	: BASICS OF ANALYTICAL CHEMISTRY-I (CHS-1)
Number of Credit	02
Number of Hours of Lecture	30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (Cos) for the paper - Basics of Analytical Chemistry-I:

CO 1:	Able to handle the chemicals and equipment safely and properly.
CO 2:	Able to handle different glass apparatus and implement safe working practices in the laboratory.
CO 3:	Have an understanding about solution making.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objective (CSOs)	Hours		
UNIT 1	General introduction to	CSO 1.1:a brief	06	10	
Introduction-	chemistry lab, safety rules	introduction to			
Chemistry	and precautions in	chemistry lab. (K)			
Laboratory	chemistry laboratories, storage, ventilation,	CSO 1.2:to			
	lighting, fumes, cupboard,	demonstrate proper			
	hazards, precautions,	and safe laboratory			
	maintenance of laboratory,	procedures. (K)			
	definition of equipment/	CSO 1.3: to identify			
	apparatus, cleaning of	and locate safety			
	laboratories, apparatus	devices in the			
	and preparation room.	laboratory. (K)			
		CSO 1.4: to provide			
		guidelines to be used			
		in the event of fire,			
		chemical spill or			
		personal contamination			
		in the laboratory. (K)			
		CSO 1.5: to direct the			
		students for proper			
		maintenance of			
		laboratory, cleaning of			
		laboratories and			
		apparatus. (K)			
UNIT 2	(A) Glass apparatus	CSO 2.1:to know safe	17	30	
Lab	Beaker, test tube, boiling	laboratory practices by			
Apparatus	tube, conical flask, filtration flask, round	handling laboratory			

	bottom flask, flat bottom flask, funnel, separating funnel, watch glass, measuring cylinder, petridish, desiccator, measuring cylinder, glass	glassware, equipment appropriately. (K) CSO 2.2: to identify and know the function of various laboratory			
	rod, glass tube. (B)Volumetric and Heating apparatus Volumetric apparatus Volumetric flask, burette, pipette, analytical balance, electronic balance. Heating apparatus: Bunsen burner, water bath, sand bath, hot air oven, heating mantle (C) Miscellaneous Apparatus Buchner funnel, burner, test tube	equipment. (K) CSO 2.3:to know the names and uses of various glass apparatus. (K) CSO 2.4: to identify and know the function of various volumetric and heating apparatus. (K)			
UNIT 3	stand, tong, burette stand, clamp, china dish, wire gauze, cork, vacuum pumps, crucibles, clay pipe triangle, pestle and mortar, spatulas, thermometer, pH meter, Kipp's apparatus	CSO 3.1:to provide	07	10	
Solution Preparation	a solutions, components of a solution, types of solution, solubility, concentration terms - percentage, ppm, ppb, g/L, molarity, normality, molality, calculation of masses and volumes for preparation of solutions and their practical approach.	students with a practical approach towards various techniques. (K) CSO 3.2: to explain solutions, components of a solution, types of solution. (U) CSO 3.3: to understand and calculate the various concentration terms - percentage, ppm, ppb, g/L, molarity, normality and molality. (A) CSO 3.4: to know the calculation of masses and volumes for			
		preparation of solutions. (A)			

CSO 3.5:to	
incorporate	
experiments which	
involves volumetric	
estimation of	
chemicals and	
determination of	
various properties. (K)	
CSO 3.6: to analyze	
and gain experimental	
skill. (K)	

1. Vogel, I. Arthur *A Test book of Quantitative Inorganic Analysis* (Rev. by GH Jeffery and others) 5th Ed. The English Language Book Society of Longman, 1989.

2. Willard, H. Hobert et. al: *Instrumental Methods of Analysis*, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988

3. Christian, D. Gary Analytical Chemistry, 6th Ed. New York- John Willy, 2004.

4. Harris, C. Daniel *Quantitative Chemical Analysis*, 3 rd Edition, W.H. Freeman and Company, New York, 2001.

5. S.M. Khopkar, Basic Concepts of Analytical Chemistry New Age, International Publisher, 2009.

6. Koogs, West and Holler, *Fundamentals of Analytical Chemistry*, 6 th Edition, Sauders College Publishing, New York, 1991.

II-		<u>SEMESTER</u>
	NAME OF THE PAPER (CODE)	: BASICS OF ANALYTICAL CHEMISTRY-II (CHS-2)
	Number of Credit	02
	Number of Hours of Lecture	30

COURSE OBJECTIVES (COs)

The following are the Course Objectives (Cos) for the paper - Basics of Analytical Chemistry-II:

CO 1:	Have an understanding about the laboratory reagents and solvent reagents.
CO 2:	Develop skill about data handling and carry out sample preparation.
CO 3:	Get the distinction between quantitative and qualitative analysis.

Unit & Title	Unit Contents	Course Specific	Lecture	Marks	LOs
		Objectives (CSOs)	Hours	20	
UNIT 1 Laboratory Reagents and Solvents Reagents	Classification of reagents according to their action; (i) acids (ii) bases (iii) salts (iv) complexing agents (v) oxidizing and reducing agents (vi) precipitating agents (vii) chelating agents. Each type to be explained with at least one suitable example. Primary and secondary standards: Definition, characteristics, uses examples for different types of reactions. Solvents: Solute, Solvent & Solution, classification of solvents (i) Protic and aprotic (ii) Acidic, basic amphiprotic and neutral (iii) Aqueous and non- aqueous (iv) Polar and nonpolar. Each type is to be explained with at least one example.	CSO 1.1:to understand the classification of reagents with examples according to their action. (U) CSO 1.2:to discuss the characteristics of primary and secondary standardswithexamples for different types of reactions. (K) CSO 1.3:to define solute, solvent and solution. (K) CSO 1.4:to explain the classification of solvents giving suitable examples (U)	12	20	
UNIT 2 Chemical Analysis	Definition, collection of samples, selection of appropriate analytical method, preparation of the sample, analysing the sample using the selected method, technique, interpreting the results, report preparation.	CSO 2.1:to define and use the concept of sampling in quantitative chemical analysis. (K) CSO 2.2:to discuss the selection of appropriate analytical method and preparation of the sample. (U) CSO 2.3: to analyse the sample using the selected method, interpreting the	08	14	

		results and report preparation. (A)		
UNIT 3 Quantitative Analysis	Titration- Definition and difference between qualitative and quantitative analysis, types of titrations, end point, equivalence point, Indicators-types, oxidizing and reducing agents, gravimetric analysisdetailed description of the steps of gravimetric analysis, applications.	CSO 3.1:to understand the concept of titration and to differentiate between qualitative and quantitative analysis. (U) CSO 3.2:to describe the difference between an endpoint and an equivalence point in an acid-base titration. (K) CSO 3.3:to define and explain oxidizing and reducing agents. (K) CSO 3.4: to discuss the detailed description of the steps of gravimetric analysis and its applications. (U, A)	10	16

- 1. R.V, Ditts, Analytical Chemistry Methods of separation, 1974.
- 2. K.L.Williamson and D.C. Heath. Macroscale and Microscale Organic Experiments, 1989.
- 3. H. Middleton and Edward Arnold, Systematic Qualitative Organic Analysis, 1959.
- 4. H. Clarke and HodderArnold, Handbook of Organic Analysis, Qualitative and Quantitative, 1975
- 5. A.R. Tatchell, John Wiley, Vogel's Textbook of Practical Organic Chemistry, 1989.
- 6. A.M. James and F.E. Prichard, Longman, Practical Physical Chemistry, 1981
- 7. B.P. Levitt Longman. Findley's Practical Physical Chemistry, 1954
- 8. R.C. Das and B. Behera, Tata McGraw Hill, Experimental Physical Chemistry, 1983

SEMESTER

NAME OF THE PAPER (CODE)	: CHEMISTRY OF FRAGRANCES AND FLAVOURS: AN
	INDUSTRY'S PERSPECTIVE (CHS-3)
Number of Credit	02
Number of Hours of Lecture	30

COURSE OBJECTIVES (COs)

III-

The follo	wing are the Course Objectives (Cos) for the paper – Chemistry of Fragrances and Flavours: An Industry's Perspective:
CO 1:	Synthesis of various fragrance and flavour ingredients. Formulation methods, how different factors
	affects the formulation process in Fragrance and Flavour industry.
CO 2:	Uphold safety regulation and execute quality processes. Quality control in manufacturing process, legal aspects, classification of odour and odorants.
CO 3:	Different methods used for separation, purification and isolation of perfumes and flavours like distillation, extraction, crystallization, etc.

Unit &	Unit Contents	Course Specific	Lecture	Marks	LOs
Title		Objective (CSOs)	Hours		
UNIT 1	Introduction to fragrances, types	CSO 1.1: to impart	10	20	
Fragrances	of fragrances (Fragrance families	theoretical and			
	and classification)	practical knowledge of			
	History of perfumes, Perfumery raw materials, classification of odour, odour type and odorants India in the context of Fragrance Industry ABCs of perfumery, odour aspects of perfumes, fragrance	basic principles of perfumes. (K) CSO 1.2: to explain the types of fragrances. (U) CSO 1.3: to discuss the history of perfumes and unlocking the growth of perfume industry in India. (K)			
	pyramid, fragrance families	CSO 1.4: to			
	Chemistry of aromatic compounds in perfume making, Composition of fragrances	understand odour aspects of perfumes, fragrance pyramid and fragrance families (U)			
	Current trends in fragrances, sensory analysis of different products	CSO 1.5: to explain the chemistry behind perfume making. (K)			
	Study of the raw materials used in perfumery (origin, extraction	CSO 1.6: to discuss the origin and extraction			

	method, and olfaction) Key chemical reactions for conversion of raw materials to fragrances Extraction of essential oils used in perfumery Difference between alcohol and oil-based perfumes	method of perfume making. (K) CSO 1.7: to explain the chemical reactions for conversion of raw materials to fragrances. (U) CSO 1.8: to discuss the differences between alcohol and oil-based perfumes. (K)			
UNIT 2 Sustainable Fragrance by Design	The challenges of sustainability and how it impacts the industry Sustainability charter Green chemistry principles Commitment to Biodiversity	CSO 2.1:to discuss on the challenges of sustainability and how it impacts the industry Sustainability charter. (K) CSO 2.2:to learn green methods that aid to design and develop materials and processes to reduce the use and generation of hazardous substances in industry. (K) CSO 2.3:to understand various green chemistry concepts such as twelve principles of green chemistry. (U) CSO 2.4: to develop and utilize safer starting materials and synthetic routes for less hazardous substances. (K)	06	10	
UNIT 3 Flavours	Introduction to flavours, types of flavours, flavour raw materials Understanding of terms like, Flavour and Flavouring agents. Attributes of flavour, taste,	CSO 3.1:to discuss the role of flavour chemistry in food industry. (U) CSO 3.2: to	14	20	

odour, odour stimulation, basic	understand different		
tastes and the human olfactory	classes of flavour		
system.	compounds, their		
Stability of flavour in food,	flavors, sources and		
sensory evaluation of flavours in	interactions in food.		
foods, Various flavour	(U)		
formulation	CSO 3.3:to understand		
Iomutation	the chemical		
Flavour enhancers, modifiers,	composition of		
precursors, suppressors,	flavours and the		
solvents.	mechanism of their		
	formation. (U)		
Key chemical reactions for	CSO 3.4: to discuss the		
conversion of raw materials to	stability of flavour in		
flavours. Selection and	food, sensory		
application of flavours in foods	evaluation of flavours		
and beverages	in foods and various		
Legal aspects (natural flavours	flavour formulation.		
and natural flavouring	(K)		
substances, nature identical	CSO 3.5: to define		
flavouring substances, artificial	flavour enhancers,		
flavouring substances), and the			
FSSA act	modifiers, precursors,		
1 SSA det	suppressors with		
	examples. (K)		
	CSO 3.6: to explain		
	the chemical reactions		
	for conversion of raw		
	materials to flavours.		
	(U)		
	CSO 3.7: to discuss the		
	application of flavours		
	in foods and beverages.		
	(A)		
	CSO 3.8: the discuss		
	the legal aspects and		
	the salient features of		
	FSSA act. (A)		

Practicals:

- 1. Extraction of D-limonene from orange peel using liquid CO2.
- 2. Extraction of caffeine from coffee beans using liquid CO2.
- 3. Extraction of essential oils from lemon using steam distillation

- 4. Extraction of essential oils from lemon using liquid CO2.
- 5. Extraction of essential oils from fragrant flowers.
- 6. Determination of esters by Thin Layer Chromatography
- 7. Memorisation of different raw materials used in perfumery, perfume language, Memorisation of perfumes
- 8. Testing up of different flavours
- 9. Analysis of spectra of perfume formulations.
- 10. Field trip/ Industrial Visit and submit a report to the concerned Teacher.

- 1. S.Arctander, *Perfume and flavour materials of Natural origin*, Allured Publishing Corporation, USA, 2008.
- 2. S.Arctander, Volume I and II, *Perfume and Flavour Chemicals*, (Aroma Chemicals), Allured Publishing Corporation, USA, 2017.
- 3. T.Curtis, D. C.Williams, 2nd Edition, An Introduction to Perfumery, Micelle Press, USA, 2001
- 4. C. Sell, *Understanding Fragrance Chemistry*, Allured Publishing Corporation, USA, 2008.
- 5. R.R.Calkin, J.S.Jellinek, *Perfumery: Practice and Principles, John Wiley & Sons Inc.*
- 6. S.P.Gimelli, Aroma Science, Micelle Press, USA, 2001.
- 7. S. Arctander, *Perfume and Flavour Materials of Natural Origin*, Orchard Innovations, 2019.
- 8. <u>https://www.beyondbenign.org/lessons/essential-oil-extraction-using-liquid-co2/</u>.

SEMESTER

NAME OF THE PAPER (CODE)	: ROLE OF METALS IN MEDICINES (CHS-4)
Number of Credit	02
Number of Hours of Lecture	30

COURSE OBJECTIVES (COs)

IV-

The following are the course Objectives (Cos) for the paper-Role of Metals in Medicines:

CO 1:	Role of metal ions in various biomolecules and their functions.
CO 2:	Role of metals in commercially available medicines and their functions.
CO 3:	Elaborate the different types of Metals in drugs and know its composition.

Unit	Content	Course Specific Objectives	Lectures Hours	Marks	LOs
UNIT 1	Brief introduction of following	CSO 1.1: A brief introduction	6	12	
Bio role of Metals.	metals in biological system Fe,	to some of the metals. (K) CSO 1.2: Chemical structure			
	Cu, Zn, Mn, Cr(III), V, Mo, W,	with explanation of some of			
	Co, Ni, Na, K, Mg and Ca.	the metals. (U,A) CSO 1.3: Give some of the			
	Chemical structure, Commercial	commercial name of metals.			
	name, Name of the disease it is	(K) CSO 1.4: To explain some of			
	made for and its brief mechanism	the diseases that are cause by			
	of action shall be taught for all the	the metals. (U) CSO 1.5: To explain the			
	mentioned metals below.	mechanism on how the metals			
		effect the health.(A)			
UNIT 2 Diagnostic and therapeutic agents	Diagnostic and therapeutic agents with Pt (Cisplatin) and Ga for cancer, Au (auranofin) for arthritis and V for diabetes.	CSO 2.1: To make the student understand the diagnostic and therapeutic agents of Pt for cancer. (U,A) CSO 2.2: To make the student understand the diagnostic and therapeutic agents of Ga for cancer. (U, A) CSO 2.3: To explain how Au is used for the arthritis patient. (U, A) CSO 2.4: To explain how V is used for the diabetes patient. (U, A)	8	14	
UNIT 3 Metals in drugs.	Li ₂ CO ₃ (Camcolit) for manic- depressive illness, NaHCO ₃ (Alka- seltzer) for heartburn, Al(OH) ₃ (Gaviscon) for heartburn, As (melarsoprol) for sleeping sickness, Bi subsalicylate (pepto-	CSO 3.1: To make student understand how Li ₂ CO ₃ is used for manic depressive illness. (U, A) CSO 3.2: To make student understand how NaHCO ₃ and	16	24	

Bismol) for heartburn and	Al(OH) ₃ is used for heartburn.		
diarrhea, Bi subcitrate (De-nol)	(U, A)		
peptic ulcer, Zinc oxide with	CSO 3.3: To make student		
Fe2O3 (Calamine lotion) as	understand some of the		
antimicrobial agent.	medicine and its uses. (U)		
Internship to pharmacies in and			
around the State (Students are to			
make report of it and submit to the			
respective Teacher).			
1 /			

Practicals:

Volumetric titrations:

- 1. To estimate the acidity of commercially available antacids.
- 2. To estimate the concentration of Fe in commercially available medicines.
- 3. To estimate the concentration of Ca in commercially available medicines.
- 4. To estimate the strength of carbonate in tablets containing Li2CO₃
- 5. To estimate the sodium bicarbonate in synthetic/commercially available drug.
- 6. To estimate the zinc and iron present in Calamine lotion.
- 7. To estimate the Mg present in multivitamins.
- 8. Internship/ Minor Project and submit a hardcopy report to the concerned Teacher.

- 1. Metals in Medicine, John Wiley & Sons Ltd, 2009.
- 2. J. Stephen, Lipid, Chapter-9,
- **3**. Jones, Chris and Thornback, John, *Medicinal applications of coordination chemistry*, Cambridge, UK: Royal Society of Chemistry, 2007.

SEMESTER

NAME OF THE PAPER (CODE): CHEMISTY IN DIARY PRODUCTION (CHS-5)Number of Credit02Number of Hours of Lecture30

COURSE OBJECTIVES (COs):

V-

The following are the course Objectives (Cos) for the paper-Chemistry in Diary Production:

CO 1:	Gain skills in dairy product development and hands-on training for the processing of different milk products.
CO 2:	Establish a food industry/start up based on their learning in the subject.
CO 3:	Start providing 3rd party manufacturing to premier dairy-based industries. Work in any dairy based industry.

Unit	Content	Course Specific Objectives (CSOs)	Lectures Hours	Marks	LOs
UNIT 1 Preparations I	Processing of Flavoured milk Preparation of Dahi Preparation of Ghee Preparation of milk based traditional Indian sweet	CSO 1.1: To learn the Processing of Flavoured milk. (A) CSO 1.2: To make the student learn how to Prepare Dahi. (A) CSO 1.3: To make the student learn how to Prepare Ghee. (A) CSO 1.4: To make the student learn the Preparation of milk based traditional Indian sweet. (A)	8	14	
UNIT 2 Preparations II	Preparation of Ice cream. Preparation of milk based instant mix Preparation of whey based drink	CSO 2.1: To learn the preparation of Ice cream. (A) CSO 2.2: To learn how milk based instant mix are done.(A) CSO 2.3: To learn the Preparation of whey based drink. (A)	8	14	
UNIT 3 Exercises	Milk based new product development How to plan a startup, budgeting, marketing / case study/ entrepreneur (anyone of the above) Regulations, Licensing and registration of a startup.	CSO 3.1: An introduction on the milk based product development. (K) CSO 3.2: To learn how to start up own business.(A) CSO 3.3: To learn the entrepreneur.(A) CSO 3.4: To give an idea on how an individual can get the licensing for making own milk products.(U) CSO 3.5: To explain to the	14	22	

student on how to get a		
registration for startup.(U	J)	

Practicle:

1. Field trip/ Industrial Visit and submit a hardcopy report to the concerned Teacher.

- 1. De, Sukumar, *Outlines of dairy technology*, Oxford University Press, 2007.
- 2. B.H. Webb & Alford, Fundamentals of dairy chemistry, CBS Publisher, 2005.
- **3**. P.F. Fox, T. Uniacke-Lowe and J.A.O' Mahony (*Dairy Science andTechnology*, Taylor & amp; Francis, 2005.
- 4. P. Walstra, T.M. Jan, Wouters and J. G. Tom, Dairy chemistry and Biochemistry, Springer, 2015.

SEMESTER

NAME OF THE PAPER (CODE)	: CHEMISTRY AND ITS RELATION TO SOCIETY (CHS-6)
Number of Credit	02
Number of Hours of Lecture	30

COURSE OBJECTIVES (COs)

VI-

The following are the course Objectives (Cos) for the paper-Chemistry and its Relation to Society:

CO 1:	Increase the literacy of chemistry even in non-science students by learning the heritage of Chemistry
CO 2:	Understand the basic concept, principle and importance of chemistry in Daily Life.
CO 3:	Realize the importance of chemistry in daily life and future requirement.

Unit &	Unit Contents	Course Specific Objectives	Lectures	Marks	Los
title		(CSOs)	Hours	1.	
UNIT 1	Extraction and uses of metals like	CSO 1.1: An introduction to	10	16	
Chemistry	iron and stone in ancient times,	how the ancient times extract			
in	metals in ornaments, medicines,	the metals.(K)			
Heritage	weapons and chemistry for	CSO 1.2: Explain how the			
	preservatives, basics of	metals are used in ornaments,			
	preservation and few examples of	medicines and weapons. (U, A)			
	preservatives.	CSO 1.3: To explain how the			
		metal are persevered using the			
		chemical ways. (U,A)			
		CSO 1.4: To give the student			
		the basic ideas about			
		preservation. (K)			
		CSO 1.5: To give a few			
		example on how the			
		preservations. (U)			
UNIT 2	Edible and non- edible molecules,	CSO 2.1: An introduction to	12	20	
Chemistry	biochemistry of foods and	edible and on- edible molecules.			
in Life	medicine with examples: Aspirin,	(K)			
	Paracetamol. Ibuprofen and	CSO 2.2: To explain the			
	Penicillin, Cephalosporin,	biochemistry of foods with			
	Chemistry for industry: Artificial	example.(U)			
	sweeteners, Soaps and detergents	CSO 2.3: To explain the			
	and cosmetics, Polymer and	biochemistry of medicine with			
	Plastics: Uses and environmental	example. (U)			
	issues.	CSO 2.4: An introduction to			
		Chemistry of industry.(K)			
		CSO 2.5: To make student			
		understand how the artificial			
		sweetener, soap and detergents			
		are made.(U,A)			
		CSO 2.6: To make student			
		understand how the cosmetics,			
		Polymer and plastics are			
		manufacture.(U,A)			
		CSO 2.7: To make student aware			
		of the issues related to the			
		environment of using artificial			

UNIT 3 Future of chemistry	Basics of green chemistry, Reuse and recycling of by-products, zero waste chemistry and Alternate fuel and energy providing chemicals: biodiesel, natural gas and hydrogen.	sweeteners, Soaps and detergents and cosmetics, Polymer and Plastics. (U) CSO 3.1: An introduction to green chemistry.(K) CSO 3.2: An explanation to the R3. (U) CSO 3.3: To make student understand the importance of zero waste. (U) CSO 3.4: To make the student understand the importance of using biodiesel, natural gas and brokerer (A)	8	14	
		hydrogen.(A)			

Practicals:

- 1. Determine the calcium and magnesium contents in water samples using EDTA methods.
- 2. Determine the organic contents and pH of soil sample.
- 3. Estimate the food adulterants in edible items
- 4. Quantify the presence metals by flame test method
- 5. Demonstrate the conversion of PET into bottle into value added products.
- 6. Determine the quantitative presence of heavy metals like copper and chromium in natural sample like ore.
- 7. Demonstrate the exothermic and endothermic reaction in laboratory.
- 8. Organize a Community Outreach/Extension Activity and submit a hardcopy report to the concerned Teacher.

- 1. J. D. Lee, Concise Inorganic Chemistry, Wiley India Pvt. Ltd., 1991.
- 2. B. K. Sharma, *Industrial chemistry*, Goel Publishing House, India, 1983.
- 3. D.Christian, Gary, Dasgupta, K. Purnendu, Schug & A. Kevin, Analytical chemistry, Wiley, 2013.
- 4. V. Subramanian, A text book of Environmental chemistry, Wiley, 2011.